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1 2017 Specimen Paper Solutions

Question 1

(a) Using the Cauchy-Schwarz inequality,[(
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Next, using the AM-GM inequality, we have
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so we have proven the lower bound for
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.

(b) (i) By definition of the scalar product, for any two vectors

a =

a1

a2

a3

 and b =

b1

b2

b3

 ,

we have a •b = |a||b|cosθ , where θ is the angle between the two vectors. Since |cosθ | ≤ 1, then a •b ≤ |a||b|,
which implies that a1

a2

a3

 •

b1

b2

b3

≤
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and the result follows. For equality to hold, we must have ai = kbi for all 1 ≤ i ≤ 3 and some k ∈ R\{0}.

(ii) Using the Cauchy-Schwarz inequality,[(
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2
(

x2

y+ z
+

y2

z+ x
+

z2

x+ y

)
≥ x+ y+ z

and equality holds if and only if x = y = z.

Question 2

(i) Using the substitution u = x2, the integral becomes∫ 3

2

x2

x−1
dx =

∫ 3

2
x+1+

1
x−1

dx = ln2+
7
2
.

The substitution is motivated by the presence of the square root in the denominator and the fact that 4 and 9 are
square numbers.
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(ii) Using the substitution y = xu, we have

dy
dx

= x
du
dx

+u

1
x

dy
dx

=
du
dx

+
u
x

so the differential equation becomes
du
dx

= f (u) .

(iii) Dividing both sides by x, we have
1
x

dy
dx

=

√
x
y
− x

y
+

y
x2

so

f
(y

x

)
=

√
x
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− x

y
.

As such,

f (u) =
1√
u
− 1

u
=

√
u−1
u

.

The differential equation becomes
du
dx

=

√
u−1
u

. From (i), we have

2u
√

u+3u+6
√

u+6ln |
√

u−1|
3

= x+ c,

where c is a constant. As the solution curve passes through
(

1
3
,

4
3

)
, then u = 4. Substituting these into the above

equation yields c = 13. Hence,

2
y
x

√
y
x
+3
(y

x

)
+6
√

y
x
+6ln

∣∣∣∣√y
x
−1
∣∣∣∣= 3x+39.

When y = 9x, we have 60+6ln2 = 3x, so x = 20+2ln2, which is the required x-coordinate.

Question 3

(i) (a) Let S = {a,2a, . . .(p−1)a}. For all 1≤ i≤ p−1, none of the ia∈ S is divisible by p because a is not divisible
by p. Suppose ai ≡ a j (mod p). Then, there exists λ ∈ Z such that ai = λ p+a j, so a(i− j) = λ p. However,
p does not divide a so p must divide i− j. That is, i ≡ j (mod p). As 1 ≤ i, j ≤ p− 1, then i = j so all the
elements in S are distinct. In mod p, the elements in S are a permutation of T , where T = {1,2, . . . , p−1}.

(b) In mod p, the product of the elements in S is congruent to the product of the elements in T . That is,

a ·2a ·3a · (p−1)a ≡ 1 ·2 ·3 · (p−1) (mod p).

So, ap−1 ≡ 1 (mod p).

(ii) By the binomial theorem,

(x+ y)5 = x5 +5x4y+10x3y2 +10x2y3 +5xy4 + y5

= x5 + y5 +5k

where k ∈ Z. So, x5 + y5 = (x+ y)5 −5k. As x5 + y5 ≡ 0 (mod5), then (x+ y)5 ≡ 0 (mod5).

We use the method of contraposition to prove that x + y ≡ 0 (mod5). That is to say, given that x + y is not a
multiple of 5, we wish to prove that (x+ y)5 is also not a multiple of 5. We write x+ y = 5k+ r, where 1 ≤ r ≤ 4.
So,

(x+ y)5 = (5k+ r)5 = 3125k5 +3125k4r+1250k3r2 +250k2r3 +25kr4 + r5

so (x+ y)5 ≡ r5 (mod5) but because 1 ≤ r ≤ 4, then r5 is not a multiple of 5 and so we have proven that x+ y ≡
0 (mod5). As such, there exists α ∈ Z such that x+ y = 5α . Then, x = 5α − y. Hence,

x5 + y5 = (5α − y)5 + y5 = 3125α
5 −3125α

4y+1250α
3y2 −250α

2y3 +25αy4.

It follows that x5 + y5 is divisible by 25.
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Remark for Question 3: This deals with a well-known result in number theory called Fermat’s little theorem. It states
that if gcd(a, p) = 1 (i.e. a is not divisible by p), then ap−1 ≡ 1 (mod p). An alternative representation says that for any
integer a, ap ≡ a (mod p). Our method of proving Fermat’s little theorem was using modulo inverse.

Question 4

(i) 5n

(ii) (a) B1 = 5 and B2 = 24; B2 can be calculated easily by considering the complement of the event ‘never chooses
Scrambled eggs on consecutive days’ so B2 = 52 −1.

(b) We consider two cases.

• Case 1 (Scrambled eggs on the 1st day): On the 2nd day, she has 4 choices remaining. There would be
no restrictions on what she has on the remaining n−2 days. This contributes to 4Bn−2.

• Case 2 (no Scrambled eggs on the 1st day): On the 1st day, she has 4 choices. Thereafter, she has no
restrictions on what she has on the remaining days. This contributes to 4Bn−1.

Since the 2 cases are mutually exclusive, the result follows.

(c) Let Pk be the proposition that B3k+1 ≡ 0 (mod5) for all k ∈ Z≥0.
When k = 0, we have B1 = 5, which is divisible by 5. So, P0 is true.
Assume Pr is true for some r ∈ Z≥0. Then, B3r+1 ≡ 0 (mod5). We are required to show B3r+4 ≡ 0 (mod5).
Using the relation in (iib), as Bk = 4Bk−1 +4Bk−2, then

B3r+4 = 4B3r+3 +4B3r+2

= 4(4B3r+2 +4B3r+1)+4B3r+2

= 20B3r+2 +16B3r+1

≡ 16B3r+1 (mod5)

≡ 0 (mod5) by induction hypothesis

Since P0 is true and Pr is true implies Pr+1 is true, by mathematical induction, Pk is true for all k ∈ Z≥0.
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Question 5

(i) (a) Consider the following graph of y = xp for p < 0 and x > 0 (we set i = 2 here but actually, i is arbitrary):

1 1.5 2 2.5 3

0.5

1

1.5

y = xp

x = i

x = i+1

x

y

∫ i+1

i
xp dx denotes the area bounded by the curve, the x-axis and the ordinates x = i and x = i+ 1. We

construct the rectangle above which has a base of 1 unit and a height of (i+1)p. Its area is (i+1)p units2,
which is less than the given integral.

(b) It suffices to prove that ∫ i+1

i
xp dx <

ip +(i+1)p

2
.

Naturally, we would think of the right side of the inequality as the area of another figure other than a rectangle.
Consider the following graph:

1 1.5 2 2.5 3

0.5

1

1.5

y = xp

x = i

x = i+1

x

y

We construct a trapezium bounded by the x-axis and the ordinates x = i and x = i+1. Its area is
ip +(i+1)p

2
.

The integral is less than the area of the trapezium and the result follows.

(ii) Using (ia),

(i+1)p <
∫ i+1

i
xp dx

2p +3p + . . .+np <
∫ 2

1
xp dx+

∫ 3

2
xp dx+ . . .+

∫ n

n−1
xp dx

n

∑
k=1

kp < 1+
∫ n

1
xp dx

The required sum is
∞

∑
k=1

kp so as n → ∞, we have

∞

∑
k=1

kp < 1+
[

xp+1

p+1

]∞

0
= lim

n→∞

(
1+

np+1 −1
p+1

)
= 1− 1

p+1
=

p
1+ p

.
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(iii) In (ii), we used (ia) to show that

2p +3p + . . .+np <
∫ n

1
xp dx.

Considering the integral on the right side of the equation, we have∫ n

1
xp dx =

np+1 −1
p+1

.

Adding 1p = 1 to both sides, we establish an upper bound for 1p +2p +3p + . . .+np.

Using (ib), we have ∫ i+1

i
xp dx <

ip +(i+1)p

2∫ 2

1
xp dx+

∫ 3

2
xp dx+ . . .+

∫ n

n−1
xp dx <

1p +2p

2
+

2p +3p

2
+ . . .+

(n−1)p +np

2∫ n

1
xp dx <

1p

2
+

np

2
+

n−1

∑
k=2

kp

np+1 −1
p+1

<
1p

2
+

np

2
+

n−1

∑
k=2

kp

1p +np

2
+

np+1 −1
p+1

<
n

∑
k=1

kp

so we have established a lower bound for 1p +2p +3p + . . .+np.

Therefore,

1+np

2np+1 +
np+1 −1

np+1 (p+1)
<

1p +2p +3p + . . .+np

np+1 <
1

np+1 +
np+1 −1

np+1 (p+1)
1

2np+1 +
1
n
+

1
p+1

− 1
np+1 (p+1)

<
1p +2p +3p + . . .+np

np+1 <
1

np+1 +
1

p+1
− 1

np+1 (p+1)

As p >−1, then p+1 > 0. As n → ∞ on both sides, by the squeeze theorem, the upper and lower bounds will tend

to
1

p+1
. Therefore,

lim
n→∞

(
1p +2p +3p + . . .+np

np+1

)
=

1
p+1

.

Remark for Question 5: There is a formula for the sum 1p + 2p + . . .+ np which is known as Faulhaber’s formula. It
states that

n

∑
k=1

kp =
1

p+1

p

∑
r=0

(
p+1

r

)
Brnp−r+1,

where Br denotes the sequence of Bernoulli numbers.

Question 6

(i) Since f is continuous on [0,0.4], f (0) = 1 > 0 and f (0.4) =−0.136 < 0, then there exists a root in (0,0.4).
Next, since f is continuous on [0.4,2], f (0.4) =−0.136 < 0 and f (2) = 3 > 0, then there exists a root in (0.4,2).
Lastly, since f is continuous on [−2,0], f (−2) =−1 < 0 and f (0) = 1 > 0, then there exists a root in (−2,0).

The above shows that f has at least three distinct real roots. To show that there are only three distinct real roots,
consider f ′(x) = 3

(
x2 −1

)
so f is strictly increasing for x > 1 and strictly decreasing for x <−1.

(ii) Note that

f g(x) = f
(

1
1− x

)
=

(
1

1− x

)3

−3
(

1
1− x

)
+1 =−1−3x+ x3

(1− x)3
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so g(α),g(β ) and g(γ) are the roots of f . From (i), we know that α ∈ (−2,0), β ∈ (0,0.4) and γ ∈ (0.4,2). We
have g(γ)< 0, which implies that g(γ) = α . Suppose on the contrary that g(β ) = β . Then,

1
1−β

= β .

That is, β 2−β +1= 0. However, the roots of this equation are not real, which is a contradiction. As such, g(β ) = γ ,
leaving us with g(α) = β .

(iii) Write h(x) = ax2 +bx+ c, where a,b,c ∈ R and a ̸= 0. Then for x = α,β ,γ , we have

ax2 +bx+ c =
1

1− x
ax2 (1− x)+bx(1− x)+ c(1− x)−1 = 0

ax2 −ax3 +bx−bx2 + c− cx−1 = 0

−ax3 +(a−b)x2 +(b− c)x+ c−1 = 0

Comparing the last line with f (x), we see that a =−1, b =−1 and c = 2. So, h(x) =−x2 − x+2.

Remark for Question 6: For (i), to put it more rigorously, the justification of the existence of a root is due to the
intermediate value theorem. It states that given a continuous function f on an interval [a,b] such that f (a) and f (b) have
different polarities (i.e. either f (a) < 0 and f (b) > 0, or f (a) > 0 and f (b) < 0), then there exists some c ∈ (a,b) such
that f (c) = 0.

Question 7

(i) Consider a square board with 4n unit squares. Without a loss of generality, suppose a unit square in the 1st quadrant
is covered. Then, consider the 4 unit squares at the centre. Cover all the squares except that in the 1st quadrant. As
the board can be rotated in any direction, regardless of which unit square is originally covered, the result follows.

(ii) First, note that the area of the board is 4n units2, then the length must be 2n units.
Let Pn be the proposition that on a 2n × 2n square board, if one unit square is initially covered, then the remain-
ing unit squares can be covered by triominoes, and the total number of triominoes required is 1

3 (4
n −1) for all n∈N.

When n = 1, we have a 2× 2 square board. If one unit square is initially covered, then we have 3 unit squares
remaining. They are arranged in an L-shape. The remaining unit squares can be covered by triominoes. The total
number of triominoes is 1. Hence, P1 is true.

Assume that Pk is true for some k ∈ N. That is, on a 2k × 2k square board, if one unit square is initially cov-
ered, the remaining unit squares can be covered by 1

3

(
4k −1

)
triominoes. We wish to prove that Pk+1 is true. That

is, on a 2k+1 ×2k+1 square board, if one unit square is initially covered, the remaining unit squares can be covered
by 1

3

(
4k+1 −1

)
triominoes.

Consider a 2k+1 × 2k+1 square board. Divide it into four 2k × 2k square boards. Without a loss of generality,
suppose a unit square in the 1st quadrant is initially covered as shown.

By the induction hypothesis, that 2k ×2k board can be covered by 1
3

(
4k −1

)
triominoes.
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For the 2k×2k board in the 2nd quadrant, we can cover it with 1
3

(
4k −1

)
triominoes such that a unit square remains

in the bottom-right corner.

Repeat this process for the 2k ×2k boards in the 3rd and 4th quadrants and do not occupy the top-right and top-left
corners respectively. This can be covered with 2× 1

3

(
4k −1

)
triominoes.

Finally, the 2×2 square board in the centre can be covered by one triomino.

We see that the total number of triominoes required is 4
3

(
4k −1

)
+ 1 = 1

3

(
4k+1 −1

)
. Since P1 is true and Pk is

true implies Pk+1 is true, by mathematical induction, Pn is true for all n ∈ N.

Question 8

(a) Let S1 and S2 be the following sets:

S1 = {x ∈ Z : a ≤ x ≤ b} and S2 = {x ∈ Z : c ≤ x ≤ d}

One can sketch a number line and come up with two cases.

• Case 1: Suppose c ≤ a ≤ b ≤ d. Then, S1 ⊆ S2. Since |S1| ≤ |S2|, then the number of integers x is b−a+1.

• Case 2: Suppose a ≤ c ≤ d ≤ b. Then, S2 ⊆ S1. Since |S2| ≤ |S1|, the number of integers x is d − c+1.

The result follows.

(b) Consider x+ y = n and 0 ≤ y ≤ b. Then, 0 ≤ n− x ≤ b, so n−b ≤ x ≤ n. Thus, the equation x+ y = n is restricted
to the conditions 0 ≤ x ≤ a and n−b ≤ x ≤ n.

Since a+ b ≥ n, then a ≥ n− b. Consider x+ y = n and 0 ≤ x ≤ a. Then, 0 ≤ n− y ≤ a, so n− a ≤ y ≤ n.
Thus, the equation x+ y = n is restricted to the conditions 0 ≤ y ≤ b and n−a ≤ y ≤ n. The result follows.
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(c) Let A, B and C denote the following sets:

A = {x ∈ Z≥0 : x > a} , B = {y ∈ Z≥0 : y > a} and C = {z ∈ Z≥0 : z > a}

So, ∣∣A′∩B′∩C′∣∣= |ξ |− |A∪B∪C| by de Morgan’s law

= |ξ |−3 |A|+3 |A∩B|− |A∩B∩C| by the principle of inclusion and exclusion

Note that |A∩B∩B|= 0. If the cardinality was positive, it would imply that x+ y+ z > 3a but this contradicts the
fact that x+ y+ z ≤ 3a.

Hence,

|A|=
(

n−a+1
2

)
, |A∩B|=

(
n−2a

2

)
and |A∩B∩C|= 0.

Therefore, ∣∣A∩B′∩C′∣∣= (n+2
2

)
−3
(

n−a+1
2

)
+3
(

n−2a
2

)
.

Remark for Question 8: Here is an interactive solution to (ii).

9
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2 2017 Paper Solutions

Question 1

(i) Consider the graph of y = lnx. Plot the points A(a, lna) and B(b, lnb) and without loss of generality, assume
0 < a ≤ b. Here, a and b are set to be 1.5 and 2.5 respectively but they can be arbitrarily chosen such that 0 < a ≤ b.

0.5 1 1.5 2 2.5 3

−0.5

0.5

1
y = lnx

x = a

x = b

A(a, lna)

B(b, lnb)

x

y

Let M be on the graph such that its x-coordinate is the average of A and B. So, M has coordinates
( a+b

2 , ln
( a+b

2

))
.

Also, let C be such that its y-coordinate is the average of A and B. Then, the y-coordinate of C is 1
2 (lna+ lnb).

As y = lnx is concave down, the y-coordinate of C is less than or equal to that of M. As such, the result follows
with equality attained if and only if a = b.

(ii) We have

ln
(

a+b
2

)
≥ ln

√
ab.

Since y = lnx is an injective function, then
a+b

2
≥
√

ab, which is the AM-GM inequality for two variables.

(iii) Let y = x lnx. Then,
d2y
dx2 =

1
x

so for all x > 0,
d2y
dx2 > 0. This shows that y is concave up (alternatively, one can use

a graphing calculator to verify this). Let A and B have coordinates (a,a lna) and (b,b lnb) respectively. So,

a lna+b lnb
2

≥ a+b
2

ln
(

a+b
2

)
since y = x lnx is concave down

a lna+b lnb ≥ (a+b) ln
(

a+b
2

)
ln
(

aabb
)
≥ ln

((
a+b

2

)a+b
)

aabb ≥
(

a+b
2

)a+b

by injectivity of lnx
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Question 2

(i) Let Pn be the proposition that
dn

dxn (xy) = x
dny
dxn +n

dn−1y
dxn−1

for all positive integers n.

When n = 1, the LHS is
d
dx

(xy), which is equal to x
dy
dx

+ y. This expression is equal to the RHS.

Assume that Pk is true for some positive integer k. That is,

dk

dxk (xy) = x
dky
dxk + k

dk−1y
dxk−1 .

To show that Pk+1 is true, we need to prove that

dk+1

dxk+1 (xy) = x
dk+1y
dxk+1 +(k+1)

dky
dxk .

So,

LHS =
dk+1

dxk+1 (xy)

=
d
dx

(
dk

dxk (xy)
)

=
d
dx

(
x

dky
dxk +n

dk−1y
dxk−1

)
by induction hypothesis

= x
dk+1y
dxk+1 +

dky
dxk +n

dky
dxk

= x
dk+1y
dxk+1 +(k+1)

dky
dxk = RHS

Since P1 is true and Pk is true implies Pk+1 is true, by mathematical induction, Pn is true for all positive integers n.

(ii) (a) y0 = 1

y1 = ex2 d
dx

(
e−x2

)
= ex2

(
−2xe−x2

)
=−2x

y2 = ex2 d2

dx2

(
e−x2

)
= ex2 d

dx

(
−2xe−x2

)
= 4x2 −2

(b)

yn+2 +2xyn+1 +2(n+1)yn = ex2 dn+2

dxn+2

(
e−x2

)
+2xex2 dn+1

dxn+1

(
e−x2

)
+2(n+1)ex2 dn

dxn

(
e−x2

)
= ex2 dn+2

dxn+2

(
e−x2

)
+2ex2

[
x

dn+1

dxn+1

(
e−x2

)
+(n+1)

dn

dxn

(
e−x2

)]
= ex2 dn+2

dxn+2

(
e−x2

)
+2ex2 dn+1

dxn+1

(
xe−x2

)
using (i) by setting y = e−x2

= ex2 dn+1

dxn+1

[
d
dx

(
e−x2

)
+2xe−x2

]
= 0

(c) From (b), it follows that yn+2 +2xyn+1 =−2(n+1)yn. Hence,

d
dx

(yn+1) =
d
dx

[
ex2 dn+1

dxn+1

(
e−x2

)]
= ex2 dn+2

dxn+2

(
e−x2

)
+2xex2 dn+1

dxn+1

(
e−x2

)
= yn+2 +2xyn+1

=−2(n+1)yn
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Question 3

(a) As gcd(1591,3913,9331) = 43, factorising 43 from both sides of the equation yields 37x+ 91y = 217, or rather,
37x = 7(31−13y). So, 37x is a multiple of 7, which forces x to be a multiple of 7. The only prime that is a multiple
of 7 is 7, but if x = 7, then y =− 6

13 ̸∈ Z. So, we conclude that there are no integer solutions with x prime.

(b) (i) As a and b are factors of n, there exist λ ,µ ∈ Z such that n = λa = µb.
Given that ra+ sb = 1, then ran+ sbn = n. So, ab(rµ + sλ ) = n, which asserts that ab is a factor of n.

(ii) Suppose x ≡ u (moda). Then, there exists k ∈ Z such that x = ka+u.
Write k = k1b+q for some k1,q ∈ Z. So, x = ak1b+aq+u, which implies that x = aq+u (modb).
As ra+ sb = 1, then

r (v−u)a+ s(v−u)b = v−u

r (v−u)a ≡ v−u (modb) (∗)

By choosing k = k1b+ r (v−u), i.e. q = r (v−u), we have

x ≡ ar (v−u)+u (modb)

= v−u+u (modb) using (∗)
≡ v (modb)

Hence, we have constructed a number x = (b+ r(v− u))a+ u = ab+ ar(v− u)+ u such that x ≡ u (moda)
and x ≡ v (modb).

Question 4

(i)

In + In−2 =
∫ π

4

0
tannx+ tann−2x dx

=
∫ π

4

0
tann−2x

(
1+ tan2x

)
dx

=
∫ π

4

0
sec2 x tann−2 x dx

=

[
tann−1x
n−1

] π
4

0
=

1
n−1

(ii) y = tanx is strictly increasing on [0, 1
4 π]. Substituting the x-coordinates of the endpoints, 0 ≤ tanx ≤ 1.

Consider the y-coordinates of a linear function y=mx to be upper bounds for all y values of y= tanx. For 0≤ x≤ π

4 ,
it must satisfy 0 ≤ mx ≤ 1.

Hence, 0 ≤ mx ≤ m
4 π , implying that m = 4

π
. The required linear function is y = 4

π
x. The inequality tanx ≤ 4

π
x

is true and equality holds if and only if x = 0 or x = π

4 .

(iii) Since tanx ≥ 0 on [0, 1
4 π], combining this with (ii) yields 0 ≤ tanx ≤ 4

π
x.

So,

0 ≤
∫ π

4

0
tann x dx ≤

∫ π
4

0

(
4
π

x
)n

dx

0 ≤ In ≤
(

4
π

)n ∫ π
4

0
xn dx

0 ≤ In ≤
(

4
π

)n [ xn+1

n+1

] π
4

0

0 ≤ In ≤
π

4(n+1)

As lim
n→∞

π

4(n+1)
= 0, by the squeeze theorem, In tends to zero as well.

12



(iv) Note that I2 + I0 =
1
1 , I4 + I2 =

1
3 and I6 + I4 =

1
5 , which are the magnitudes of the first three terms of the series.

By the method of difference,

1
1
− 1

3
+

1
5
+ . . .= (I2 + I0)− (I4 − I2)+(I6 − I4)+ . . .

= I0 =
π

4

Remark for Question 4: This question involves proving Madhava’s formula for π . It is an example of a Madhava series
which is a collection of infinite series believed to have been discovered by Madhava of Sangamagrama in the 1200s. James
Gregory and Gottfried Wilhelm Leibniz discovered the series much later in the 1670s. For most of the Western world, the
series is known as the Leibniz series.

Question 5

(i) Suppose there are no restrictions. For each object, it can go into either box. There are 2r ways to do this. As there
are 2 cases where either box is empty, the result follows.

(ii) (a) Note that S (r,n) represents a Stirling number of the second kind.
Let the set M comprise the r objects. So, we write M = {a1, . . . ,ar}.

• Case 1: Suppose for some 1 ≤ j ≤ r, a j is the only object in a box. There is 1 way as the boxes are
identical. The remaining r−1 objects can be distributed into the remaining 2 boxes. The number of ways
is 2r−2 −1.

• Case 2: Suppose for some 1 ≤ j ≤ r, a j is mixed with other objects. We first distribute the remaining
r−1 objects into 3 boxes. Then, a j can enter either one of the 3 boxes in 3S (r−1,3) ways.

Since the two cases are mutually exclusive, the result follows by the addition principle.

(b) As S (r,3) = 2r−2 −1+3S (r−1,3), then S (r+2,3) = 9S (r,3)+5
(
2r−1

)
−4.

Let Pr be the proposition that

S (r,3)≡

{
0 (mod6) if r is even

1 (mod6) if r is odd

for all positive integers r such that r ≥ 3.

When r = 3, there is only 1 way to distribute 1 object into 1 box, so S (3,3) = 1 ≡ 1 (mod6).
When r = 4, using the recurrence relation established in (iia), we have S (4,3) = 3+3S (3,3)≡ 0 (mod6).
These assert that the base cases P3 and P4 are true.

Assume Pk is true for some positive integer k such that k ≥ 3. That is,

S (k,3)≡

{
0 (mod6) if k is even

1 (mod6) if k is odd

We wish to prove that Pk+2 is true. That is,

S (k+2,3)≡

{
0 (mod6) if k+2 is even

1 (mod6) if k+2 is odd

Suppose k is even. Then, k+2 is also even, so

S (k+2,3) = 9S (k,3)+5
(

2k−1
)
−4

≡ 5
(

2k−1
)
−4 (mod6) by induction hypothesis

≡ 0 (mod6)

13



Now, suppose k is odd. Then, k+2 is also odd, so

S (k+2,3) = 9S (k,3)+5
(

2k−1
)
−4

≡ 5+5
(

2k−1
)

(mod6) by induction hypothesis

= 5
(

2k−1 +1
)

≡ 5(−1) (mod6)

≡ 1 (mod6)

Since P3 and P4 are true and Pk is true implies Pk+1 is true, by mathematical induction, Pr is true for all positive
integers r such that r ≥ 3.

Question 6

(a) (i) Label the beads a1, . . . ,an.
We first consider a linear permutation, which can be done in n! ways.
As the circle can be rotated, then suppose a1 goes to the old position of a2, a2 goes to the old position
of a3, and so on. We obtain a permutation of the same configuration as before. So, the number of

arrangements in a circle is
n!
n

= (n−1)!.

(ii) When there are no restrictions, there are (n−1)! ways to arrange the beads.
If two beads are adjacent, there are 2((n−1)−1)! ways to arrange them.
Hence, the required number of ways is (n−1)!−2(n−2)! = (n−2)!(n−3).

(iii) First, note that the result holds if and only if n > 5.
There are

(n
3

)
ways to choose 3 beads out of n and n ways to choose 3 adjacent beads. For 2 fixed but

adjacent beads, there are n ways to choose and n−4 ways to choose the 3rd bead so that the 3rd bead is
not adjacent to the first two beads.

Hence, the answer is (
n
3

)
−n−n(n−4) =

n(n−1)(n−2)
6

−n−n(n−4)

= n
[
(n−1)(n−2)+6(3−n)

6

]
=

n(n−4)(n−5)
6

(b) Let A and B denote the following sets:

A = {all 4-tuples denoting all collections of 4 points on the perimeter of the circle}
B = {all interior points in the circle when the maximum possible number of interior points is achieved}

Let f : A → B be a function. Suppose a ∈ A. Then there exists b ∈ B such that f (a) = b as we can always find
4 points that form the 2 chords on which b is the intersection of the 2 chords.

To show f is injective, suppose f (a) = f (a′). Suppose on the contrary that a ̸= a′. Then, we can shift 2 of the
4 points in a′ such that 2 additional interior points are formed instead of 1, which is a contradiction. So, a = a′.

To show f is surjective, as every b ∈ B is formed by the intersection of 2 chords, it corresponds to 4 dis-
tinct points on the perimeter of the circle.

Since f is injective and surjective, it is thus bijective, so by the bijection principle, |A|= |B|=
(n

4

)
.

Question 7

(i) Let x = 4k+3 for some k ∈ Z≥0. As x ≡ 1 (mod2), then x is odd, so its divisors are also odd.
Suppose on the contrary that all the prime divisors of x are of the form 1 mod 4. For any two integers of the form

14



1 mod 4, say 4m+ 1 and 4n+ 1, where m,n ∈ Z, their product, 16mn+ 4m+ 4n+ 1 is also 1 mod 4. Hence, the
product of any number of integers of the form 1 mod 4 is also of the form 1 mod 4.

Thus, there exists at least one prime factor of the form 1 mod 3, which is in Q.

(ii) Suppose on the contrary that there are finitely many primes in Q. Then, Q = {q1, . . . ,qn} with q1 = 3, etc.
From (i), N = 4q2 . . .qn +3 is divisible by some prime in Q. However, none of the qi’s, for 1 ≤ i ≤ n, divides N.
Thus, there are infinitely many primes in Q.

Remark for Question 7: The infinitude of primes of the form 4k + 3 is a particular case of Dirichlet’s theorem on
arithmetic progressions. It states that if gcd(a,b) = 1, then there are infinitely many primes of the form an+b.

Question 8

(i) (a) By considering the sequence 1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0, . . ., the period is 8

(b) By considering the sequence 1,1,2,3,1,0,1,1,2,3,1,0,1, . . ., the period is 6

(ii) Modulo m, there are m possible values which are 0,1,2, . . . ,m−1. So, there are m2 distinct pairs.
As 1 ≤ j < k ≤ m2+1, by considering m2+1 pairs of (Fi,Fi+1) modulo m, where 1 ≤ i ≤ m2+1, the result follows
by the pigeonhole principle.

(iii) Here, we would use the method of strong induction. Unlike the conventional method of mathematical induction,
strong induction uses more statements in the induction hypothesis.

Let Pn be the proposition that there exists j,k ∈ N, where j < k, such that Fj+n ≡ Fk+n (modm) for all n ∈ Z≥0.
When n = 0, then Fj ≡ Fk (modm).
When n = 1, then Fj+1 ≡ Fk+1 (modm).
The base cases P0 and P1 are true because in (ii), we established that

(
Fj,Fj+1

)
≡ (Fk,Fk+1) (modm).

Assume that Pr and Pr+1 are true for some r ∈ Z≥0. That is,

Fj+r ≡ Fk+r (modm) and Fj+r+1 ≡ Fk+r+1 (modm).

To show Pr+2 is true, we need to prove Fj+r+2 ≡ Fk+r+2 (modm).
This is true because

Fj+r+2 = Fj+r+1 +Fj+r by definition of Fibonacci sequence

≡ Fk+r+1 +Fk+r (modm) by induction hypothesis

≡ Fk+r+2 (modm) by definition of Fibonacci sequence

Since P0 and P1 are true and Pr and Pr+1 are true imply Pr+2 is true, then by strong induction, Pn is true for all
n ∈ Z≥0.

(iv) By (iii), for any positive integer m, the Fibonacci sequence modulo m is periodic.
Hence, there exists a pair (Fi,Fi+1) such that Fi ≡ F1 ≡ 1 (modm) and Fi+1 ≡ F2 ≡ 2 (modm).
So, Fi−1 ≡ 0 (modm).

Remark for Question 8: I found an interesting post on StackExchange which is related to (iii).
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3 2018 Paper Solutions

Question 1

(i)

Fn(0) =
n

∑
r=1

1
r (r+1)

= 1− 1
n+1

,

which follows by using partial fractions and the method of difference.
As n tends to infinity, Fn(0) increases and tends to 1.

(ii) (a)

Fn (x) =
n

∑
r=1

[
1
r
− 1

r+1
+

2
(r−1)x+1

− 2
rx−1

]
=

n

∑
r=1

[
1
r
− 1

r+1

]
︸ ︷︷ ︸

Fn(0)

+2
n

∑
r=1

[
1

(r−1)x+1
− 1

rx−1

]

= 1− 1
n+1

+2
(

1− 1
nx+1

)
by the method of difference

= 3− 1
n+1

− 2
nx+1

(b)

lim
n→∞

Fn(x) =

{
1 if x = 0;

3 if x ̸= 0

Question 2

(i) Starting with the RHS, let t = a− x. When x = 0, then t = a; when x = a, then t = 0. Also, dt =−dx.
The RHS becomes

−
∫ a

0
f (t) dt =

∫ a

0
f (t) dt =

∫ a

0
f (x) dx.

(ii) Since f is symmetrical about x = 1
2 a, then f

(
x+ 1

2 a
)
= f

(
−x+ 1

2 a
)
.

Replacing x with x− 1
2 a, we have f (x) = f (a− x).

Considering the LHS, ∫ a

0
x f (x) dx =

∫ a

0
(a− x) f (a− x) dx

= a
∫ a

0
f (a− x) dx−

∫ a

0
x f (a− x) dx

Using (i), the integrals become

a
∫ a

0
f (x) dx−

∫ a

0
x f (x) dx.

So,

2
∫ a

0
x f (x) dx = a

∫ a

0
f (x) dx.

Dividing both sides by 2 yields the result.

(iii) Let

g(x) =
xsinx

1+ cos2 x
.

Then, g is even because g(−x) = g(x), so the integrand g is symmetrical about x = 0.
Setting a = 0 in (ii), we have ∫

π

0

xsinx
1+ cos2x

dx =
π

2

∫
π

0

sinx
1+ cos2x

dx.

For the integral on the right, let u = cosx, so du =−sinx dx. The integral becomes

−π

2

∫ −1

1

1
1+u2 du =

π

2

∫ 1

−1

1
1+u2 du =

π

2
[
tan−1u

]1
−1 =

π2

4
.
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Question 3

(i) Without loss of generality, it suffices to show that

a
1+a

+
b

1+b
− c

1+ c
≥ 0,

where a+b ≥ c, which is a consequence of the triangle inequality.

The LHS can be written as

a
1+a

+
b

1+b
− c

1+ c
=

a(1+b)(1+ c)+b(1+a)(1+ c)− c(1+a)(1+b)
(1+a)(1+b)(1+ c)

.

Since the denominator is always positive and the numerator can be expanded and simplified as a+ b− c+ 2ab+
abc ≥ 0, the result follows.

(ii) Without a loss of generality, it suffices to show that
√

a+
√

b−
√

c ≥ 0, where a+b ≥ c.

Think of
√

a+
√

b−
√

c as the difference of
√

a+
√

b and
√

c. By multiplying and dividing by its ‘conjugate’,
the LHS can be written as

√
a+

√
b−

√
c =

(√
a+

√
b−

√
c
)(√

a+
√

b+
√

c
)

√
a+

√
b+

√
c

.

Similar to (i), we consider the numerator, which can be written as
(√

a+
√

b
)2

− c = a+b− c+2
√

ab ≥ 0. The
result follows.

(iii) Without a loss of generality, it suffices to show that√
a(b+ c−a)+

√
b(c+a−b)−

√
c(a+b− c)≥ 0,

where a+b ≥ c and a,b,c are the lengths of a triangle.

Let the triangle’s perimeter be P, so P = a+b+ c. So,√
a(b+ c−a)+

√
b(c+a−b)−

√
c(a+b− c) =

√
a(P−2a)+

√
b(P−2b)−

√
c(P−2c).

Let x =
√

a(P−2a), y =
√

b(P−2b) and z =
√

c(P−2c).
Using the cosine rule, say we have a triangle XY Z with XY = z, Y Z = x, ZX = y and ∠XY Z = θ . Then,

cosθ =
x2 + y2 − z2

2xy

=
a(P−2a)+b(P−2b)− c(P−2c)

2
√

ab(P−2a)(P−2b)

=

√
(c−a+b)(c+a−b)

4ab

As |cosθ | ≤ 1, it follows that

(c−a+b)(c+a−b)
4ab

≤ 1

c2 ≤ a2 +2ab+b2

c ≤ a+b

and the result follows.

Question 4

(i) (a) Number of ways is
(

7+4−1
4−1

)
= 120
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(b) The question is equivalent to asking the number of integer solutions to the equation

x1 + x2 + x3 + x4 = 7, where all the xi’s ≥ 1.

Letting xi = 1− yi, we have

y1 + y2 + y3 + y4 = 3, where all the yi’s ≥ 0.

So, the number of ways is
(

3+4−1
3

)
= 20.

(a) Number of ways is 47 = 16384
(b) Fix any T-shirt in the 1st slot, then the 2nd slot can contain either of the remaining 3 types of T-shirts. Repeat-

ing this process up to the 7th slot, we see there are 4
(
37−1

)
= 2916 ways.

(c) Let Ai denote the event that the T-shirt of the ith colour is not used, where 1 ≤ i ≤ 4.
So,

4

∑
i=1

|Ai|=
(

4
1

)
37

∑
i< j

∣∣Ai ∩A j
∣∣= (4

2

)
27

∑
i< j<k

∣∣Ai ∩A j ∩Ak
∣∣= (4

3

)
17

By the principle of inclusion and exclusion, the answer is 47 −
(

4
1

)
37 +

(
4
2

)
27 −

(
4
3

)
17 = 8400.

Question 5

(i) (a) An a×b rectangle and a p×q rectangle have ab and pq squares respectively. Since some number of rectangles
are used to tessellate the large board, the result follows.

(b) Suppose the base and height of the rectangle are denoted by a and b respectively. If the large board is tes-
sellated from left to right with α vertical and β horizontal rectangles, then the bottom row of the board has
αa+βb squares. As each row has q squares, then q = αa+βb. Similarly, if we tessellate the board from the
bottom to the top, we have p = γa+δb. Since α,β ,γ,δ ∈ Z≥0, the result follows.

(c) In each a× b tile, along each row, there is only one shaded square. Since there are b rows, there will be b
shaded squares in each tile. If k tiles are used in the tessellation, there will be kb shaded squares on the large
board. From (a), as ab is a factor of pq, then there exists k ∈ N such that kab = pq. Hence, kb refers to the
number of shaded squares on the board.

(ii) (a) Given that

p ≡ r (moda), 0 ≤ r < a

q ≡ s (moda), 0 ≤ s < a

then there exists m,n ∈ N such that
p = ma+ r and q = na+ s.

Consider a large p× q rectangle. So, pq = a2mn+ ams+ anr+ rs. We remove an r× s rectangle from the
bottom-right corner so the remaining figure has

pq− rs
a

= mna+ms+nr

non-overlapping rows or columns of a×1 rectangles. So, this figure comprises
pq− rs

a
shaded blocks.

As t = min{r,s} and there are t shaded blocks in the r× s rectangle, the result follows.

(b) From (iia), the number of shaded squares in the p×q rectangle is
pq− rs

a
+ t.

From (ic), the number of shaded squares in the tessellated p×q rectangle is
pq
a

.
Equating the two, we have at = rs.
If t = r, then r (a− s) = 0. However, if r ̸= 0, then s = a, which is a contradiction as s < a. So, r = 0 and a|p.
If t = s, then s(a− r) = 0, which implies that s = 0 and so a|q.
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Question 6

(a) Let A = {a1, . . . ,an} be a group of n students, and for each i, the number of students ai knows is f (i). Also, let
B = {1, . . . ,n}. Then, for all 1 ≤ i ≤ n, we have 0 ≤ f (i)≤ n−1.

• Case 1: Suppose there exist i, j ∈ B, where i ̸= j, such that f (i) = f ( j) = 0. Then, ai and a j both have no
friends, so the result is trivial.

• Case 2: Suppose there is precisely one i ∈ [1,n] such that f (i) = 0. Then, for all j ∈ [1,n]\{i}, we have
1 ≤ f ( j)≤ n−2. By the pigeonhole principle, we have j,k ∈ [1,n]\{i}, where j ̸= k, such that f ( j) = f (k).

• Case 3: Suppose f (i)> 0 for all 1 ≤ i ≤ n. Then, we have 1 ≤ f (i)≤ n−1. By the pigeonhole principle, for
1 ≤ i, j ≤ n, where i ̸= j, we have f (i) = f ( j).

We assume that friendship is a symmetric relation, meaning if a1 is a friend of a2, then a2 is also a friend of a1.

(b) Define the fractional part of x, {x}, to be x−⌊x⌋.
Consider {kx}, where 1 ≤ k ≤ n, and subintervals of [0,1) each of length 1

n . These are

I1 =

[
0,

1
n

)
, I2 =

[
1
n
,

2
n

)
, . . . , In =

[
n−1

n
,1
)
.

• Case 1: Suppose some {kx} falls in I1. As {kx}< 1
n , then

kx−⌊kx⌋< 1
n∣∣∣∣x− ⌊kx⌋

k

∣∣∣∣< 1
kn

so by setting a = ⌊kx⌋ and b = k, we establish the desired inequality.

• Case 2: Suppose none of the {kx} falls in I1. By the pigeonhole principle, at least two {kx} fall in the same
Ii, where 2 ≤ i ≤ n. Let

i−1
n

≤ {px}< i
n

and
i−1

n
≤ {qx}< i

n
.

Then,

|{px}−{qx}|< 1
n

|px−⌊px⌋−qx+ ⌊qx⌋|< 1
n

|(p−q)x− (⌊px⌋−⌊qx⌋)|< 1
n∣∣∣∣x− ⌊px⌋−⌊qx⌋

p−q

∣∣∣∣< 1
(p−q)n

so by setting a = ⌊px⌋−⌊qx⌋ and b = p−q, we establish the desired inequality.

Remark for Question 6: For (b), a faster method without considering the pigeonhole principle is as such. We start off
by noting that nx−⌊nx⌋= {nx}, so

x− ⌊nx⌋
n

=
{nx}

n∣∣∣∣x− ⌊nx⌋
n

∣∣∣∣= ∣∣∣∣{nx}
n

∣∣∣∣< 1
n

As a,b ∈ Z and 1 ≤ b ≤ n, we can set a = ⌊nx⌋ and b = 1 and the result follows.

The interested can look up Diophantine approximation.
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Question 7

(i) Using the substitution t =
dy
dx

, we have
dt
dx

=
d2y
dx2 .

Differentiating 1 with respect to x, we have

y
d2y
dx2 +

(
dy
dx

)2

= 2x
d2y
dx2

(
dy
dx

)
+

(
dy
dx

)2

y = 2x
dy
dx

Solving the differential equation yields 1
2 ln |x|= ln |y|+ c.

So y2 = Ax, where A = e−2c. Thus, c and A are constants.

Differentiating y2 = Ax with respect to x, we have

2y
dy
dx

= A,

and substituting this into the original differential equation, we have A = 4.
Hence, the equation of S is y2 = 4x.

(ii) First, we show that if a straight line is tangent to S, then it is a solution to equation 1 .
Note that

dy
dx

=
1√
x
.

Suppose the line is tangent to the curve at P
( 1

4 a2,a
)
. Then, the equation of the tangent at P is

y−a =
2
a

(
x− a2

4

)
y =

2
a

x+
a
2

Substituting this into the original differential equation, the result follows.

Next, we show that if a straight line is a solution to 1 , then it is tangent to S.
Note that any line satisfies y = mx+ c. Substituting this into the original differential equation yields m(mx+ c) =
xm2 +1. Since this holds for any x ∈ R, then c = 1

m .
The equation of the line becomes

y = mx+
1
m
.

Note that 2y
dy
dx

= 4 and as
dy
dx

= m, then y =
2
m

. As such, x =
1

m2 .

Since y2 = 4x, then (
mx+

1
m

)2

= 4x

m2x2 −2x+
1

m2 = 0

The discriminant of the above quadratic equation is 0, implying that y = mx+
1
m

is tangent to the curve.

In particular, the line is tangential at the point
(

1
m2 ,

2
m

)
.

Question 8

(i)

3

∑
r=1

n
(

11
7

r
)
= n

(
11
7

)
+n
(

22
7

)
+n
(

33
7

)
= 2+3+5 = 10
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Line Lattice points underneath y = 7
11 x+ 1

2 Number of lattice points
x = 1 (1,1) 1
x = 2 (2,1) 1
x = 3 (3,1) and (3,2) 2
x = 4 (4,1), (4,2) and (4,3) 3
x = 5 (5,1), (5,2) and (5,3) 3

(ii) We have
5

∑
r=1

n
(

7
11

r
)
= 1+1+2+3+3 = 10.

From the table, we see that there are also 10 points underneath the line y = 7
11 x+ 1

2 .

(iii) Suppose
(
0, 1

2

)
is mapped to (a,b) by the rotation. Since (3,2) is the midpoint of

(
0, 1

2

)
and (a,b), by the midpoint

formula, a = 6 and b = 7
2 .

Hence,
(
6, 7

2

)
lies on the rotated line.

Suppose
(
− 11

14 ,0
)

is mapped to (c,d) by the rotation. In a similar fashion, c = 95
14 and d = 4.

Hence,
( 95

14 ,4
)

lies on the rotated line.

The equation of the line joining
(
6, 7

2

)
and

( 95
14 ,4

)
is x = 11

7 y+ 1
2 .

0 1 2 3 4 5
0

1

2

3

y = 7
11 x+ 1

2

x = 11
7 y+ 1

2

x

y

As a rotation by 180◦ about (3,2) leaves all the lattice points unchanged, then by symmetry,

3

∑
r=1

n
(

11
7

r
)
= total number of lattice points to the left of the line x =

11
7

y+
1
2

for y = 1,2,3

= total number of lattice points underneath the line y =
7

11
x+

1
2

for x = 1,2,3,4,5

=
5

∑
r=1

n
(

7
11

r
)

(iv) Note that (
p−1

2

)(
q−1

2

)
denotes the number of integer points in the rectangle bounded by 1 ≤ x ≤ 1

2 (p−1) ,1 ≤ y ≤ 1
2 (q−1).

Also, n
(

q
p r
)

denotes the number of integer points underneath the line y = q
p x+ 1

2 for x = r.
Then,

p−1
2

∑
r=1

n
(

q
p

r
)
= total number of integer points underneath the line y =

q
p

x+
1
2

for 1 ≤ x ≤ p−1
2
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and
q−1

2

∑
r=1

n
(

p
q

r
)
= total number of integer points to the left of the line x =

p
q

y+
1
2

for 1 ≤ y ≤ q−1
2

.

Let A and B be the set of integer points underneath the line y = q
p x+ 1

2 and to the left of x = p
q y+ 1

2 respectively.
Thus,

|A|=
p−1

2

∑
r=1

n
(

q
p

r
)

and |B|=
q−1

2

∑
r=1

n
(

p
q

r
)
.

As such,

N = |A∩B|
= |A|+ |B|− |A∪B|

= 2|A|−
(

p−1
2

)(
q−1

2

)

and therefore, N +

(
p−1

2

)(
q−1

2

)
≡ 0 (mod2).

Remark for Question 8: For (iii), those who have background knowledge of linear algebra would find the use of the
rotation matrix extremely helpful in the early part of this question. Overall, this question deals with a geometric proof of
the law of quadratic reciprocity, which was established by Gotthold Eisenstein.
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4 2019 Paper Solutions

Question 1

(i) By the Cauchy-Schwarz inequality,(
x2 + y2 + z2)(22 +32 +62)≥ (2x+3y+6z)2

(2x+3y+6z)2 ≤ 49
(
x2 + y2 + z2)

2x+3y+6z ≤ 7 since x2 + y2 + z2 = 1

(ii) From (i), by setting up the inequality and noting that 22 +32 +62 = 72, we have x = 2
7 , y = 3

7 and z = 6
7 .

(iii) By the Cauchy-Schwarz inequality,

n
n

∑
i=1

x2
i ≥

(
n

∑
i=1

xi

)2

.

Since
n

∑
i=1

x2
i = 1, we have n ≥

(
n

∑
i=1

xi

)2

so the required maximum value is
√

n.

(iv) Let the length of each square be li, where i ≥ 1 and suppose there are n squares.

Since
n

∑
i=1

4li = 18, then
n

∑
i=1

li =
9
2

.

Also, the area of the large unit square is 1 so
n

∑
i=1

l2
i = 1.

By the Cauchy-Schwarz inequality, n ≥ 81
4 so there are more than 20 such squares.

Question 2

(i) (a) Number of ways is
(

8+4−1
4−1

)
= 165

(b) The question is equivalent to asking the number of integer solutions to the equation

x1 + x2 + x3 + x4 = 8, where all the xi’s ≥ 1.

Letting xi = 1− yi, we have

y1 + y2 + y3 + y4 = 4, where all the yi’s ≥ 0.

So, the number of ways is
(

4+4−1
3

)
= 35

(ii) (a) Number of ways is 48 = 65536

(b) Number of ways is 4×37 = 8748

(c) We assign each base to an arbitrary index i, where 1 ≤ i ≤ 4. Let Ai denote the event that base i is not used.
So,

4

∑
i=1

|Ai|=
(

4
1

)
38

∑
i< j

∣∣Ai ∩A j
∣∣= (4

2

)
28

∑
i< j<k

∣∣Ai ∩A j ∩Ak
∣∣= (4

3

)
18

By the principle of inclusion and exclusion, the answer is 48 −
(

4
1

)
38 +

(
4
2

)
28 −

(
4
3

)
18 = 40824.

Remark for Question 2: This question is very similar to Question 4 of the 2018 A-Level paper.
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Question 3

(i) (a) Let Pi be the proposition that xi ≥ 1
i for all i ∈ N.

By definition, x1 = 1 so P1 is true.
Assume Pk is true for some k ∈ N. That is, xk ≥ 1

k .
To prove Pk+1 is true, we need to show that xk ≥ 1

k+1 .
So,

xk+1 =
k+a
k+1

xk by definition of the recurrence relation

≥ k+a
k (k+1)

by induction hypothesis

=
1

k+1

(
1+

a
k

)
≥ 1

k+1

Since P1 is true and Pk is true implies Pk+1 is true, then Pi is true for all i ∈ N.

(b)
2n

∑
i=n+1

xi ≥
2n

∑
i=n+1

1
i

by (i)

≥
2n

∑
i=n+1

1
2n

since i ≤ 2n

=
1
2

(c) Suppose on the contrary that
∞

∑
i=1

xi is bounded.

Note that
n

∑
i=1

xi is strictly increasing and bounded above. By the monotone convergence theorem, it converges

to some finite number, say N.
From (b), we established that

2n

∑
i=n+1

xi ≥
1
2

so
2n

∑
i=1

xi ≥
1
2
+

n

∑
i=1

xi.

As n → ∞, we have
∞

∑
i=1

xi ≥
1
2
+

∞

∑
i=1

xi

N ≥ 1
2
+N

which is a contradiction.

(ii) (a) The recurrence relation can be written as (i+1)xi+1 = (i+a)xi so

(i+1)xi+1 − ixi = axi
n

∑
i=m

[(i+1)xi+1 − ixi] =
n

∑
i=m

axi

a
n

∑
i=m

xi = (n+1)xn+1 −mxm by the method of difference

(b) Let b =−a > 0. Note that

i−b
i+1

< 0 if i < b;

> 0 if i > b
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Hence, the non-zero terms of the sequence xi alternates in signs for 1 ≤ i ≤ ⌊b⌋.
If x⌊b⌋ < 0, then x⌊b⌋+1 ≥ 0, x⌊b⌋+2 ≥ 0, and so on. Hence, for all k ≥ 1, x⌊b⌋+k ≥ 0.
Similarly, for all k ≥ 1, if x⌊b⌋ > 0, then x⌊b⌋+k ≤ 0.
If b ∈ N, for all k ≥ 1, then xb+k = 0.
Hence, for sufficiently large m,n ∈ N, in particular n > m > ⌊b⌋, xm and xn will have the same sign and the
result follows.

Question 4

(i) (a) Consider the n-digit number having 1st digit 2. There are Yn such numbers.
Then, consider the (n−1)-digit number from the 2nd to the last digit. The 2nd digit has to be 1 or 3.

Define Zn to be the number of n-digit numbers with first digit 3. By symmetry, Yn = Zn.

• Case 1: If the 2nd digit is 1, there are Xn−1 (n−1)-digit numbers.
• Case 2: If the 2nd digit is 3, there are Zn−1 (n− 1)-digit numbers. As Yn−1 = Zn−1, there are Yn−1

(n−1)-digit numbers.

Since the two cases are mutually exclusive, then Yn = Xn−1 +Yn−1.

(b) Consider the n-digit number having 1st digit 1. There are Xn such numbers.
Consider the (n−1)-digit number from the 2nd to the last digit. There is no restriction on the 2nd digit.

• Case 1: If the 2nd digit is 1, there are Xn−1 (n−1)-digit numbers.
• Case 2: If the 2nd digit is 2, there are Yn−1 (n−1)-digit numbers.
• Case 3: If the 2nd digit is 3, there are Zn−1 (n−1)-digit numbers. As Yn−1 = Zn−1, then there are Yn−1

(n−1)-digit numbers.

Since the three cases are mutually exclusive, then Xn = Xn−1 +2Yn−1.

(c) We have

Xn+1 = Xn +2Yn by (b)

= Xn +2(Xn−1 +Yn−1) by (a)

= Xn +2Xn−1 +Xn −Xn−1 by (b)

= 2Xn +Xn−1

(ii) Let Pn be the proposition that Xn ≡ n2 −n+1 (mod4) for all n ∈ N.
When n = 1, we have X1 = 1 ≡ 1 (mod4) so P1 is true.
When n = 2, we have X2 = 3 ≡ 3 (mod4) so P2 is true.

Assume Pk−1 and Pk are true for some k ∈ N, where k ≥ 2. That is,

Xk−1 ≡ (k−1)2 − (k−1)+1 (mod4) and Xk ≡ k2 − k+1 (mod4)

respectively.

To show that Pk+1 is true, we need to prove that Xk=1 ≡ (k+1)2 − (k+1)+1 (mod4).
Note that (k+1)2 − (k+1)+1 = k2 + k+1.

Using the recurrence relation,

Xk+1 = 2Xk +Xk−1

≡ 2
(
k2 − k+1

)
+(k−1)2 − (k−1)+1 (mod4)

= 2k2 −2k+2+ k2 −2k+1− k+2

= 3k2 −5k+5

≡ k2 + k+1+2(k−1)(k−2) (mod4)
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As k−1 and k−2 are of opposite parities, it implies that (k−1)(k−2) is even so Xk+1 ≡ k2 + k+1 (mod4).

Since P1 and P2 are true and Pk−1 and Pk are true imply that Pk+1 is true, by strong induction, Pn is true for all
n ∈ N.

(iii)

Tn = Xn +Yn +Zn

= Xn +2Yn

= Xn+1 by (ib)

≡ n2 +n+1 (mod4)

Question 5

(i) Using the substitution, we have
dt
dx

=
d2u
dx2 .

The differential equation becomes
dt
dx

= t.

So,
∫ 1

t
dt =

∫
dx, which implies ln |t|= x+ c, where c is a constant. So, t = Aex, where A = ec.

Since
du
dx

= Aex, then
∫

du =
∫

Aex dx, implying that u = Aex + k, where k is a constant too.

(ii) Let u = e−
∫

f (x)y dx.
Then,

du
dx

=−e−
∫

f (x)y dx f (x)y

=−uy f (x)

Differentiating one more time yields

d2u
dx2 =−uy f ′ (x)+ f (x)

(
−u

dy
dx

− y
du
dx

)
=−uy f ′ (x)− f (x)

(
u

dy
dx

+ y
du
dx

)
=−uy f ′ (x)−u f (x)

dy
dx

− y f (x)
du
dx

Rearranging,

u f (x)
dy
dx

=−uy f ′ (x)− y f (x)
du
dx

− d2u
dx2 .

As
dy
dx

= f (x)y2 +g(x)y, then

uy2[ f (x)]2 +uy f (x)g(x)+uy f ′ (x)+ y f (x)
du
dx

+
d2u
dx2 = 0

uy2[ f (x)]2 +uy f (x)g(x)+uy f ′ (x)+ y f (x) [−uy f (x)]+
d2u
dx2 = 0

d2u
dx2 +uy f (x)g(x)+uy f ′ (x) = 0

d2u
dx2 −g(x)

du
dx

+uy f ′ (x) = 0

f (x)
d2u
dx2 − f (x)g(x)

du
dx

+uy f (x) f ′ (x) = 0

f (x)
d2u
dx2 −

[
f ′ (x)+ f (x)g(x)

] du
dx

= 0
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(iii) As
dy
dx

= e−2xy2 +3y, then f (x) = e−2x and g(x) = 3.
Using (ii),

f (x)
d2u
dx2 −

[
f ′ (x)+ f (x)g(x)

] du
dx

= 0

e−2x d2u
dx2 − e−2x du

dx
= 0

As e−2x is non-zero for all x ∈ R, then
d2u
dx2 =

du
dx

.

From (i), the solution is of the form u = ex+c + k for constants c and k. So,

e−
∫

e−2xy dx = ex+c + k

−
∫

e−2xy dx = ln
(
ex+c + k

)
−e−2xy =

ex+c

ex+c + k

y =− e3x+c

ex+c + k

When x = 0, y =− 1
4 , so k = 3ec. Therefore, y =− e3x

ex +3
.

Question 6

(i) Let x1,x2, . . . ,x2n denote the positions of the (+1)’s and (−1)’s and each +1 precedes a corresponding −1. Denote
xi, where 1 ≤ i ≤ 2n to be the starting point.

There exists i ∈ [1,2n] such that (xi,xi+1) = (+1,−1) or (−1,+1), meaning there are two adjacent points of oppo-
site polarity. Delete xi and xi+1, so we would have 2n−2 positions remaining. Repeat this process until we have 2
points remaining, say x j and xk. As such, (x j,xk) = (+1,−1).

Suppose x j is the final position of the +1. Restoring all the positions and moving in a clockwise manner, the
next position must be either +1 or −1. If we proceed with the former, then Ti = 2. For the latter, Ti = 0. Subse-
quently, the next position must be either −1 or +1 respectively and repeating this process, we conclude that there
does not exist i ∈ [1,2n] such that Ti < 0.

(ii) Regardless of the polarity of the first position, T1 ≡ 1 (mod2). As i increases by 1, then the polarity of Ti changes.
If n is odd, then Ti +Ti+1 is odd so

n+
2n

∑
i=1

Ti = 2λ +1+2µ +1 ≡ 0 (mod2).

If n is even, then Ti +Ti+1 is even so

n+
2n

∑
i=1

Ti = 2λ +2µ ≡ 0 (mod2).

Question 7

(i) ccosθ +d sinθ < a and csinθ +d cosθ < b

(ii) We first prove the forward direction by contraposition. Suppose d ≥ b. Then, a > c ≥ d ≥ b and

csinθ +d cosθ ≥ b(sinθ + cosθ)

= b
√

2cos
(

θ − π

4

)
As 0 < θ <

π

2
, then cos

(
θ − π

4

)
≥ 1√

2
, so b

√
2cos

(
θ − π

4

)
> b, which completes the proof.

Next, we prove the backward direction. Choose θ sufficiently small such that

csinθ < ε = min{a− c,b−d} .
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Then,
ccosθ +d sinθ ≤ ccosθ + csinθ < c+ ε ≤ a and d cosθ + csinθ < d + ε ≤ b,

which completes the proof.

(iii) Let θ0 be the angle for which the c×d rectangle is strictly contained in the a×b rectangle.
By (i), we must have

ccosθ0 +d sinθ0 < a and csinθ0 +d cosθ0 < b.

From (ii), by considering ccosθ +d sinθ ≤ ccosθ +csinθ < c+ε ≤ a and substituting it into the above inequali-
ties, we have

csin
(

π

2
−θ0

)
+d cos

(
π

2
−θ0

)
< b ≤ a.

Let f (θ) = ccosθ +d sinθ , where 0 ≤ θ ≤ π

2 , θ1 = min
{

θ0,
π

2 −θ0
}

and θ2 = max
{

θ0,
π

2 −θ0
}

.
Then, f (θ1), f (θ2)< a and θ1 ≤ π

4 ≤ θ2.
Since f (θ)> 0 and f ′′(θ) =−(ccosθ +d sinθ)< 0 for 0 ≤ θ ≤ π

2 , then f attains a maximum at θmax, where

f ′ (θmax) =−csinθmax +d cosθmax = 0.

This implies that

θmax = tan−1
(

d
c

)
≤ π

4
.

Since f (0) = c ≥ a and f is increasing on [0,θmax], then θmax < θ1. Moreover, as f is decreasing on
[
θmax,

π

2

]
, it is

also increasing on [θ1,θ2].

(iv) The condition is that a > c or a
√

2 > c+d.

First, we will prove the necessary statement. Suppose a c × d rectangle can be strictly contained in an a × a
square. If a > c, we are done. Otherwise, if a ≤ c, then by (iii), we have

√
2 > c+d.

Next, we will prove the sufficiency statement. If a > c, by (ii), a c× d rectangle can be strictly contained in an
a×a square if and only if a > d. However, as a > c ≥ d, then the rectangle can always be contained in the square.

If
√

2 > c+d, by considering the inequalities in (i) which are

ccosθ +d sinθ < a and csinθ +d cosθ < b,

setting θ =
π

4
into each both yield

c+d√
2

< a.

(i) For any x ∈ N, we have (12− x)2 ≡ x2 (mod12) so we only consider the first 6 non-negative square numbers.

02 ≡ 0 (mod12)

12 ≡ 1 (mod12)

22 ≡ 4 (mod12)

32 ≡ 9 (mod12)

42 ≡ 4 (mod12)

52 ≡ 1 (mod12)

and the result follows.

(ii) Let N = 9. We have 52 ≡ 7 (mod9) and 7 ∈ S(9) but 7 is non-square.

(iii) For all N ∈N, n[S(N)] is greater than or equal to the number of distinct non-negative integers m satisfying m2 < N.

• Case 1: Suppose N is non-square. Here,
√

N < ⌊
√

N⌋ ̸∈ N so m <
√

N. This implies 0 ≤ m ≤
⌊√

N
⌋

so there
are 1+ ⌊

√
N⌋ distinct non-negative integers m satisfying m <

√
N. Thus, there are at least 1+ ⌊

√
N⌋ distinct

elements of S(N) and the result follows.

28



• Case 2: Suppose N is square. Here,
⌊√

N
⌋
=
√

N ∈N. This implies that m ≤
√

N, so 0 ≤ m ≤
√

N−1. There
are ⌊

√
N⌋ distinct non-negative integers m satisfying m <

√
N. Thus, there are at least ⌊

√
N⌋ distinct elements

of S(N).

(iv) We consider 2 cases – when λ is even and when λ is odd.

• Case 1: If λ is even, then λ

2 would still be an integer. Thus,

x2 = 17+2n+1
(

λ

2

)
and in modulo 2n+1, we have x2 ≡ 17 (mod2n+1) and the result follows.

• Case 2: If λ is odd, let µ ∈ Z such that

µ =
λ + x+2n−2

2
and the above equation is valid since λ and x are odd, so their sum would be even.

Hence, 2n+1µ +17 = (x+2n−1)2 and so
(
x+2n−1

)2 ≡ 17 (mod2n+1).

(v) From (iii), S(2n) has at least
√

2n elements.
From (iv), there exist x,λ ∈ Z such that x2 = 17+2n for n ≥ 5.
Note that all squares p2, where 0 ≤ p2 ≤ 2n, are elements of S(2n) and there are at least

√
2n of these elements.

Moreover, from (iv), 17 ∈ S(2n) and 17 is non-square, and the result follows.
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5 2020 Paper Solutions

Question 1

(i) Observe that on the LHS of the inequality, there are n−1 copies of x and 1 copy of y. It is most plausible to apply
the AM-GM inequality.
Hence,

(n−1)x+ y
n

≥ n
√

xn−1y.

Multiplying both sides by n and raising them to the nth power yields the desired result.
Equality holds if and only if x = y.

(ii) For the term (1+a)2, it hints that a = y.
Comparing with (i), we have

[(n−1)x+a]n ≥ nnxn−1a.

Observe that the power on the LHS must be 2, so n = 2. Consequently, x = 1.
Thus,

(1+a)2 ≥ 4a.

Next, for the term (1+b)3, it hints that b = y.
Comparing it with (i), we have

[(n−1)x+b]n ≥ nnxn−1b.

Observe that the power on the LHS is 3, so n = 3. Consequently, x = 1
2 .

Thus,

(1+b)3 ≥ 27
4

b.

Lastly, in a similar fashion, one can show that

(1+ c)4 ≥ 256
27

c.

In each scenario, for equality to be obtained, we must have a = 1, b = 1
2 , and c = 1

3 by the AM-GM inequality.
Multiplying the inequalities

(1+a)2 ≥ 4a, (1+b)3 ≥ 27
4

b and (1+ c)4 ≥ 256
27

c

yields

(1+a)2(1+b)3(1+ c)4 ≥ (4a)
(

27
4

b
)(

256
27

c
)
= 256.

However, the original inequality in (ii) is strict and abc = 1 by the constraint in the question. Previously, we
mentioned that abc = 1

6 by the AM-GM inequality. This contradiction implies that the inequality is strict.

Question 2

(i) Let y =
1

ax+b
. Then, x =

1
a

(
1−by

y

)
, which implies that f−1(x) =

1
a

(
1−bx

x

)
, where x ̸= 0.

(ii) Let p ∈ R be arbitrary.
Clearly, p, f (p) and f 2(p) are all not equal to − b

a so f 3(p) exists.
Moreover,

p = f 3(p)

= f ( f 2(p))

=
1

a f 2(p)+b
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which is non-zero.
Thus,

f 2 (p) = f−1 (p)

1

a
(

1
ap+b

)
+b

=
1−bp

ap

ap(ap+b) = (1−bp)
(
a+abp+b2)(

a+b2)(1−bp−ap2)= 0

We now consider two cases.

• Case 1: Suppose a =−b2. Then,

f (x) =
1

b(1−bx)

f 2 (x) = f
[

1
b(1−bx)

]
=

bx−1
b2x

f 3 (x) = f
(

bx−1
b2x

)
= x

Since x was arbitrary, then f 3 fixes all x for which f 3 exists.

• Case 2: Suppose 1− bp− ap2 = 0. Then,
1

ap+b
= p, which implies that f (p) = p. As such, p is a fixed

point of f .

(iii) Note that

xn+1 =
1

Axn +B
.

We have
f (xn) =

1
Axn +B

, where xn ̸=−B
A
.

Setting A = 1 and B = 0 yields

xn+1 =
1
xn

and xn ̸= 0 for all n ≥ 1.

Hence,
xn+2 = xn for all n ≥ 1.

The required recurrence relation which generates a periodic sequence of period 2 is

xnxn+1 = 1, where x1 ̸= 0.

Next, from (ii), as A =−B2, then

f 3(xn) = xn, where xn ̸=
1
B
.

Setting A =−1 and B = 1 yields the recurrence relation

−xnxn+1 + xn+1 = 1, where x1 ̸= 1.
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Hence,

xn+1 =
1

1− xn

=
1

1− 1
1− xn−1

= 1− 1
xn−1

= 1− 1
1

1− xn−2

= xn−2

which shows that the recurrence relation generates a periodic sequence of period 3.

Question 3

(i) Let Qn denote the proposition ∫ t

0
xne−x dx = n!

(
1− e−tPn (t)

)
for all non-negative integers n.

When n = 0, we have

LHS =
∫ t

0
e−x dx = 1− e−t = RHS

so Q0 is true.
Assume that Qk is true for some non-negative integer k. That is,∫ t

0
xke−x dx = k!

(
1− e−tPk(t)

)
.

To prove that Qk+1 is true, we need to show∫ t

0
xk+1e−x dx = (k+1)!

(
1− e−tPk+1(t)

)
.

Consider Qk+1. Then,

LHS =
∫ t

0
xk+1e−x dx

=
[
xk+1 (−e−x)]t

0
+(k+1)

∫ t

0
xke−x dx

=−tk+1e−t +(k+1)
[
k!
(
1− e−tPk (t)

)]
by induction hypothesis

=−tk+1e−t +(k+1)!− e−t (k+1)
k

∑
i=0

t i

i!

= (k+1)!− e−t

[
tk+1 +(k+1)

k

∑
i=0

t i

i!

]

= (k+1)!− e−t

[
(k+1)!

k+1

∑
i=0

t i

i!

]
= (k+1)!

(
1− e−tPk+1 (t)

)
Since Q0 is true and Qk is true implies Qk+1 is true, then by induction, Qn is true for all non-negative integers n.

(ii) Note that
n

∑
i=0

t i

i!
is the partial sum of the Maclaurin series of et so

n

∑
i=0

t i

i!
< et .
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Hence, ∫
∞

0
xne−x dx = lim

t→∞

[
n!
(
1− e−tPn (t)

)]
= n!− lim

t→∞
e−t

n

∑
i=0

t i

i!

= n!

(iii) By the binomial theorem,

(
1+

t
n

)n
=

n

∑
i=0

(
n
i

)( t
n

)i

=
n

∑
i=0

n(n−1)(n−2) . . .(n− i+1)
i!

( t
n

)i

=
n

∑
i=0

(1)
(

1− 1
n

)(
1− 2

n

)
. . .

(
1− i−1

n

)( t
n

)i

≤
n

∑
i=0

( t
n

)i

≤
n

∑
i=0

t i

i!

= Pn (t)

Now, we ascertain the upper bound for Pn(t).(
1− t

n

)−n
= 1+(−n)

(
− t

n

)
+

(−n)(−n−1)
2!

(
− t

n

)2
+

(−n)(−n−1)(−n−2)
3!

(
− t

n

)3
+ . . .

= 1+ t +
n(n+1)

2!

( t
n

)2
+

n(n+1)(n+2)
3!

( t
n

)3
+ . . .

= 1+ t +
t2

2!

(
1+

1
n

)
+

t3

3!

(
1+

1
n

)(
1+

2
n

)
+ . . .

> 1+ t +
t2

2!
+

t3

3!
+ . . . since 1+

k
n
> 1 for all k ∈ Z+

= et

>
n

∑
i=0

t i

i!

= Pn (t)
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Question 4

(i) We have 23y = 13(144−3x−5z), which implies 23y is a multiple of 13. However, as gcd(23,13) = 1, then y is a
multiple of 13. Since y is prime, then y = 13.

(ii) (a) We have 3x+5z = 121. In modulo 5, this equation becomes 3x ≡ 1 (mod5). Consider the following table:

x (mod5) 3x (mod5)
0 0
1 3
2 1
3 4
4 2

It follows that x ≡ 2 (mod5).

In modulo 3, 3x+5z = 121 can be written as 2z ≡ 1 (mod3). Consider the following table:

z (mod3) 2z (mod3)
0 0
1 2
2 1

It follows that z ≡ 2 (mod3).

(b) From (a), there exists s, t ∈ Z such that x = 5s+2 and z = 3t +2.
Since 3x+5z = 121, then 3(5s+2)+5(3t +2) = 121. As such, s+ t = 7.
So, |z− x|= |3t −5s|= |3(7− s)−5s|= |21−8s|.
The minimum value of |z− x| is obtained when s = 3, so x = 17. Consequently, z = 14. Therefore, (x,y,z) =
(17,13,14).

(iii) From (i), since y is prime, then y = 13. We now find solutions to 3x+5z = 121 such that x and z are prime.

As x =
121−5z

3
, then x ≤ 40

1
3

. We consider the primes of the form 2 modulo 5 and are less than 40, which are 2,
7, 17, and 37.
If x = 2, then z = 23 which is prime. If x = 7, then z = 20 which is not prime. If x = 17, then z = 14 which is not
prime. Lastly, if x = 37, then z = 2 which is prime.
We conclude that (x,y,z) = (2,13,23),(37,13,2) are the only solutions.

Question 5

(a) (i) Replace x with 1
x and the result follows.

(ii) We have

f (x)+2 f
(

1
x

)
= 3x 1

f
(

1
x

)
+2 f (x) =

3
x

2

2× 2 yields 2 f
(

1
x

)
+4 f (x) =

6
x

. So, 3 f (x) =
6
x
−3x. It follows that f (x) =

2
x
− x.

(b) As mentioned in the question,

g(x)+g(−x)+g
(

1
x

)
= x 3 .

Replacing x with −x in 3 yields

g(−x)+g(x)+g
(
−1

x

)
=−x 4 .
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Adding 3 and 4 yields

g
(

1
x

)
+g
(
−1

x

)
=−2g(x)−2g(−x) 5 .

Replacing x with
1
x

in 3 yields

g
(

1
x

)
+g
(
−1

x

)
+g(x) =

1
x

−g(x)−2g(−x) =
1
x

by 5

Denote −g(x)− 2g(−x) =
1
x

by 6 . Replacing x with −x in 6 yields −g(−x)− 2g(x) = −1
x

. Let this equation

be 7 . So, 7 −2× 6 yields 3g(−x) =−3
x

. It follows that g(x) =
1
x

.

Question 6

(i) Note that

x2
n+1 − xnxn+2 = x2

n+1 − xn (dxn+1 − xn)

= x2
n+1 + x2

n −dxnxn+1

Now, we prove by induction that x2
n+1 − xnxn+2 = D for all positive integers n. Let Pn denote this proposition.

P1 is true as x2
2 − x1x3 = D as mentioned in the question.

Assume Pk is true for some positive integer k. That is, x2
k+1 − xkxk+2 = D.

To show Pk+1 is true, we need to show x2
k+2 − xk+1xk+3 = D.

x2
k+2 − xk+1xk+3 = x2

k+2 − xk+1 (dxk+2 − xk+1) by definition of recurrence relation

= x2
k+2 + x2

k+1 −dxk+1xk+2

= x2
k+2 + x2

k+1 − xkxk+2 + xkxk+2 −dxk+1xk+2

= x2
k+2 +D+ xkxk+2 −dxk+1xk+2 by induction hypothesis

= D+ x2
k+2 + xkxk+2 −dxk+1xk+2

= D+ xk+2 (xk+2 + xk −dxk+1)

= D

Since P1 is true and Pk is true implies Pk+1 is true, then Pn is true for all positive integers n.

(ii) Set xn = 0 and we obtain xnxn+2 = 0. Hence, D = x2
n+1, which is a perfect square.

(iii) • Case 1: Suppose the sequence contains a zero term. By (ii), D is a perfect square.

• Case 2: Suppose the sequence does not contain any zero terms. So, it contains both positive and negative
terms. Then, there exists a positive integer n such that xn and xn+1 have different signs.

To justify this, we prove by contradiction. Suppose on the contrary that x1,x2,x3, . . . all have the same
sign. Then, the sequence contains either only positive or negative terms, which is a contradiction. As such,
xnxn+1 ≤−1, implying that −dxnxn+1 ≥ d since d > 0.

Since xn,xn+1 ∈ Z, then the sum of their squares is at least 2. Hence,

D = x2
n + x2

n+1 −dxnxn+1

≥ 2+d

(iv) As xnxn+1 ≤−1, set xn = 1 and xn+1 = 1.
It is easy to show that the five successive terms, by substitution, are 1,−1,−4,−11,−29.
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Question 7

(i) Take some element in X . It can be mapped to Y via n ways. Repeat this for the remaining m−1 elements in X .
It follows that the number of functions that map X to Y is nm.

(ii) Take some element in X , which can be mapped to Y via n ways.
Take another element in X , which can be mapped to one of the remaining n−1 elements in Y .
Repeating this process, the last element in X can be mapped to either of the remaining n−m+1 elements in Y .

It follows that the number of one-to-one functions from X to Y is n(n−1)(n−2) . . .(n−m+1) =
n!

(n−m)!
.

(iii) Let Ai be the event that yi ∈ Y does not get mapped from any element in X , where 1 ≤ i ≤ n. Note that {y1, . . . ,yn}
is a permutation of {1, . . . ,n}.

We wish to find |A′
1 ∩ . . .∩A′

n|, for which by de Morgan’s law, is

n(S)−

∣∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣∣ .
From (i), n(S) = nm.
Also,

n

∑
i=1

|Ai|=
(

n
1

)
(n−1)m

∑
i< j

|Ai ∩A j|=
(

n
2

)
(n−2)m

∑
i< j<k

|Ai ∩A j ∩Ak|=
(

n
3

)
(n−3)m

By the principle of inclusion and exclusion,

n(S)−

∣∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣∣= nm −
(

n
1

)
(n−1)m +

(
n
2

)
(n−2)m −

(
n
3

)
(n−3)m + . . .+(−1)n−1

(
n

n−1

)
1m

=
n−1

∑
r=0

(−1)k
(

n
r

)
(n− r)m

(iv) Since m = n = 5, the number of one-to-one functions is 5!.

First, we subtract all functions where each element is mapped to itself, for which there are
(

5
1

)
(5−1)! of them.

Then, add all functions consisting of two elements that are mapped to themselves due to overcounting previously.

We thus add
(

5
2

)
(5−2)!.

It follows by the principle of inclusion and exclusion that the required number of one-to-one functions mapping
X to Y which map no element to itself is

5!−
(

5
1

)
(5−1)!+

(
5
2

)
(5−2)!−

(
5
3

)
(5−3)!+

(
5
4

)
(5−4)!−

(
5
5

)
(5−5)! = 44.

Remark for Question 7: For (iv), this can be also thought of as the number of derangements of a set with 5 elements. It is

a known result that the number of derangements of an n-element set is given by
n

∑
r=0

(−1)r

r!
which follows by the principle

of inclusion and exclusion. Substituting n = 5, the result follows.
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Question 8

(a) An ellipse has two lines of symmetry which are along its major axis and along its minor axis. So, if we rotate the
point with position vector x (which lies in F) about the origin by 180◦, we obtain the point with position vector −x
which also lies in F .

As (
a
b

)
=

y−x
2

=
y+(−x)

2
,

it implies that the point with position vector

(
a
b

)
is the midpoint of the points with position vectors −x and y.

In fact, the line segment connecting the points with position vectors −x and y lies entirely in F as F is convex.

(b) (i) We first prove that any coordinate on E which undergoes a transformation can lie on any lattice point con-
tained within the 2×2 square centred on the origin.

Define a transformation T : R2 → R2 as follows:

T

((
x
y

))
=

(
2⌊x/2⌋
2⌊y/2⌋

)
.

Suppose on the contrary that the ellipse has an area larger than 4. Then, there exist some lattice points other
than the origin contained in the 2×2 square.

As
(

2
⌊x1

2

⌋
,2
⌊y1

2

⌋)
is a lattice point on the 2× 2 square, then

(
−2
⌊x2

2

⌋
,−2

⌊y2

2

⌋)
is also a lattice point.

Suppose they have position vectors x1 and x2 respectively.

Using (a), we establish that the point with position vector 1
2 (x1 +x2) must also lie in E. That is,(⌊x1

2

⌋
−
⌊x2

2

⌋
,
⌊y1

2

⌋
−
⌊y2

2

⌋)
is a lattice point in the ellipse of area larger than 4.

(ii) Note that C has an area of 4p units2. Since p ∈ Z+, then the area of C must be at least 4 units2. Consider the
position vector of the required coordinate. That is,(

mp−nu
n

)
= m

(
p
0

)
−n

(
u
1

)
.

This changes the basis from the standard basis vectors

ex =

(
1
0

)
and ey =

(
0
1

)
to (

p
0

)
and

(
u
1

)
respectively.

So, the vector space R2 is now tiled by parallelograms instead of unit squares. Since every lattice point
must be a vertex of one of these parallelograms, we conclude that a parallelogram lies completely inside C
and the result follows.

(c) Since u2 +1 is an integer multiple of p, there exists λ ∈ Z such that u2 +1 = λ p.
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Consider x = mp−nu and y = n. Then,

x2 + y2 = m2 p2 −2mnpu+n2u2 +n2

= m2 p2 −2mnpu+n2 (u2 +1
)

= m2 p2 −2mnpu+n2
λ p

= p
(
m2 p+n2

λ −2mnu
)

≡ 0 (mod p)

By considering the radius of the circle,

x2 + y2 <

(
2
√

p
π

)2

=
4p
π
.

As x2 + y2 > 0, then 0 < x2 + y2 <
4p
π

.

Lastly, since p <
4p
π

< 2p, we have x2 + y2 = p.

Remark for Question 8: For (a), I created an interactive simulation on Desmos. Here, we consider the general Cartesian
form of a conic section which is

Ax2 +Bxy+Cy2 +Dx+Ey+F = 0,

and all the coefficients are real and A,B,C are all non-zero. Since the ellipse is centred on the origin, then C = D = 0.

An ellipse is an example of a conic section. Since the conic is non-degenerate, we have

ACF +
1
4
(
BDE −AE2 −B2F −CD2) ̸= 0.

Also, since the conic is an ellipse, we have 4AC−B2 > 0.

I found a post on StackExchange which is related to (bii) and (c). This question has some semblance to Minkowski’s
theorem. The convex body theorem for lattices in R2 is as follows. Suppose L is a lattice in R2 defined as L =

{mv1 +nv2 : m,n ∈ Z}, where v1 and v2 are linearly independent vectors. That is, we cannot express v1 as a scalar mul-
tiple of v2 and vice versa. Let d be the area of a fundamental parallelogram of L. If S is a convex and origin-symmetric
region with Area(S)> 4d, then S contains some point q, other than the origin, such that q ∈ L.

The reader can check out Blichfeldt’s Theorem too.
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6 2021 Paper Solutions

Question 1

(a) (i) Suppose
lnx

1+ x2 = 0. Then, lnx = 0, so x = 1.

The area of R is −
∫ 1

0

lnx
1+ x2 dx, whereas the area of S is

∫
∞

1

lnx
1+ x2 dx.

By considering the area of S, letting x =
1
t

, we have
dx
dt

=− 1
t2 . So,

∫
∞

1

lnx
1+ x2 dx =

∫ 0

1

ln
( 1

t

)
1+
( 1

t

)2 ·
(
− 1

t2

)
dt

=
∫ 1

0

ln1− ln t
1+ t2 dt

=−
∫ 1

0

lnx
1+ x2 dx

(ii) Using the substitution x = at, we have dx = a dt.
The integral becomes ∫

∞

0

lnx
a2 + x2 dx =

∫
∞

0

ln(at)
a2 +a2t2 ·a dt

=
1
a

∫
∞

0

lna+ ln t
1+ t2 dt

=
1
a

(
lna

∫
∞

0

1
1+ t2 dt +

∫
∞

0

ln t
1+ t2 dt

)
=

lna
a

(
π

2

)
=

π lna
2a

(b) ∫
∞

0
ln
(

a2 + x2

x2

)
dx =

[
x ln
(

a2 + x2

x2

)]∞

0
+2a2

∫
∞

0

1
a2 + x2 dx

= 2a2
∫

∞

0

1
a2 + x2 dx

= 2a
[
tan−1

( x
a

)]∞

0

= aπ

Question 2

(a) Without loss of generality, let a ≥ b ≥ c > 0. Then,

ar(a−b)(a− c)+br(b− c)(b−a)+ cr(c−a)(c−b) = (a−b)[ar(a− c)−br(b− c)]+ cr(c−a)(c−b)

Note that c−a ≤ 0 and c−b ≤ 0 so cr(c−a)(c−b)≥ 0. It suffices to show that

ar(a− c)−br(b− c)≥ 0.

In other words, (a
b

)r
≥ 1 ≥ b− c

a− c
.(a

b

)r
≥ 1 is merely a consequence of a≥ b and r > 0. To see why 1≥ b− c

a− c
, we see that the inequality is equivalent

to a− c ≥ b− c, which is true because a ≥ b.
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(b) (i) Note that 3abc can be written as abc+ abc+ abc. Suppose a3 + abc− a2(b+ c) = ar(a− b)(a− c). Then,
a(a2+bc−ab−ac) = ar(a−b)(a−c). Observe that a2+bc−ab−ac factorises as (a−b)(a−c), so we can
set r = 1.

Thus, the inequality follows by setting r = 1 in (a). In particular,

a(a−b)(a− c)+b(b− c)(b−a)+ c(c−a)(c−b)≥ 0

a(a2 −ab−ac+bc)+b(b2 −ab−bc+ac)+ c(c2 −ac−bc+ab)≥ 0

a3 +b3 + c3 +3abc ≥ a2(b+ c)+b2(c+a)+ c2(a+b)

(ii) Consider
a+b+ c
a2b2c2 . Note that

a
a2b2c2 − b2 + c2

a3b2c2 =
a2 −b2 − c2

a3b2c2 .
So,

1
a5 +

a
a2b2c2 − b2 + c2

a3b2c2 =
1
a3

(
1
a2 +

a2 −b2 − c2

b2c2

)
=

(a+ c)(a− c)(a+b)(a−b)
a5b2c2

Note that a+ c,a+b,a5b2c2 ≥ 0, so it suffices to prove that

(a−b)(a− c)+(b− c)(b−a)+(c−a)(c−b)≥ 0.

This is clear by setting r = 1 in (a).

Remark for Question 2: The inequality in (a) is known as Schur’s inequality.

Question 3

(a) Let Pn be the proposition that

v
dn+2y
dxn+2 +(n+2)

dv
dx

dn+1y
dxn+1 +

(
n+2

2

)
d2v
dx2

dny
dxn = 0

for all positive integers n, given that y = u
v .

We use the notation u′ =
du
dx

, as well as v′ =
dv
dx

. Note that u = vy. When n = 1, we have

u′ = vy′+ v′y

u′′ = vy′′+2v′y′+ v′′y

u′′′ = vy′′′+ v′y′′+2v′y′′+2v′′y′+ v′′′y+ v′′y′

= vy′′′+3v′y′′+3v′′y′ since v is quadratic =⇒ v′′′ = 0

Since u is quadratic, then u′′′ = 0, so it follows that

v
d3y
dx3 +3

dv
dx

d2y
dx2 +3

d2v
dx2

dy
dx

= 0.

As such, P1 is true.

Suppose Pk is true. That is to say,

v
dk+2y
dxk+2 +(k+2)

dv
dx

dk+1y
dxk+1 +

(
k+2

2

)
d2v
dx2

dky
dxk = 0.

To prove Pk+1 is true, we need to show that

v
dk+3y
dxk+3 +(k+3)

dv
dx

dk+2y
dxk+2 +

(
k+3

2

)
d2v
dx2

dk+1y
dxk+1 = 0.
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From Pk, we first differentiate both sides to obtain

vy(k+3)+ v′y(k+2)+(k+2)v′y(k+2)+(k+2)v′′y(k+1)+

(
k+2

2

)
v′′yk+1 +

(
k+2

2

)
v′′′y(k+1) = 0

vy(k+3)+(k+3)v′y(k+2)+

[
k+2+

(
k+2

2

)]
v′′y(k+1) = 0 since v′′′ = 0

Observe that

k+2+
(

k+2
2

)
= k+2

(
2+ k+1

2

)
=

(k+3)(k+2)
2

=

(
k+3

2

)
and the result follows.

(b) We first prove that zn is an arithmetic progression.

Since v = (α − x)2, then
dv
dx

= 2x−2α , so
d2v
dx2 = 2. From (a),

(α − x)2 dn+2y
dxn+2 +2(n+2)(x−α)

dn+1y
dxn+1 +(n+2)(n+1)

dny
dxn = 0.

So,

(α − x)2 (n+2)!zn+2

(α − x)n+4 +2(x−α)
(n+2)!zn+1

(α − x)n+3 +
(n+2)!zn

(α − x)n+2 = 0

(n+2)!zn+2 −2(n+2)!zn+1 +(n+2)!zn = 0

zn+2 − zn+1 = zn − zn+1

It follows that the difference of consecutive terms is a constant.

Now, write

y =
u

(α − x)2 =
A

α − x
+

B
(α − x)2 .

Then,
dy
dx

=
A

(α − x)2 +
2B

(α − x)3 and
d2y
dx2 =

2A
(α − x)3 +

6B
(α − x)4 .

As such,

z2 − z1 =
(α − x)4

2
d2y
dx2 − (α − x)3 dy

dx

=
(α − x)4

2

[
2A

(α − x)3 +
6B

(α − x)4

]
− (α − x)3

[
A

(α − x)2 +
2B

(α − x)3

]
= A(α − x)+3B−A(α − x)−2B

= B

Recall that u = A(α − x)2 +B. Setting u = B, we have x = α so it follows that the common difference is u(α).
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Question 4

(a) Given y = x3, we have
dy
dx

= 3x2.

Note that the curve passes through
(
x0,x3

0
)
, where x0 is arbitrary. So, m = 3x2

0.
The equation of the tangent is y−x3

0 = 3x2
0 (x− x0). Comparing this with y=mx+c, we have m= 3x2

0 and c=−2x3
0.

As such, (m
3

)3
=
(
− c

2

)2

m3

27
=

c2

4

The result follows.

(b) Consider the following sketch:

y=
mx

y = mx+ c

y = mx− c

y = x3

c

−c

x

y

y = mx+ c and y = x3 intersect at three points. So, |c|< 2x3
0.

Squaring both sides, then multiplying by 27 yields 27c2 < 27
(
2x3

0
)2

= 108x6
0.

From (a), since m = 3x2
0, then 108x6

0 = 108(m/3)3 = 4m3. It follows that 27c2 < 4m3.

(c) The standard equation of a circle centred at (a,b) with radius r is (x−a)2 +(y−b)2 = r2.
Since the circle passes through the origin, then a2 +b2 = r2.

We consider the parabola y = x2. Substituting this into the equation of the circle, we have

(x−a)2 +
(
x2 −b

)2
= r2

x2 −2ax+a2 + x4 −2bx2 +b2 − r2 = 0

x4 +(1−2b)x2 −2ax = 0 since a2 +b2 = r2

So either x = 0 or x3 +(1−2b)x− 2a = 0. From (b), x3 = (2b−1)x+ 2a has three distinct roots if 27(2a)2 <

4(2b−1)3, so the coordinates of the centre of the circle (a,b) satisfy inequality

27a2 < (2b−1)3 , where a ̸= 0.

The possible positions can be described by the following set:{
(a,b) ∈ R\{0}×R : b >

1
2

(
3a2/3 +1

)}
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Question 5

(a) Note that gcd(a+b,c+d) = z. So, z divides a + b and z also divides c + d. Since z also divides any linear
combination of a+b and c+d, by observing that

−c(a+b)+a(c+d) = ad −bc,

we infer that z also divides ad − bc. As such, there exist λ ,µ ∈ N such that a+ b = λ z and c+ d = µz, where
gcd(λ ,µ) = 1. Note that if gcd(λ ,µ) > 1, it would contradict the fact that z = gcd(a+b,c+d). We write
ad −bc = wz for some w ∈ N. It follows that w2 = λ µ .

We consider two cases.

• Case 1: Suppose w divides λ . Then, λ = w2 and µ = 1. So, a+ b = w2z and c+ d = z. Setting x = w and
y = 1, the result follows. If w divides µ instead, we can argue similarly and the result follows.

• Case 2: Suppose w does not divide λ and µ . Then λ and µ must be perfect squares. So, there exist x,y ∈ N
such that λ = x2 and µ = y2. The result follows.

(b) Consider

α

(y
x

)2
+β

(y
x

)
+ γ = 0,

where α,β ,γ are constants and α ̸= 0. Multiplying both sides by x2, we have αy2 +βxy+ γx2 = 0. From (a), since

x =

√
a+b

z
and y =

√
c+d

z
,

we have

α

(
c+d

z

)
+β

√(
a+b

z

)(
c+d

z

)
+ γ

(
a+b

z

)
= 0.

So, α (c+d)+γ (a+b)+β (ad −bc) = 0. As mentioned at the start of (a), we can set α = a, β =−1 and γ =−c.
So, the required quadratic equation is

a
(y

x

)2
− y

x
− c = 0.

As such,
y
x
=

1±
√

4ac+1
2a

.

Since x,y ∈ N, then
y
x

is rational. So,

4ac+1 =

(
2ay
x

−1
)2

,

where
2ay
x

−1 is rational, so 4ac+1 is a perfect square.
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Question 6

(a) Consider 2×3×5 = 30. There are 5 ways to write express 2×3×5 as a product of 3 positive integers where the
order of these integers does not matter as seen below.

30 = 1×1×30

= 1×2×15

= 1×3×10

= 1×6×5

= 2×3×5

(b) To obtain F(n), there are n cases to consider.

• Case 1: Suppose we have a product of n−1 distinct primes, so the product is given by p1 p2 . . . pn−1. Multiply
this by some other prime pn. There are

F (n−1) =
(

n−1
n−1

)
F (n−1)

ways to do this.

• Case 2: Choose some prime pi, where 1≤ i≤ n−1, to be multiplied by pn to obtain p1 p2 . . . pi−1 pi+1 . . . pn−1 (pi pn).
There are (

n−1
1

)
F (n−2)

ways to do this.

• Case 3: Choose two distinct primes pi, p j, where 1 ≤ i < j ≤ n−1 to be multiplied by pn to obtain

p1 p2 . . . pi−1 pi+1 . . . p j−1 p j+1 . . . pn−1 (pi p j pn) .

There are (
n−1

2

)
F (n−3)

ways to do this.

Repeat this till the last case, where p1 p2 . . . pn−1 is multiplied by pn. This contributes to the F (0) term in the sum.

Therefore,

F (n) =
(

n−1
n−1

)
F (n−1)+

(
n−1

1

)
F (n−2)+

(
n−3

2

)
F (n−3)+ . . .+F (0)

=

(
n−1
n−1

)
F (n−1)+

(
n−1
n−2

)
F (n−2)+

(
n−1
n−3

)
F (n−3)+ . . .+

(
n−1

0

)
F (0)

=
n−1

∑
i=0

(
n−1

i

)
F (i)

where we used the symmetry of binomial coefficients.

(c) Let A = α1 ×α2 × . . .×αn−2, which is a product of n−2 positive integers.
There is no duplication if the product is of the form A× pn−1× pn−1 (contributes to F (n−2) ways) or A× p2

n−1×1
(contributes to F (n−1) ways). The result follows.

(d) (i) Note that 210 = 2×3×5×7 which factors into four distinct primes.
Hence, the answer is F(4) = 15 (formula given in (b).
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(ii) We see that

150 = 1×1×1×150

= 1×1×2×75

= 1×1×5×30

= 1×1×6×25

= 1×1×10×15

= 1×2×3×25

= 1×2×5×15

= 1×3×5×10

= 1×5×5×6

= 2×3×5×5

so there are 10 ways.

Remark for Question 6: F(n) can also be thought of as the nth Bell number. The Bell numbers are used to count the
number of partitions of a set.

Question 7

(a) Suppose we fix x. Then, xyk is unique and there are p−1 possible products for a given x. Also, xyk is not congruent
to 0 (mod p) as x,yk ∈ Q. Suppose on the contrary that none of the products xyk is congruent to 1 (mod p). Then,
each product is congruent to either

2 (mod p) or 3 (mod p) or . . . or p−1 (mod p).

There are p−1 possible products and p−2 numbers in [2, p−1].
By the pigeonhole principle, there exists yi,y j ∈ Q such that xyi ≡ xy j ≡ k (mod p) for some 2 ≤ k ≤ p− 1. So,
xyi = xy j, implying that yi = y j. Thus, there exists at least one y ∈ Q such that xyi ≡ 1 (mod p).

In fact, y is unique. Suppose there exists yi,y j ∈ Q such that xyi ≡ xy j ≡ 1 (mod p). So, x(yi − y j) (mod p).
Either x is a multiple of p or yi − y j is a multiple of p. Since x ∈ Q, then x cannot be a multiple of p, so it forces
yi − y j = 0, implying that yi = y j. This establishes the uniqueness of y such that xy ≡ 1 (mod p).

(b) There are p−1 choices for x and p−1 choices for y, so there are (p−1)2 choices for xy.

• Case 1: Suppose xy ∈ Q. Then, by (a), because xyz = (xy)z, it follows that there are (p−1)2 choices for x,y,z
such that xyz ≡ 1 (mod p).

• Case 2: Suppose xy ̸∈ Q. Then, we can always reduce the equation modulo p. That is, there exists λ ∈ Q
such that xy−λ p ∈ Q. From (a), there exists precisely one z ∈ Q such that (xy−np)z ≡ 1 (mod p). Since
npz ≡ 0 (mod p), it follows that xyz ≡ 1 (mod p).

• We consider three cases.

– Case 1: Suppose x,y,z are all identical. Then, it reduces to finding all x ∈ Q such that x3 ≡ 1 (mod p).
Based on the preamble, it is clear that the number of choices is N.

– Case 2: Suppose 2 of the x,y,z are identical. Then, we wish to find all x,y ∈ Q such that x2y ≡ 1 (mod p).
The number of choices is 3(p−1−N).

– Case 3: Suppose none of the x,y,z are identical. In other words, all three of them are distinct. We wish
to find an expression for the number of ways, say W , such that xyz ≡ 1 (mod p).

From (b), the number of choices of integers x,y,z ∈ Q such that xyz ≡ 1 (mod p) is (p−1)2. By the principle
of inclusion and exclusion,

W = (p−1)2 −3(p−1−N)−N

= (p−1)(p−4)+2N
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• From (c), the number of ways to choose distinct x,y,z ∈ Q such that xyz ≡ 1 (mod p) is divisible by 3 due to
symmetry. As such,

(p−1)(p−4)+2N ≡ 0 (mod3)

(p−1)(p−1)−N ≡ 0 (mod3)

(p−1)2 ≡ N (mod3)

N ≡ (p−1)2 (mod3) by symmetry of congruence

• From (d), N ≡ 0 (mod3), so N is a multiple of 3. What is more important is that N ≥ 3. So, there exists at
least three distinct x ∈ Q such that x3 ≡ 1 (mod p). Choose x ∈ Q, where x ̸= 1, such that x3 ≡ 1 (mod p).
So, x3 − 1 ≡ 0 (mod p). By the difference of cubes formula, (x−1)

(
x2 + x+1

)
≡ 0 (mod p). So, p divides

(x−1)
(
x2 + x+1

)
. By Euclid’s lemma, p divides x−1 or p divides x2 + x+1. But, we have chosen x such

that x−1 ̸= 0. Since p is prime, we have p divides x2 + x+1 and the result follows.

Question 8

(a) Without loss of generality, suppose e = e1. By the triangle inequality, (e1,e2, . . . ,em) ∈ P if and only if e2 + . . .+

em > e. Adding e1 = e to both sides, the result follows.

(b) For each Qi, set ei = e, so all the Qi’s are disjoint.
As the total number of m-tuples is Nm, the result follows.

(c) We consider three cases.

• Case 1: Suppose 1 ≤ i ≤ m− 1. Since ei ≥ 1 (the preamble states that ei ∈ Z and it denotes length), then
1+ xi ≥ 1, so xi ≥ 0.

• Case 2: Suppose i = m. Then,

xm = em − e1 − e2 − . . .− em−1

Since (e1,e2, . . . ,em) ∈ Qm, then e1 + e2 + . . .+ em−1 < em, where we chose e = em. The result follows.

• Case 3: For xm+1, from (b), we deduced that N ≥ em, so xm+1 ≥ 0.

(d)
m+1

∑
i=1

xi = xm + xm+1 +
m−1

∑
i=1

xi

= em −
m−1

∑
i=1

ei +N − em +
m−1

∑
i=1

(ei −1)

= em − em +N +
m−1

∑
i=1

(−ei + ei −1)

= N −m+1

Next, we deduce the formula for |Qm|. Consider the equation

x1 + x2 + . . .+ xm+1 = N −m+1.

The number of non-negative solutions (x1, . . . ,xm+1) is the number of ways to distribute N −m+ 1 identical balls
into m+1 distinct boxes, thus establishing a bijection.
As such,

|Qm|=
(

N +1
m

)
.

(e) The total number of triangles that can be formed, including degenerate ones, is 103 = 1000.
Setting N = 10, the number of 3-tuples that satisfy the triangle inequality is

103 −|Q1|− |Q2|− |Q3|= 103 −3
(

11
3

)
by symmetry as we can choose either e1,e2,e3 to be e

= 505
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7 2022 Paper Solutions

Question 1

(a) (i) Number of ways is 410 = 1048576

(ii) Let E1,E2,E3,E4 denote the following events:

E1 denotes the event when no one obtained the A grade

E2 denotes the event when no one obtained the B grade

E3 denotes the event when no one obtained the C grade

E4 denotes the event when no one obtained the D grade

We wish to find ∣∣∣∣∣ 4⋂
i=1

E ′
i

∣∣∣∣∣= 410 −

∣∣∣∣∣ 4⋃
i=1

Ei

∣∣∣∣∣ by de Morgan’s law,

so by the principle of inclusion and exclusion, we have∣∣∣∣∣ 4⋃
i=1

Ei

∣∣∣∣∣= 4

∑
i=1

|Ei|− ∑
1≤i< j≤4

∣∣Ei ∩E j
∣∣+ ∑

1≤i< j<k≤4

∣∣Ei ∩E j ∩Ek
∣∣− ∣∣∣∣∣ 4⋂

i=1

Ei

∣∣∣∣∣
=

(
4
1

)
310 −

(
4
2

)
210 +

(
4
3

)
110 −0

= 230056

Hence, the answer is 410 −230056 = 818520.

(iii) The Stirling numbers of the second kind account for the distribution of distinct objects into identical boxes.
So we divide (ii)’s answer by 4!, so S (10,4) = 230056/4! = 34105.

(b) (i) We consider two cases.

• Case 1: First, consider n = k+1. There exists a partition of X such that k−1 subsets each contain one
object and the remaining subset, say S′, contains two objects. S′ can be partitioned into two subsets with
one element each. So, X is the ancestor of k+1 partitions into k+1 non-empty subsets.

• Case 2: Next, consider n > k+1. There exists a partition of X such that k−1 subsets each contain one
object and the remaining subset, say S′′, contains n− (k−1) = n− k+1 objects. S′′ can be split into two
such that one subset contains one object and the other contains n− k objects. There are n− k+1 ways to
choose that one object. So, X is the ancestor of at least n− k partitions into k+1 non-empty subsets.

The result follows.

(ii) We denote the partitions of the form X and the form Y to be

X1,X2, . . . ,Xg(n,k) and Y1,Y2, . . . ,Yg(n,k+1) respectively.

Also, let d(Xi) and a(Yj) denote the following sets:

d(Xi) = {form Y descendants that Xi has} and a(Yj) =
{

form X ancestors that Yj has
}

For any Yj, its ancestors are the product of merging any 2 of its k+1 subsets. That is to say, for all j,

∣∣a(Yj)
∣∣= (k+1

2

)
.
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We now prove the inequality.

RHS =

(
k+1

2

)
g(n,k+1)

=
S(n,k+1)

∑
j=1

∣∣a(Yj)
∣∣

=
∣∣{number of tuples (Xi,Yj) where Xi is an ancestor of Yj

}∣∣
=

S(n,k)

∑
i=1

|d(Xi)|

=
S(n,k)

∑
i=1

(n− k)

= (n− k)S(n,k)

= LHS

so the inequality holds.

Next, we prove that equality holds if and only if n = k+1.
Suppose n = k+ 1. Then, for any Xi, there will only be 1 subset with 2 elements and the rest will all have 1
element. So, Xi only has 1 descendant, implying that |d(Xi)|= n− (n−1) = 1 for all 1 ≤ i ≤ g(n,k).

Remark for Question 1: For (bii), suppose n = k+ 1, one can deduce that the inequality becomes an inequality very
easily by using the same argument as given to deduce that S (k+1,k) =

(k+1
2

)
. However, if we are given the inequality

and wish to prove that equality implies n = k+ 1, it is impossible to use the known recurrence relation for the Stirling
numbers of the second kind.

Question 2

(a) Consider showing x2 + y2 + z2 −3xyz = 0. Using the given substitutions, we have

x2 + y2 + z2 −3xyz = a2 +(3ab− c)2 +b2 −3ab(3ab− c)

= a2 +9a2b2 −6abc+ c2 +b2 −9a2b2 +3abc

= a2 +b2 + c2 −3abc

= 0 since (x,y,z) = (a,b,c) satisfies the equation

(b) Setting a = 1, b = 1 and c = 1, we see that 3ab− c = 2, so (x,y,z) = (1,2,1) is another solution.
Next, set x = 1, z = 2 and y = 3(1)(2)−1 = 5, so (x,y,z) = (1,5,2) is another solution.
Lastly, set x = 1, z = 5 and y = 3(1)(5)−2 = 13, so (x,y,z) = (1,13,5) is another solution.

(c) Let Pn be the proposition that

1+F2
2n+1 +F2

2n−1 = 3F2n+1F2n−1

for all positive integers n.

When n = 1, the LHS evaluates to 1+F2
3 +F2

1 = 1+4+1 = 6, whereas the RHS evaluates to 3F3F1 = 6.
Hence, P1 is true.
Suppose Pk is true for some positive integer k. That is, 1+F2

2k+1 +F2
2k−1 = 3F2k+1F2k−1.

To prove Pk+1 is true, we need to show that 1+F2
2k+3 +F2

2k+1 = 3F2k+3F2k+1.
We apply (a) to the induction hypothesis to obtain

1+(3F2k+1 −F2k−1)
2 +F2

2k+1 = 3(3F2k+1 −F2k−1)F2k+1 (1).
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Thus,

1+F2
2k+3 +F2

2k+1 −3F2k+3F2k+1 = 1+(F2k+2 +F2k+1)
2 +F2

2k+1 −3(F2k+2 +F2k+1)F2k+1

= 1+(2F2k+1 +F2k)
2 +F2

2k+1 −3(2F2k+1 +F2k)F2k+1

= 1+(3F2k+1 +F2k−1)
2 +F2

2k+1 −3(3F2k+1 +F2k−1)F2k+1

= 0 by (1)

Since P1 is true and Pk is true implies Pk+1 is true, then Pn is true for all positive integers n by induction.

Remark for Question 2: The Diophantine equation in (a) is known as Markov’s equation.

Question 3

(a) Write t = an+ p, where n ∈ Z and a > p ≥ 0. Then,∫ a

0

⌊
x+ t

a

⌋
dx =

∫ a

0

⌊
x+ p

a
+n
⌋

dx

=
∫ a

0

(
n+
⌊

x+ p
a

⌋)
dx since n ∈ Z

= an+
∫ a−p

0

⌊
x+ p

a

⌋
dx+

∫ a

a−p

⌊
x+ p

a

⌋
dx

= an+
∫ a−p

0
0 dx+

∫ a

a−p
1 dx

= an+ p = t

(b) (i) Motivated by (a), consider the substitution x = abn′+ p′, where n′ ∈ Z and ab > p ≥ 0.
The LHS becomes ⌊⌊

bn′+ p
a

⌋
b

⌋
=

⌊
bn′+

⌊ p
a

⌋
b

⌋
since n′ ∈ Z

=

⌊
n′+

1
b

⌊ p
a

⌋⌋
= n′ since 0 ≤ p′

a
< b

We now justify that the RHS is also n′. The RHS can be written as⌊
abn′+ p′

ab

⌋
=

⌊
n′+

p′

ab

⌋
since n ∈ Z

= n′+
⌊

p′

ab

⌋
= n′

(ii) Using the substitution for x in (i), we have

∫ ab

0
( f g(x)−g f (x)) dx =

∫ ab

0

⌊⌊ x+b
a

⌋
+a

b

⌋
−

⌊⌊ x+a
b

⌋
+b

a

⌋
dx

=
∫ ab

0


⌊

x+a2+b
a

⌋
b

−

⌊

x+a+b2

b

⌋
a

 dx

=
∫ ab

0

⌊
x+a2 +b

ab

⌋
−
⌊

x+a+b2

ab

⌋
dx by (i)

=
(
a2 +b

)
−
(
a+b2) by (a)

= a2 −b2 −a+b
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Question 4

(a) We consider a sketch of the graph of y = lnx. Without loss of generality, assume u ≤ v.

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y = lnx

x = u

x = v

x = au+bv

A(u, lnu)

B(v, lnv)

C

x

y

Since a+b = 1, where a,b > 0, au+bv ∈ (u,v). This is because y = lnx is concave down for x > 0.
We first find the gradient of the line segment joining A and B. Consider the fact that mAC = mCB, so

y− lnu
au+bv−u

=
y− lnv

au+bv− v
auy+bvy− vy−au lnu−bv lnu+ v lnu = auy+bvy−uy−au lnv−bv lnv+u lnv

y(au+bv− v−au−bv+u) = u lnv−au lnv−bv lnv+au lnu+bv lnu− v lnu

y =
(au+bv− v) lnu+(u−au−bv) lnv

u− v
= a lnu+b lnv since a+b = 1

So the y-coordinate of C is a lnu+b lnv, which is less than ln(au+bv).
As a lnu+b lnv = ln

(
uavb

)
and lnx is an increasing function, the result follows. Equality holds if and only if u = v.

(b) (i) Let xn = n(Gn −An). We shall prove that xn+1 ≤ xn. In other words, we can show that xn+1 − xn ≤ 0.
First, note that −(n+1)An+1 +nAn =−an+1.

xn+1 − xn = (n+1)Gn+1 − (n+1)An+1 −nGn +nAn

= (n+1)(a1a2 . . .anan+1)
1

n+1 −n(a1a2 . . .an)
1
n −an+1 since − (n+1)An+1 +nAn =−an+1

= (n+1)
[
(a1a2 . . .an)

1
n

] n
n+1

a
1

n+1
n+1 −n(a1a2 . . .an)

1
n −an+1

≤ (n+1)
[

n
n+1

(a1a2 . . .an)
1
n +

1
n+1

an+1

]
−n(a1a2 . . .an)

1
n −an+1 by (a)

= 0

50



(ii) We can define an = a1a2 . . .an−1 for all n ≥ 4. Since an−1 = a1a2 . . .an−2, we have an = a2
n−1.

Remark for Question 4: In (bii), the sequence grows very rapidly. a13 has 925 digits, whereas a14 has 1850 digits.

Question 5

(a) (i) The number of ways to arrange the m married couples and s single people in a line is (m+ s)!. We then
multiply this by 2m because within each of the m married couples, the husband and wife can swap positions.

(ii) For arrangements in a line, if the first and last persons form a married couple, then they must be seated together
in the dining hall. However, this scenario is not accounted for when working with line arrangements.

(b) Define a k-vertex to be a vertex that is chosen to form our k-gon; a k∗-vertex is defined otherwise. This setup is
now equivalent to distributing n vertices into k k-vertices and n−k k∗-vertices, where the k-vertices are not adjacent.

We consider two cases.

• Case 1: Without loss of generality, suppose vertex 1 is a k-vertex, then the other two vertices are k∗-vertices.
Subsequently, insert the n−k−2 k∗-vertices. There are now n−k−2+1= n−k−1 slots between the n−k−2

k∗-vertices. We can insert the k−1 k∗-vertices such that no two k∗-vertices are adjacent in
(

n− k−1
k−1

)
ways.

• Case 2: Again without loss of generality, suppose vertex 1 is a k∗-vertex. Then, insert the n−k−1 k∗-vertices
so that we have n−k−1+1 = n−k slots within the k∗-vertices. We then insert the k k∗-vertices such that no

two k∗-vertices are adjacent in
(

n− k
k

)
ways.

The total number of k-gons is
(

n− k−1
k−1

)
+

(
n− k

k

)
.
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Question 6

(a) We have f (x) = A(x−α1)(x−α2)(x−α3), where A ̸= 0 is a constant. The sight of f ′(x)/ f (x) prompts us to
consider the derivative of ln( f (x)).

ln( f (x)) = lnA+
3

∑
i=1

ln(x−αi)

f ′(x)
f (x)

=
3

∑
i=1

1
x−αi

by differentiating both sides with respect to x

(b) Consider the graph of y =
f ′(x)
f (x)

. Without loss of generality, assume that 0 ≤ α1 < α2 < α3.

y =
f ′(x)
f (x)

x = α1 x = 2 x = 3

y = 0 x = α1 x = α2 x = α3

(
0,−

(
1

α1
+ 1

α2
+ 1

α3

))
x

y

For the equation f (x)− r f ′(x) = 0, we have to consider two cases.

• Case 1: Suppose r = 0, then f (x) = 0. Based on the preamble, f (x) = 0 has three distinct roots, α1,α2,α3,
so the result follows.

• Case 2: Suppose r ̸= 0. We can then rewrite the equation as
f ′(x)
f (x)

=
1
r

. Any horizontal line y =
1
r

intersects

the graph at three distinct points, and the result follows.

(c) By (b), f (x)−α1 f ′(x) = 0 is a cubic equation with 3 distinct real roots.
Applying the result in (b) again, we have

[ f (x)−α1 f ′(x)]−α2[ f ′(x)−α1 f ′′(x)] = 0

f (x)− (α1 +α2) f ′(x)+α1α2 f ′′(x) = 0
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which is a cubic equation with 3 distinct real roots.
We apply (b) again to obtain

[ f (x)− (α1 +α2) f ′(x)+αα2 f ′′(x)]−α3[ f (x)− (α1 +α2) f ′(x)+αα2 f ′′(x)] = 0

f (x)− (α +α2 +α3) f ′(x)+(α1α2 +α2α3 +α3α1) f ′′(x)−α1α2α3 f ′′′(x) = 0

f (x)+a f ′(x)+b f ′′(x)+ c f ′′′(x) = 0 by hint (Vieta’s formula)

which is a cubic equation with 3 distinct real roots.

Question 7

(a) (i) Consider the following array which has 13 edges that link a shaded and an unshaded circle:

(ii) We first consider the case when n = 4 as shown in the second diagram. There are 4− 1 square blocks and
32 −3 arrowhead shapes. For some arbitrary n, there would be n−1 square blocks and (n−1)2 − (n−1) =
n2 −3n+2 arrowhead shapes.

(iii) An arrowhead shape has 4 edges. Suppose on the contrary that 4 edges can link a shaded and an unshaded
circle. Label the vertices as P,Q,R,S.

P Q

RS

We consider two cases — when S is unshaded, and when S is shaded.

• Case 1: Suppose S is unshaded. Since S and Q share a common edge, then Q is shaded. So, P and R must
be unshaded, which is a contradiction.

• Case 2: Suppose S is shaded. Similarly, Q is unshaded, implying that P and R are shaded, which is a
contradiction as well.

As for a square block, at most 4 edges can link a shaded and an unshaded circle.

(b) (i) The 3×3 grid can be divided into three components which are the 4 corner squares, the 4 edge squares (but
not including the corners), and the centre square. Denote the original sum by S and the final sum by S′. By
symmetry, we only need to consider the cases when we shade either a corner square, an edge square or the
centre square. We perform some casework.

• Case 1: Suppose we shade a corner square with a value of a. Then, S decreases by a, but the values of
the centre square and two edge squares surrounding the corner square will increase by a total of a. So,
S′ = S−a+a = S.

• Case 2: Suppose we shade an edge square with a value of b, where b is the sum of the values of all the
other squares. Then, S decreases by b. However, the total values in the two corner squares adjacent to it,
as well as the centre squares, will increase by b, so S′ = S−b+b = S.

• Case 3: Suppose we shade we shade the centre square with a value of c. Then, S decreases by c. However,
S will increase by c concurrently too because each unshaded square other than the centre square will
increment by some value and the total is c.

(ii) For an n×n grid,

• from (aii), there are n− 1 square blocks and from (aiii), at most 4 edges in a square block can link a
shaded and an unshaded circle;
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• from (aii), there are n2 −3n+2 arrowhead shapes and from (aiii), at most 3 edges in an arrowhead shape
can link a shaded and an unshaded circle.

Thus, the maximum score is 4(n−1)+3
(
n2 −3n+2

)
= 3n2 −5n+2.

To achieve the maximum score, every square within a column must be consistently either shaded or unshaded,
with adjacent columns alternating between these two states.

Question 8

(a) We see that (
r2 + s2)(t2 +u2)− (rt + su)2 = r2t2 + s2t2 + r2u2 + s2u2 − r2t2 −2rstu− s2u2

= r2u2 −2rstu+ s2t2

= (ru− st)2

which is the square of ru− st.

(b) a2 and b2 must have opposite parities. That is to say, if a2 is odd, then b2 is even and vice versa.
Suppose a2 is odd and b2 is even. By contraposition, a is odd and b is even. So, there exists λ ,µ ∈ Z such that
a = 2λ +1 and b = 2µ . To conclude,

n = (2λ +1)2 +(2µ)2 since n = a2 +b2

= 4λ
2 +4λ +4µ

2 +1

Choosing k = λ 2 +λ +µ , the result follows.

(c) There exists α,β ,γ,δ ∈ Z such that m = α2 +β 2 and n = γ2 +δ 2. Without loss of generality, suppose α and γ are
odd, and β and δ are even. So,

2mn = 2
(
α

2 +β
2)(

γ
2 +δ

2)
=
[
(α +β )2 +(α −β )2

](
γ

2 +δ
2)

= [(α +β )δ +(α −β )γ]2 +[(α +β )γ − (α −β )δ ]2 by (a)

which is the sum of two squares. We now show that

(α +β )δ +(α −β )γ and (α +β )γ − (α −β )δ

are odd. α +β and α −β are odd, so (α +β )δ and (α −β )δ are even, whereas (α −β )γ and (α +β )γ are odd.
In each of the cases above, the sum of an odd integer and an even integer, so the resulting integer is even.

(d) Since the coefficients of f (x) are real, by the conjugate root theorem, if λ ∈ C is a root of f (x) = 0, then λ ∗ is also
a root of f (x) = 0, where λ ∗ is the complex conjugate of λ . We write

f (x) = product of all (x−λ )(x−λ
∗)

= [product of all (x−λ )] [product of all (x−λ
∗)]

= [p(x)+ iq(x)] [p(x)− iq(x)] where p(x) and q(x) are polynomials with real coefficients

= (p(x))2 +(q(x))2

so f (x) is the sum of squares of two polynomials with real coefficients

54



8 2023 Paper Solutions

Question 1

(a) Recall the Cauchy-Schwarz inequality, which states that for any real numbers x1, . . . ,xn and y1, . . . ,yn, the inequality(
n

∑
i=1

x2
i

)(
n

∑
i=1

y2
i

)
≥

(
n

∑
i=1

xiyi

)2

holds. Set xi = ai and yi = 1 for all 1≤ i≤ n so the inequality becomes n
(
a2

1 +a2
2 + . . .+a2

n
)
≥ (a1 +a2 + . . .+an)

2.
The result follows.

(b) It suffices to show that √
x+ y+

√
y+ z+

√
z+ x ≤

√
6
√

x+ y+ z.

Using the Cauchy-Schwarz inequality mentioned in (i), setting x1 =
√

x+ y, x2 =
√

y+ z, x3 =
√

z+ x and yi = 1
for all 1 ≤ i ≤ 3, we have (√

x+ y+
√

y+ z+
√

z+ x
)2 ≤ 3(x+ y+ y+ z+ z+ x) .

As x+ y+ y+ z+ z+ x = 2(x+ y+ z), the result follows.

(c) Think of the equation as √
x+3
x+6

+

√
x+3
x+6

+

√
6

x+6
=
√

6.

As such, consider x+6 = x+ y+ z, x+ y = x+3, x+ z = x+3 and y+ z = 6, for which this implies y = z = 3. So,
this deals with the equality case of (ii), i.e. when√

x+ y
x+ y+ z

=

√
6

3
.

So, 9(x+3) = 6(x+6), which implies x = 3.

Question 2

(a) Using u =
x
y

, we have

du
dx

=
y− x

dy
dx

y2 =
1
y
− x

y2
dy
dx

.

So,
du
dx

=
1
y
− x

y2

(
y
x
− y2

x3

)
=

1
x2 .

This implies that u =−1
x
+ c, where x is a constant. So,

x
y
=−1

x
+ c. It is easy to show that

y =
x2

cx−1
.

This is the equation of the curve C. Since C passes through (a,b), then b =
a2

ac−1
. So, c =

a2 +b
ab

.

(b) Using long division, the equation of the curve C can be written as

y =
x
c
+

1
c2 +

1
c2 (cx−1)

.

For C to have two asymptotes, we must have c2 ̸= 0, i.e. a2 ̸= −b. The vertical asymptote is x = −1
c
= − ab

a2 +b

and the oblique asymptote is y =
x
c
+

1
c2 =

abx
a2 +b

+

(
ab

a2 +b

)2

.
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Question 3

(a) (1+ x)n =
n

∑
k=0

(
n
k

)
xk

(b) Starting with the RHS,

n

∑
j=0

((
n
j

) j

∑
i=0

(
j
i

))
=

n

∑
j=0

(
n
j

)
2 j using (a)

Note that the binomial expansion of (2+ x)n is
n

∑
j=0

(
n
j

)
2 jxn− j. Setting x = 1, the result follows.

(c) (i) If the divisor can be factorised into r primes (which are necessarily distinct) for 1 ≤ r ≤ k, then the number of

such divisors is
(

k
r

)
.

So, the total number of divisors is
k

∑
r=0

(
k
r

)
= 2k.

(ii) µ(2) =−1; µ(3) =−1; µ(4) = 0; µ(6) = 1; µ(12) = 0

(iii) We consider two cases.

• Case 1: If m is prime, then its only factors are 1 and m, so

∑
d|m

µ(d) = µ(1)+µ(m) = 1+(−1) = 0.

• Case 2: If m is composite, then m = pα1
1 . . . pαk

k , where p1, . . . , pk are primes and α1, . . . ,αk ∈ Z≥0. So,

∑
d|n

µ(d) = 1+
k

∑
r=1

µ (pr)+∑
i< j

µ (pi p j)+ ∑
i< j<r

µ (pi p j pr)+ . . .+µ (p1 p2 . . . pk)

= 1+ k · (−1)+
(

k
2

)
(−1)2 + . . .+

(
k
k

)
(−1)k

=
k

∑
r=0

(
k
r

)
(−1)r

Consider (1+ x)k =
k

∑
r=0

(
k
r

)
(−1)r. When we set x =−1, the RHS becomes the sum we wish to evaluate,

while the LHS simplifies to zero.

Remark for Question 3: For (c), µ is called the Möbius function.

Question 4

(a) r1 = 1 as there is only one stone and that stone is coloured red; r2 = 0 because if either stone is painted red, then
the other cannot be painted red, otherwise, it will go against the condition that no two adjacent stones can be of the
same colour.

s1 = 0 as the stone cannot be painted red and not painted red concurrently; s2 = 3 as there are three ways to
paint the second stone, which are namely using white, yellow, or blue.

(b) Note that r3 = 3 and s3 = 6. So, r1 + s1 = 1, r2 + s2 = 3 and r3 + s3 = 9. So, we infer that rn + sn = 3n−1.

rn+1 counts the number of ways to paint the stones such that the first stone is red and the (n+1)th stone is also
red. As such, there are three choices to paint the nth stone. So, the first n stones can be painted using sn ways.

(c) Let Pn be the proposition that for all positive integers n,

rn =
3n−1 +3(−1)n−1

4
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When n = 1, we have r1 = 1 as obtained in (a). The RHS also evaluates to 1, so P1 is true.
Assume that Pk is true for some positive integer k. That is,

rk =
3k−1 +3(−1)k−1

4
.

We wish to prove that Pk+1 is true. That is,

rk+1 =
3k +3(−1)k

4
.

From (b), since rk + sk = 3k−1 and rk+1 = sk, then rk + rk+1 = 3k−1. As such,

rk+1 = 3k−1 − rk

= 3k−1 − 3k−1 +3(−1)k−1

4
by induction hypothesis

=
3
(
3k−1

)
−3(−1)k−1

4
=

3k +3(−1)k

4

Since P1 is true and Pk is true implies Pk+1 is true, then Pn is true for all positive integers n.

(d) Suppose we colour the first stone red, then there are sn ways to colour the remaining stones. By symmetry, the
required answer is

4sn = 4

[
3n−1 − 3n−1 +3(−1)n−1

4

]
= 3x −3(−1)x−1

Remark for Question 4: For (b), to justify that rn + sn = 3n−1, note that rn + sn counts the number of ways to place n
stones on a line such that the first stone is red (and consequently, no restrictions on the last stone). Since there are n−1
positions to fill and there are 3 choices for each position, the result follows.

Question 5

(a) Possible remainders are 1 and 3.

(b) By Fermat’s little theorem, as zp−1 ≡ 1 (mod p), then
(
z2
)(p−1)/2 ≡ 1 (mod p). So, (−1)(p−1)/2 ≡ 1 (mod p). As

such, (p−1)/2 must be even, so p = 4k+1, where k ∈ Z. So, p ≡ 1 (mod4). Equivalently, p is not congruent to 3
(mod 4).

(c) Possible remainders are 0, 1 and 4.

(d) (i) Suppose on the contrary that x is even. Then, there exists m ∈ Z such that x = 2m, so y2 = 8m3 +7. A perfect
square is 0 or 1 mod 4, so 8m3 +7 ≡ 3 (mod4), which is a contradiction.

(ii) We have y2+1 = x3+8 = (x+2)(x2−2x+4) = (x+2)[(x−1)2+3]. It is clear that (x−1)2+3 ≡ 3 (mod4)
and in fact, (x−1)2 +3 is of the form 4α +3, where α ∈ Z. This is because x is odd implies x−1 is even, so
we can write x−1 = 2β , where β ∈ Z. Hence, (x−1)2 +3 = 4β 2 +3 (consequently, α = β 2).

We claim that there exists a prime p such that p ≡ 3 (mod4) such that p divides y2 + 1. Note that 4α + 3
divides y2 +1 so there must exist some prime p of the form 4γ +3 that divides 4α +3, where γ ∈ Z. Suppose
there does not exist such a prime. Then, the prime factors are of the form 4γ + 1. Then, the product of the
prime factors will be of the form 1 mod 4, which is not 3 mod 4. Thus, we reached a contradiction.

(iii) By (ii), y2 ≡−1 (mod p), where p≡ 3 (mod4). By (b), p is not congruent to 3 mod 4, which is a contradiction.

Remark for Question 5: The equation y2 = x3 + 7 represents an elliptic curve, which has the general formula y2 =

x3 +ax+b, where 4a3 +27b2 ̸= 0. In particular, the equation in the question belongs to a class of elliptic curves known
as Mordell curves, which has the general equation y2 = x3 +7, where n is a non-zero integer.

Elliptic curves play an important role in abstract algebra, particularly in tackling Fermat’s last theorem.
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Question 6

(a) ∫
f (x) dx =

∫
emx sin(mx) dx =− 1

m
emx cos(mx)+

∫
emx cos(mx) dx

=− 1
m

emx cos(mx)+
1
m

emx sin(mx)−
∫

emx sin(mx) dx

so it is clear that
∫

f (x) dx =
emx

2m
[−cos(mx)+ sin(mx)]+ c.

(b) Let k = e−mπ/2. Then,∫
f (x) f

(
x− π

2

)
dx = k

∫
e2mx sin(mx)sin

(
m
(

x− π

2

))
dx

= k
∫

e2mx sin(mx)
(

sin(mx)cos
(mπ

2

)
− cos(mx)sin

(mπ

2

))
dx

=
k
2

cos
(mπ

2

)∫
e2mx dx− k

2
cos
(mπ

2

)∫
e2mx cos(2mx) dx− k

2
sin
(mπ

2

)∫
e2mx sin(2mx) dx

=
ke2mx

4m
cos
(mπ

2

)
− k

2
cos
(mπ

2

)∫
e2mx cos(2mx) dx− k

2
sin
(mπ

2

)∫
e2mx sin(2mx) dx

Note that ∫
emx cos(mx) dx = emx 1

m
sin(mx)−

∫
emx sin(mx) dx

=
1
m

emx sin(mx)+
1

2m
emx cos(mx)− 1

2m
emx sin(mx) using (a)

=
emx

2m
[cos(mx)+ sin(mx)]+ c

so the original integral becomes

ke2mx

4m
cos
(mπ

2

)
− ke2mx

8m
cos
(mπ

2

)
[sin(2mx)+ cos(2mx)]− ke2mx

8m
sin
(mπ

2

)
[sin(2mx)− cos(2mx)]

=
ke2mx

8m

{
cos
(mπ

2

)
[2− sin(2mx)− cos(2mx)]− sin

(mπ

2

)
[sin(2mx)− cos(2mx)]

}
Recall the following as well:

cos
(mπ

2

)
=

{
0 if m is odd;

(−1)m/2 if m is even
and sin

(mπ

2

)
=

{
(−1)(m−1)/2 if m is odd;

0 if m is even

so if m is odd, then

∫
f (x) f

(
x− π

2

)
dx =

(−1)(m+1)/2 ke2mx

8m
[sin(2mx)− cos(2mx)]+ c,

and if m is even, then

∫
f (x) f

(
x− π

2

)
dx =

(−1)m/2 ke2mx

8m
[2− sin(2mx)− cos(2mx)]+ c,

where c is a constant.

Question 7

(a) There are 4×3 squares of length 1 unit, 3×2 squares of length 2 units and 2×1 squares of 1 unit. The total number
of squares is 12+6+2 = 20.

(b) First, note that the largest square has length n units. There are (m−1)(n−1) squares of length 1 unit, (m−2)(n−2)
squares of length 2 units and so on. So, there are (m− k)(n− k) squares of length k units, where 1 ≤ k ≤ n.
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The total number of squares is

n

∑
k=1

(m− k)(n− k) =
n

∑
k=1

mn− (m+n)
n

∑
k=1

k+
n

∑
k=1

k2

= mn2 − n(n+1)(m+n)
2

+
n(n+1)(2n+1)

6

=
1
6

n [6m−3(n+1)(n+m)+(n+1)(2n+1)]

=
1
6

n
(
3mn+1−n2 −3m

)
=

1
6

n(n−1)(3m−n−1)

(c) Set
1
6

n(n−1)(3m−n−1) = 100.

Then, n(n−1)(3m−n−1) = 600.
We must have n(n−1) to divide 600. The factors of 600 up to

⌊√
600
⌋

are listed as follows:

1,2,3,4,5,6,8,10,12,15,20,24

We shall test for n = 2,3,4,5,6.

• Case 1: If n = 2, then m = 101

• Case 2: If n = 3, then m = 34 2
3 ̸∈ N

• Case 3: If n = 4, then m = 18 1
3 ̸∈ N

• Case 4: If n = 5, then m = 12

• Case 5: If n = 6, then m = 9.

As such, the required pairs are (m,n) = (101,2),(12,5) and (9,6).

Question 8

(a) Note that the prime factorisation of 2400 is 25 ×3×52.
Let A,B,C ⊆ {1,2, . . . ,2400} be the sets of integers divisible by 2, 3, and 5 respectively. We wish to find |A′∩B′∩
C′|, for which by de Morgan’s law, is equal to 2400−|A∪B∪C|.
By the principle of inclusion and exclusion,

|A∪B∪C|= |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|

=
2400

2
+

2400
3

+
2400

5
− 2400

2×3
− 2400

2×5
− 2400

3×5
+

2400
2×3×5

= 1760

Hence, the required answer is 2400−1760 = 640.

(b) (i) We have N (a+b) = ab. So, (a−N)(b−N) = ab−N (a+b)+N2 = N2.

(ii) Without loss of generality, assume that a > b. Then, we consider the following two cases:

• Case 1: Suppose a−N = N and b−N = N. Then, a = b = 2N, which is a contradiction as a > b.
• Case 2: Suppose a−N = N2 and b−N = 1. This is justified since a = N2 +N > N +1 = b.

So, there is only one way to express
1
N

as a sum of two distinct unit fractions, which is
1

N2 +N
+

1
N +1

.

(i) Since f (r) = 0, then

r =
B±

√
B2 −4A
2

.
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For r to be rational, we must have B2 − 4A to be a perfect square. Suppose there exists k ∈ Z≥0 such that
B2 −4A = k2. Hence, (B+ k)(B− k) = 4A. So, 1

2 (B+ k)(B− k) = 2A.
Observe that

r =
B± k

1
2 (B+ k)(B− k)

=
1

B−k
2

or
1

B+k
2

If B is even, then k is even; if B is odd, then k is odd.
So, the denominators of the unit fractions, B−k

2 and B+k
2 , are positive integers. The result follows.

(ii) By Vieta’s formula, as the sum of roots is 7
13 , then B

A = 7
13 , so 7A = 13B.

Since gcd(7,13) = 1, there exists k ∈ Z such that A = 13k and B = 7k.
We can rewrite the quadratic equation as 13kx2 −7kx+1 = 0, so

x =
7k±

√
49k2 −52k
26k

.

Since 49k2 −52k is a perfect square, there exists m ∈ Z such that 49k2 −52k = m2. By completing the square,(
k− 26

49

)2

=
49m2 +262

492 ,

which means that 49m2 +262 is also a perfect square. Then, there exists λ ∈ Z such that 49m2 +262 = λ 2.
By the difference of squares formula, (λ +7m)(λ −7m) = 262.

• Case 1: Suppose λ +7m = 169 and λ −7m = 4. Then, 14m = 163. One checks that 49m2 +262 is not a
perfect square.

• Case 2: Suppose λ +7m = 338 and λ −7m = 2. Then, 14m = 336, so 49m2 +262 = 1702.

As such, k = 4 or k =− 144
49 .

For the sake of contradiction, suppose k =− 144
49 . Then, 49k2 −52k = 576 = 242.

However,
7k−

√
49k2 −52k
26k

=
7k−24

26k
=

7
26

− 12
13k

< 0

which is a contradiction as r1,r2 > 0.

Thus, k = 4, so 49k2 −52k = 242. This implies that

x =
28±24

104
.

Without loss of generality, set r1 =
1
2 and r2 =

1
26 , so A = 52 and B = 28.
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Question 1

(a) Since y = x, then
dy
dx

= 1, so the LHS of the differential equation becomes x2 + x2 − x2 − x2, which is zero.

(b) Letting u =
y
x

, we have
du
dx

=
1
x2

(
x

dy
dx

− y
)

.

The differential equation becomes
du
dx

=
xF(u)− y

x2 =
F(u)−u

x
.

The result follows by multiplying x on both sides of the equation.

(c) We have
dy
dx

=
y2 + xy− x2

x2 =
(y

x

)2
+

y
x
−1.

Making reference to (b), we see that F
(y

x

)
=
(y

x

)2
+

y
x
−1. So, F(u) = u2 +u−1.

The differential equation becomes

x
du
dx

= u2 −1.

So, ∫ 1
u2 −1

du =
∫ 1

x
dx,

which implies that
1
2

ln
∣∣∣∣u−1
u+1

∣∣∣∣= ln |x|+ c,

where x is an arbitrary constant. When x = 1 and y = 2, we have u = 2, so substituting (x,u) = (1,2) into the
equation of the above equation yields c =− 1

2 ln3.

Therefore,

1
2

ln
∣∣∣∣y− x
y+ x

∣∣∣∣= ln |x|− 1
2

ln3

ln
∣∣∣∣3(y− x)

y+ x

∣∣∣∣= 2ln |x|

3(y− x)
y+ x

= x2

y =
x3 +3x
3− x2

which is the required equation of the curve.

Question 2

(a) We use integration by parts. So,

In =
∫ π

3

0
tann

θ dθ

=
∫ π

3

0
tann−2

θ tan2
θ dθ

=
∫ π

3

0
tann−2

θsec2
θ dθ −

∫ π
3

0
tann−2

θ dθ since tan2
θ = sec2

θ −1

=
[
tann−1

θ
] π

3
0 − (n−2)

∫ π
3

0
tann−2

θsec2
θ dθ − In−2

= 3
n−1

2 − (n−2)
∫ π

3

0
tann

θ dθ − (n−2)
∫ π

3

0
tann−2

θ dθ − In−2

= 3
n−1

2 − (n−2) In − (n−2) In−2 − In−2

(n−1) In = 3
n−1

2 − (n−1) In−2
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Dividing by n−1 yields the result.

(b) It is clear that I0 =
π

3 .
Also,

I1 =
∫ π

3

0
tanθ dθ

=
∫ π

3

0

sinθ

cosθ
dθ

= [ln |cosθ |]
π
3
0

= ln2

So,

I5 =
32

4
− I3

=
32

4
− 3

2
+ I1

=
32

4
− 3

2
+ ln2

=
3
4
+ ln2

and

I6 =
9
√

3
5

− I4

=
9
√

3
5

−
√

3+ I2

=
9
√

3
5

−
√

3+
√

3− I0

=
9
√

3
5

− π

3

Question 3

(a) (i) By the AM-GM inequality, we have

1
2

[(
x
y

)2

+

(
y
z

)2
]
≥

√(
x
y

)2(y
z

)2

=
x
z
.

(ii) Using the Cauchy-Schwarz inequality,[(
x
y

)2

+

(
y
z

)2

+
( z

x

)2
][(

y
z

)2

+
( z

x

)2
+

(
x
y

)2
]
≥
[(

x
y

)(
y
z

)
+

(
y
z

)( z
x

)
+
( z

x

)(x
y

)]2

[(
x
y

)2

+

(
y
z

)2

+
( z

x

)2
]2

≥
(

x
z
+

y
x
+

z
y

)2

(
x
y

)2

+

(
y
z

)2

+
( z

x

)2
≥ x

z
+

y
x
+

z
y

so we have proven the upper bound for
x
z
+

y
x
+

z
y

.

Next, using the AM-GM inequality, we have

x
z
+

y
x
+

z
y
≥ 3 3

√(
x
z

)(y
x

)( z
y

)
= 3

so we have proven the lower bound for
x
z
+

y
x
+

z
y

.
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(b) (i) By definition of the scalar product, for any two vectors

a =

a1

a2

a3

 and b =

b1

b2

b3

 ,

we have a •b = |a||b|cosθ , where θ is the angle between the two vectors. Since |cosθ | ≤ 1, then a •b ≤ |a||b|,
which implies that a1

a2

a3

 •

b1

b2

b3

≤

∣∣∣∣∣∣∣
a1

a2

a3


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
b1

b2

b3


∣∣∣∣∣∣∣

and the result follows. For equality to hold, we must have ai = kbi for all 1 ≤ i ≤ 3 and some k ∈ R\{0}.

(ii) Using the Cauchy-Schwarz inequality,[(
x√

y+ z

)2

+

(
y√

z+ x

)2

+

(
z√

x+ y

)2
][(√

y+ z
)2

+
(√

z+ x
)2

+
(√

x+ y
)2
]
≥ (x+ y+ z)2

(
x2

y+ z
+

y2

z+ x
+

z2

x+ y

)
(y+ z+ z+ x+ x+ y)≥ (x+ y+ z)2

2
(

x2

y+ z
+

y2

z+ x
+

z2

x+ y

)
≥ x+ y+ z

and equality holds if and only if x = y = z.

Remark for Question 3: Other than (ai), the other three parts are the same as Question 1 of the 2017 specimen paper.

Question 4

(i) Since f is continuous on [0,0.4], f (0) = 1 > 0 and f (0.4) =−0.136 < 0, then there exists a root in (0,0.4).
Next, since f is continuous on [0.4,2], f (0.4) =−0.136 < 0 and f (2) = 3 > 0, then there exists a root in (0.4,2).
Lastly, since f is continuous on [−2,0], f (−2) =−1 < 0 and f (0) = 1 > 0, then there exists a root in (−2,0).

The above shows that f has at least three distinct real roots. To show that there are only three distinct real roots,
consider f ′(x) = 3

(
x2 −1

)
so f is strictly increasing for x > 1 and strictly decreasing for x <−1.

(ii) Note that

f g(x) = f
(

1
1− x

)
=

(
1

1− x

)3

−3
(

1
1− x

)
+1 =−1−3x+ x3

(1− x)3

so g(α),g(β ) and g(γ) are the roots of f . From (i), we know that α ∈ (−2,0), β ∈ (0,0.4) and γ ∈ (0.4,2). We
have g(γ)< 0, which implies that g(γ) = α . Suppose on the contrary that g(β ) = β . Then,

1
1−β

= β .

That is, β 2−β +1= 0. However, the roots of this equation are not real, which is a contradiction. As such, g(β ) = γ ,
leaving us with g(α) = β .

(iii) Write h(x) = ax2 +bx+ c, where a,b,c ∈ R and a ̸= 0. Then for x = α,β ,γ , we have

ax2 +bx+ c =
1

1− x
ax2 (1− x)+bx(1− x)+ c(1− x)−1 = 0

ax2 −ax3 +bx−bx2 + c− cx−1 = 0

−ax3 +(a−b)x2 +(b− c)x+ c−1 = 0

Comparing the last line with f (x), we see that a =−1, b =−1 and c = 2. So, h(x) =−x2 − x+2.

Remark for Question 4: This question is the same as Question 6 of the 2017 specimen paper.
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Question 5

(a) The derangements are
2143,2341,2413,3142,3412,3421,4123,4312,4321.

(b) For an ordering of the numbers 1 to n, let An denote the event that the number i is in position i. We wish to find∣∣∣∣∣ n⋂
i=1

A′
i

∣∣∣∣∣ .
By de Morgan’s law, the above is equal to

n!−

∣∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣∣ .
By the principle of inclusion and exclusion,∣∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣∣= n

∑
i=1

|Ai|−∑
i< j

∣∣Ai ∩A j
∣∣+ ∑

i< j<k

∣∣Ai ∩A j ∩Ak
∣∣+ . . .+(−1)n+1 |A1 ∩A2 ∩ . . .∩An|

= n(n−1)!−
(

n
2

)
(n−2)!−

(
n
3

)
(n−3)!+ . . .+(−1)n+2

So,

Dn = n!−
(

n
1

)
(n−1)!+

(
n
2

)
(n−2)!+

(
n
3

)
(n−3)!+ . . .+(−1)n+1

= n!
(

1− 1
1!

+
1
2!

+ . . .+(−1)n 1
n!

)
(c) As

ex =
∞

∑
k=0

xk

k!
,

then
1
e
=

∞

∑
k=0

(−1)k

k!
.

So, ∣∣∣∣Dn −
n!
e

∣∣∣∣= n!

∣∣∣∣∣ n

∑
k=0

(−1)k

k!
−

∞

∑
k=0

(−1)k

k!

∣∣∣∣∣
= n!

∣∣∣∣∣ ∞

∑
k=0

(−1)k

k!
−

n

∑
k=0

(−1)k

k!

∣∣∣∣∣
= n!

∣∣∣∣∣ ∞

∑
k=n+1

(−1)k

k!

∣∣∣∣∣
=

1
n+1

− 1
(n+1)(n+2)

+
1

(n+1)(n+2)(n+3)
− 1

(n+1)(n+2)(n+3)(n+4)
+ . . .

=
1

n+1

[
1− 1

n+2
+

1
(n+2)(n+3)

− 1
(n+2)(n+3)(n+4)

+ . . .

]
As

1
n+2

− 1
(n+2)(n+3)

+
1

(n+2)(n+3)(n+4)
+ . . . ∈ (0,1),

it follows that ∣∣∣∣Dn −
n!
e

∣∣∣∣< 1
1+n

.

For the second part, since n ≥ 1, then
∣∣Dn − n!

e

∣∣< 1 and the result follows.
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(d) We need to show that

lim
n→∞

Dn

n!
=

1
e
.

This is true because

lim
n→∞

Dn

n!
= lim

n→∞

n

∑
k=0

1
k!

=
∞

∑
k=0

1
k!

=
1
e
.

Remark for Question 5: For (a), one sees that there are 9 derangements for the case when n = 4. One can verify this by
using the formula given in (b).

Question 6

(a) Consider the following figure. The sum of the areas of the rectangles is

1
1
+

1
2
+ . . .+

1
n−1

= Hn−1,

whereas the area under the curve y = 1
x from x = 1 to x = n is∫ n

1

1
x

dx = lnn.

As such, lnn < Hn−1. Adding 1
n to both sides and recognising the Hn−1 +

1
n = Hn, we obtain

1
n
+ lnn < Hn.

2 4 6 8

0.5

1

1.5

y = 1
x

x = 1

x = 2
x = 3

x = n

x

y

Next, consider the following figure. The sum of the areas of the rectangles is

1
2
+

1
3
+ . . .+

1
n
= Hn −1,

whereas the area under the curve y = 1
x from x = 1 to x = n is lnn. As such, Hn −1 < lnn. Adding 1 to both sides,

it follows that
Hn < 1+ lnn.
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2 4 6 8

0.2

0.4

0.6

0.8

y = 1
x

x = 1

x = 2

x = 3

x = n

x

y

(b) We have

lim
n→∞

Hn > lim
n→∞

1
n
+ lim

n→∞
lnn

= 1+ lim
n→∞

lnn

Since lnn diverges to infinity, then the harmonic series diverges too.

Next, H1 000 000 < 1+ ln(1 000 000) = 14.815 < 15.

(c) As pn = n!Hn, it suffices to show that

n!Hn = n(n−1)!Hn−1 +(n−1)!.

Starting with the RHS, we have

n(n−1)!Hn−1 +(n−1)! = (n−1)!(nHn−1 +1)

= n!
(

nHn−1 +1
n

)
= n!

(
Hn−1 +

1
n

)
= n!Hn

(d) (i)

[
n
k

]
counts the number of ways for n distinct people to sit around 1 circular table. This is equivalent to the

number of permutations of n distinct objects on a circle, which is (n−1)!.

(ii) Consider a person out of the n, say α . We have the following two cases:

• Case 1: If α is alone, then there are

[
n

k−1

]
ways to distribute the remaining n people around k−1 tables

such that no table is empty.
• Case 2: If α is seated with other people, we first let α sit around some arbitrary table in n ways. Then,

distribute the remaining n people around k tables such that the other tables are non-empty in

[
n
k

]
ways.

By the addition principle, it follows that

[
n+1

k

]
=

[
n

k−1

]
+n

[
n
k

]
.
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(e) From (d), we have [
n+1

2

]
=

[
n
1

]
+n

[
n
2

]

= (n−1)!+n

[
n
2

]
1
n!

[
n+1

2

]
=

1
n
+

1
(n−1)!

[
n
2

]

Let f (k) =
1

(k−1)!

[
k
2

]
. Then, f (k) satisfies f (k+1)− f (k) =

1
k

.

Summing both sides, we have
n−1

∑
k=2

[ f (k+1)− f (k)] =
n−1

∑
k=2

1
k
,

and it follows by the method of difference that f (n)− f (2) = Hn−1 −1. Since f (2) = 1, then f (n) = Hn−1.
Therefore, f (n+1) = Hn and the result follows.

(f) We have,

2kM(n)Hn =
2kM(n)

1
+

2kM(n)
2

+
2kM(n)

3
+ . . .+

2kM(n)
2k + . . .+

2kM(n)
n

= 2k
[

M(n)
1

]
+2k

[
M(n)

2

]
+2k

[
M(n)

3

]
+ . . .+M(n)+ . . .+2k

[
M(n)

n

]
• Case 1: Suppose n is odd. Then, M(n) = 1 ·3 ·5 · . . . ·n.

• Case 2: Suppose n is even. Then, M(n) = 1 · 3 · 5 . . . · (n−1). Also, 2k and n have a common factor of 2,
which shows that M(n)

n is an integer.

In each case, since 2k
[

M(n)
i

]
is even for all i except when i = 2k, the result follows.

(g) Suppose on the contrary that there exists β ∈ Z such that Hn = β .
Then, 2kM(n)Hn = 2kM(n)β . From (f), the LHS is odd, but the RHS is even.
This is a contradiction so no such β ∈ Z exists.

Remark for Question 6: In (d),

[
n
k

]
is related to the Stirling numbers of the first kind.
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