|--|

GAN ENG SENG SCHOOL End-of-Year Examination 2023

CANDIDATE NAME		
CLASS	INDEX NUMBER	

CHEMISTRY

Paper 1 Multiple Choice

6092/01

11 October 2023 1 hour

Sec 3 Express

Additional Materials: OTAS

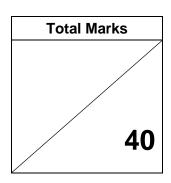
Calculators are allowed in the examination.

READ THESE INSTRUCTIONS FIRST

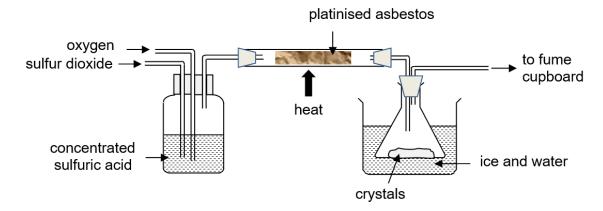
Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid. Write your name, class and index number on the OTAS.

There are forty questions in this paper. Answer all questions. For each question, there are four possible answers **A**, **B**, **C**, and **D**.

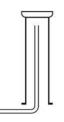

Choose the one you consider correct and record your choice in soft pencil on the separate OTAS.

Read the instructions on the OTAS very carefully.


Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

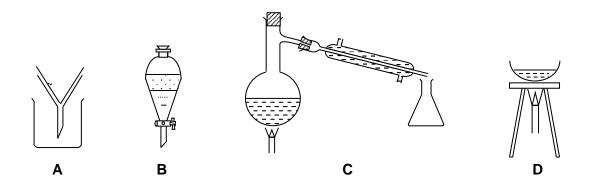
A copy of the Periodic Table is found on page 14.



- 1 Which apparatus is most suitable for measuring 22.15 cm³ of sodium hydroxide?
 - A beaker
 - B burette
 - **C** measuring cylinder
 - D pipette
- 2 In the experimental set-up shown below, sulfur dioxide was reacted with oxygen to form sulfur trioxide by passing the mixture through heated platinised asbestos (a substance that speeds up the reaction).

What is the function of concentrated sulfuric acid?

- **A** to acidify the mixture
- **B** to act as a drying agent
- **C** to act as a medium for the two reactant gases to mix
- **D** to remove impurities
- **3** The apparatus below shows the method to collect gas **X**.

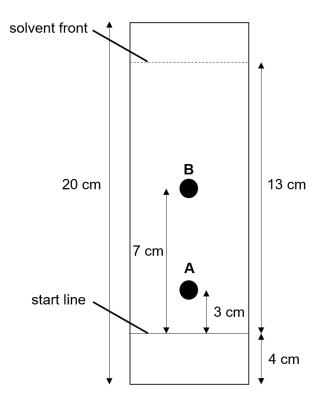


Which properties of gas X can be deduced?

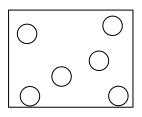
- A denser than air
- **B** insoluble in water and denser than air
- **C** less dense than air
- D soluble in water and less dense than air

4 A mixture contains solid **Y** mixed with ethanol. Solid **Y** is insoluble in ethanol. Ethanol is an alcohol that has a boiling point of 78 °C and **Y** has a boiling point of 103 °C.

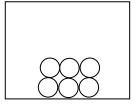
Which of the following apparatus represents the best method used to obtain both solid ${\bf Y}$ and ethanol?


5 Megan performed chromatography on some ink samples. The chromatogram below was obtained.

What could Megan have done wrong in her experiment?


- A the initial spots of ink were too small
- **B** the ink samples were insoluble in the solvent chosen
- **C** the starting line was drawn with a pen
- **D** the solvent level was above the starting line

6 The diagram shows the chromatogram obtained by analysis of a single dye.

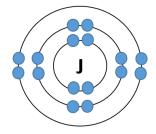


Which of the following is the correct R_f value of spot **B**?

- **A** 0.231
- **B** 0.350
- **C** 0.412
- **D** 0.538
- 7 The diagram below shows the spacing of the particles in a substance Z at two different temperatures.

at 232 °C

at 179 °C


Which of the following could be substance **Z**?

	melting point/ °C	boiling point/ °C
Α	- 21	- 9
В	160	210
С	183	253
D	194	229

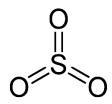
8 Which option correctly describes the locations of the sub-atomic particles in an atom?

	proton	neutron	electron
Α	in the nucleus	in the nucleus	orbiting the nucleus
В	in the nucleus	in the nucleus	in the nucleus
С	orbiting the nucleus	in the nucleus	orbiting the nucleus
D	orbiting the nucleus	orbiting the nucleus	in the nucleus

9 Isaac drew the electronic structure of the atom of an unknown element **J** as shown below.

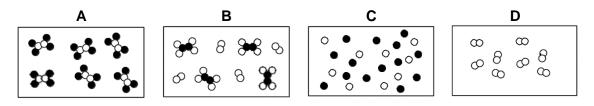
Some statements made about the mistakes that Isaac made are shown below.

- I the innermost shell cannot contain four electrons
- II the second shell cannot contain eight electrons
- **III** the electron pairs in the third shell should be placed at the top and bottom of the shell, instead of the left and right
- IV the third shell must be fully filled with electrons

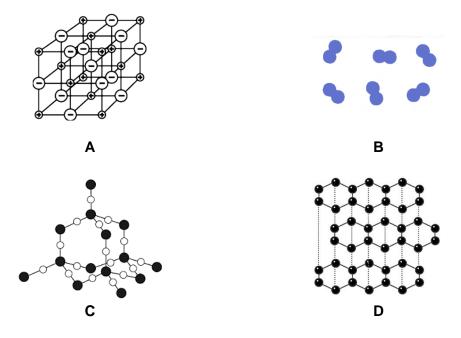

Which of the above statement(s) correctly describes the mistake(s) Isaac has made?

- A I only
- **B** I and IV only
- **C** I, III, and IV only
- D II and III only
- **10** Oxygen reacts with a metal **X** to form an ionic compound **X**O.

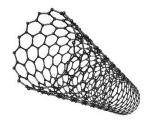
Which statement about oxygen is correct when forming this compound?


- A one atom of oxygen gives away one electron to an atom of X
- **B** one atom of oxygen gives away two electrons to an atom of **X**
- **C** one atom of oxygen receives one electron from an atom of **X**
- D one atom of oxygen receives two electrons from an atom of X
- 11 In which of the following sets do all the particles have the same number of electrons?
 - **A** F^{-}, Cl^{-}, Br^{-}
 - **B** H⁺, He, N³⁻
 - **C** K⁺, Ca²⁺, P³⁻
 - D Na⁺, Mg²⁺, S²⁻

12 The bonding of sulfur trioxide is shown below.


How many electrons are **not** involved in bonding in each oxygen atom?

- **A** 2
- **B** 4
- **C** 6
- **D** 8
- 13 Which of the following pairs of elements forms covalent bonds?
 - **A** bromine and calcium
 - **B** phosphorus and oxygen
 - **C** strontium and sulfur
 - D zinc and chlorine
- 14 Which of the following correctly describes metallic bonding?
 - A electrostatic forces of attraction between positive metal ions surrounded by a 'sea of delocalised electrons'
 - **B** electrostatic forces of attraction between negative metal ions surrounded by a 'sea of delocalised electrons'
 - **C** intermolecular forces of attraction between positive metal ions surrounded by a 'sea of delocalised electrons'
 - **D** intermolecular forces of attraction between negative metal ions surrounded by a 'sea of delocalised electrons'
- **15** Which diagram shows a mixture of an element and a compound?



- **16** Which physical properties below are true of potassium oxide?
 - A hard and brittle
 - **B** hard and malleable
 - **C** soft and brittle
 - **D** soft and malleable

17 Which of the following structures represents lithium bromide?

18 The diagram below shows a carbon nanotube. Carbon nanotubes are made by isolating a single carbon layer from graphite.

How are carbon nanotubes able to conduct electricity?

- A Each carbon atom forms three bonds and carbon ions formed are mobile.
- **B** One unbonded electron in each carbon atom is delocalised and mobile.
- **C** Strong covalent bonds between the carbon atoms allow electrons to easily flow through.
- **D** Weak intermolecular forces of attraction exist between carbon atoms and electrons can overcome these forces of attraction easily.
- **19** Dimethylglyoxime has the chemical formula (CH₃CNOH)₂. How many atoms does one molecule of dimethylglyoxime contain?
 - **A** 5
 - **B** 8
 - **C** 10
 - **D** 16

20 The formula of iridium sulfate is $Ir_2(SO_4)_3$ and that of zinc hypochlorite is $Zn(ClO)_2$.

What is the formula of iridium hypochlorite?

21 Ammonia can be displaced from its salts.

Which equation is correct?

- A $Mg(OH)_2$ (s) + (NH₄)₂SO₄ (aq) \rightarrow MgSO₄ (aq) + 2NH₃ (g) + 2H₂O (g)
- **B** $Mg(OH)_2$ (s) + NH_4Cl (aq) $\rightarrow MgCl$ (aq) + NH_3 (g) + H_2O (g)
- **C** KOH (aq) + 2NH₄NO₃ (s) \rightarrow KNO₃ (aq) + 2NH₃ (g) + H₂O (g)
- **D** KOH (aq) + (NH₄)₂SO₄ (s) \rightarrow KSO₄ (aq) + 2NH₃ (g) + H₂O (g)
- **22** Element E has an electronic structure 2.5. Element G has an electronic structure 2.8.2.

What would be the chemical formula of the compound formed between E and G?

- A G₂E₃
 B G₂E₅
 C G₃E₂
 D G E
- **D** G₅E₂
- 23 Mercury hydroxide reacts with phosphoric acid in the reaction below.

 \mathbf{w} Hg(OH)₂ + \mathbf{x} H₃PO₄ \rightarrow \mathbf{y} Hg₃(PO₄)₂ + \mathbf{z} H₂O

Which values of *w*, *x*, *y*, and *z* will correctly balance the above equation?

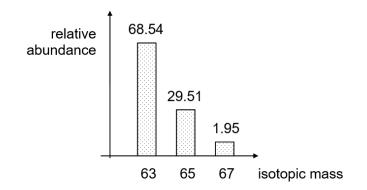
	W	X	У	Z
Α	2	3	1	4
В	3	3	2	7
С	3	2	1	6
D	6	4	2	11

24 Which compound contains the highest percentage of nitrogen by mass?

- **A** Al(NO₃)₃
- **B** Mg₃N₂
- C NO

D NO₂

9


25 The forward reaction for the Haber process is given below.

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

15 cm³ of nitrogen was added to 60 cm³ of hydrogen in a container.

What is the total volume of gas remaining in the container after the reaction is complete?

- **A** 30 cm³
- **B** 40 cm³
- **C** 45 cm³
- **D** 105 cm³
- 26 A new element was discovered. The relative abundance of its isotopes is shown below.

What is its relative atomic mass?

- **A** 33.33
- **B** 63.67
- **C** 63.71
- **D** 65.00
- 27 What is the empirical formula for a compound consisting of 4.8 g of carbon and 0.8 g of hydrogen?
 - A CH
 - B CH₂
 - **C** C₂H₃
 - **D** C₄H₈
- **28** On adding 53 g of impure sodium carbonate, Na_2CO_3 (M_r = 106), to excess hydrochloric acid, 3.0 dm³ of CO₂ was evolved at room temperature and pressure.

What is the percentage purity of sodium carbonate?

- **A** 25%
- **B** 50%
- **C** 75%
- **D** 100%

29 Which row correctly classifies the nature of these oxides?

	aluminium oxide	nitrogen dioxide	sodium oxide
Α	amphoteric	basic	acidic
В	basic	acidic	amphoteric
С	amphoteric	acidic	basic
D	acidic	amphoteric	basic

30 A farmer wishes to grow some ceanothus flowers. The pH of his soil is 5.1. Ceanothus flowers are known to grow best at around pH 7.2.

Which substance should he add to his soil for the ceanothus to grow well?

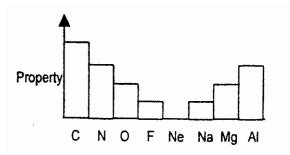
- A calcium hydroxide
- B citric acid
- **C** sodium hydroxide
- D water
- **31** Which particle is found in a solution of oxalic acid, $C_2H_2O_4$?
 - A OH⁻
 - **B** H₂⁺
 - СН
 - **D** H⁺
- **32** Which of the following pairs of reagents should be mixed to prepare a sample of lead(II) sulfate salt?
 - A lead metal and sulfuric acid
 - B lead(II) carbonate and sulfuric acid
 - **C** lead(II) chloride and barium sulfate
 - D lead(II) nitrate and sodium sulfate
- **33** When preparing a salt via titration, the experiment is usually repeated without the addition of an indicator after the volume required for neutralisation has been obtained.

Why is the indicator removed when preparing the salt crystals?

- A The indicator acts as a drying agent and removes moisture from the crystals.
- **B** The indicator is an impurity and will lead to impure crystals formed.
- **C** The indicator slows down the process of crystal formation during crystallisation.
- **D** The indicator will dye and change the original colour of the crystals.

34 When sulfur is burned, sulfur dioxide is produced.

How can the identity of sulfur dioxide be confirmed?


	test	observation
Α	insert a glowing splint into the gas	the glowing splint rekindles
В	use a piece of damp blue litmus paper	blue litmus paper turns red and is then bleached
С	use a piece of damp red litmus paper	red litmus paper turns blue and is then bleached
D	use a piece of filter paper soaked with acidified potassium manganate(VII)	purple potassium manganate(VII) turns colourless

35 Separate tests were performed on an unknown solution. The results are shown in the table below.

test	observation
add aqueous sodium hydroxide	green precipitate forms and is insoluble in excess sodium hydroxide
add nitric acid	no observable change
add aqueous sodium hydroxide, aluminium foil and warm	pungent gas evolved which turned moist red litmus paper blue

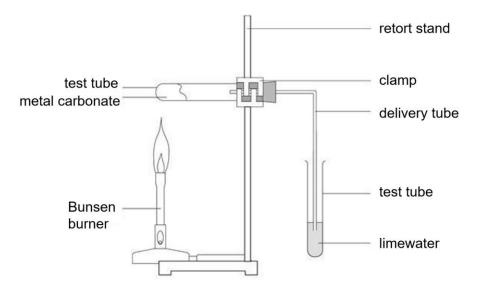
What is the unknown solution?

- A ammonium nitrate
- **B** iron(II) carbonate
- **C** iron(II) nitrate
- **D** iron(III) sulfate
- 36 A property of the elements from carbon to aluminium is shown on the chart.

What are the elements arranged according to?

- A group number
- B number of electron shells
- **C** number of protons
- D valency

- 37 Which statement is true for all noble gases?
 - **A** They are coloured elements.
 - **B** They are stable and inert.
 - **C** They have high densities.
 - **D** They have the octet configuration.
- 38 Halogens can take part in displacement reactions.


$$X_2 + 2NaBr \rightarrow 2NaX + Br_2$$

Some halogens are listed below.

- I fluorine
- II chlorine
- III iodine
- IV astatine

Which halogens could X be?

- A I and II
- B I and IV
- C II and III
- D III and IV
- **39** A metal carbonate was heated as shown in the diagram below.

The metal carbonate was heated strongly for an hour, but the limewater showed no observable change.

Which of the following could the metal carbonate most likely be?

- A calcium carbonate
- **B** magnesium carbonate
- **C** sodium carbonate
- D zinc carbonate

40 The table below shows some information on four metals and their compounds.

Metal	adding hydrochloric acid	heating with hydrogen	adding the metal to a solution of the sulfate of J
G	hydrogen evolved	steam produced	no visible change
Н	no visible change	steam produced	no visible change
I	hydrogen evolved	no visible change	J formed
J	hydrogen evolved	no visible change	no visible change

What is the order of reactivity of these metals?

	least reactive		\rightarrow	most reactive
Α	Н	I	G	J
В	I	G	J	Н
С	Н	G	J	I
D	J	G	Н	I

END OF PAPER

	18	2	He	4	10	Ne	neon	20 18	A A	argon 40	36	ĸ	krypton	5	5 5	Xe	131	86	Rn	radon _	110	e c	odanesson	I							
	17				6	ш	fluorine	17	CI	chlorine 35.5	35	Br	bromine	00	53	lindino	127	85	At	astatine _	117	ې ۲ ۲	tennessine	I	71	Lu	Iutetium 175	103	-	lawrencium	ı
	16				8	0	oxygen	16	2 v	sulfur 32	34	Se	selenium	2	22	+ollinium	128	84	Ро	polonium _	110		LV livermorium	I	0/	γb	ytterbium 173	102	٩	nobelium	I
	15				7	z	nitrogen	15	2 ₪	phosphorus 31	33	As	arsenic	0	10 10	SD	122	83	Bi	bismuth 200	115		moscovium	I	69	Tm	thulium 169	101	PM	mendelevium	I
	14				9	c	carbon	14	<u>s</u>	silicon 28	32	Ge	germanium	2 2	00	ភ្	119	82	Pb	207	111	+ 1	Γ <i>ι</i> flerovium	I			erbium 167				
	13				5	В	boron	13	۸l	aluminium 27	31	Ga	gallium	0,	49	In milition	115	81	Ll	thallium 204	110		nihonium	I	67	Р	holmium 165	66	В	einsteinium	I
										12	30	Zn	zinc	60	4 (0	Codmin Inc.	112	80	Hg	mercury 201	140	Z C	copernicium	۱	99	D	dysprosium 163	86	ç	californium	I
ements										11	29	Cu	copper	10	4/	Ag	108	62	Au	gold 197	144		roentaenium	5 I	65	Tb	terbium 159	67	BK	berkelium	I
Table of El	+									10	28	ïZ	nickel	80	40	Pd	106	78	ħ	platinum 195	110		مں darmstadtium	I	64	Gd	gadolinium 157	96	Cm	curium	I
The Periodic Table of Elements Group					_					6	27	ပိ	cobalt	50	45 1	Rn milot	103	17	Ir	iridium 192	100	801 W	meitnerium	I	63	Eu	europium 152	95	Am	americium	I
The Per		1 H hydrogen	nyurogen 1						80	26	Fe	iron	00	44 C	RU	101	76	Os	osmium 190	100	° 1	hassium	I	62	Sm	samarium 150	94	Pu	plutonium	I	
										7	25	Mn	manganese	00	+ 1 3	400		75	Re	rhenium 186	107	701 42	bohrium	I	61	Pm	promethium -	93	Np	neptunium	I
					umber	lo		nass		9	24	ŗ	chromium	70	42	MO	96	74	N	tungsten 184	100	000	seaboraium	, 1	60	PN	neodymium 144	92		uranium	238
				Key	proton (atomic) number	atomic symbol	name	relative atomic mass		5	23	>	vanadium	10	41		93		Ta	tantalum 181	105	2	dubnium	I	59	Pr	praseodymium 141	91	Pa	protactinium	231
					proton	ato		relati		4	22	Ξ	titanium	40	40	Zr 	91	72	Hf	hafnium 178	104	₫ 2 2	rutherfordium	I	58	မီ	cerium 140	06	Th T	thorium	232
										e	21	Sc	scandium	40	39	Y	, wildline 89	57-71	lanthanoids		00 100	actinoids			57	La	lanthanum 139	89	Ac	actinium	I
	2				4	Be	beryllium	9	Mg	magnesium 24	20	Ca	calcium	0 4 0	8	or or	88	56	Ba	barium 137	0	8 6	radium	I		lanthanoids			actinoide	200	-
	-				°	:	lithium J	11	Na	sodium 23	19	¥	potassium	53	3/	AD milion	85	55	S	caesium 133	001	òů	francium	I		lantha			actin	acti	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$