Γ	1	Г		
	1.00			
	1		1	
				
	1		1	

ANGLO-CHINESE JUNIOR COLLEGE JC1 PROMOTIONAL EXAMINATION

/100

Higher 2

	1	
CANDIDATE NAME		
TUTORIAL/ INI FORM CLASS NU	DEX JMBER	
MATHEMATICS	AYA	9758/01
Paper 1 EDUCATION	50	ctober 2020 3 hours
Candidates answer on the Question Paper. Additional Materials: List of Formulae (MF26)	- 1 996-1997 - 1997 -	
READ THESE INSTRUCTIONS FIRST	Question	Marks
Write your index number, class and name on all the work you ha	nd in. 1	/3
You may use an HB pencil for any diagrams or graphs.	2	. 14
Do not use staples, paper clips, glue or correction fluid.	3	/5
Answer all the questions.	4	15
Write your answers in the spaces provided in the Question Pape		

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

This document consists of 26 printed pages.

Anglo-Chinese Junior College

[Turn over

The diagram below shows the graph of y = f(x) with asymptotes x = 0, x = 4 and y = 3. The curve has a minimum point at (-1,0) and a maximum point at (2,-3).

Sketch the graph of $y = \frac{1}{f(x)}$, stating clearly the equations of any asymptotes, the coordinates of any turning points, and the coordinates of points where the curve crosses the axes. [3]

1

Users of a health application are given exercise targets to meet each week. Those who meet their weekly targets get to spin a wheel for a chance to win virtual coins that can be accumulated to exchange for vouchers. A successful spin wins the user either 40, 60, or 100 coins.

In a particular month, 2395 spins were made in total. Of these, 80% were successful spins and a total of 117 640 coins were won. 25% of the spins that won 40 coins, 35% of the spins that won 60 coins, and 40% of the spins that won 100 coins were made in the last week of the month, for a total of 40 255 coins.

Find the number of spins that won 100 coins that month.

2

3

H2 MATHEMATICS 9758/01

[4]

The tangent to C at the point where x = 2 is parallel to the y-axis. Find the value

3 A curve C has equation $(y-kx)^2 + 8y - 12 = 0$, where k is a real constant.

(i) Find $\frac{dy}{dx}$ in terms of x, y and k.

(ii)

of k.

[2]

[3]

DANYAL

5

[2]

Solve the equation

 $|x| = \frac{c}{x-c}$, leaving your answer in terms of c.

[2]

Hence solve the inequality $|x| > \frac{c}{|x|-c}$.

H2 MATHEMATICS 9758/01

[Turn over

[1]

4

Sketch the graph of C_1 given by the equation $y^2 - (x+a)^2 = 1$, where a > 0, stating clearly the equations of any asymptotes and the coordinates of any turning points. [2]

Hence sketch the graph of y = f'(x) where $f(x) = -\sqrt{1 + (x+a)^2}$, stating clearly the equations of any asymptotes, and the coordinates of point where the curve crosses the x-axis. [2]

5

The curve C_1 is transformed onto the curve C_2 with equation $(by+1)^2 - (x-1)^2 = 1$, b > 1.

Describe a sequence of transformations which transforms the curve C_1 onto the curve C_2 . [3]

ANGLO-CHINESE JUNIOR COLLEGE 2020

H2 MATHEMATICS 9758/01

[Turn over

6

The diagram below shows a trapezium *OACB*, where $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$.

Explain, using the diagram or otherwise, why $\mathbf{c} = \lambda \mathbf{a} + \mathbf{b}$, for some $\lambda \in \mathbb{R}^+$.

[1]

)ANTIAU EDUCATIO

By considering area of triangles or otherwise, prove that the area of the trapezium is $\frac{1+\lambda}{2} |\mathbf{a} \times \mathbf{b}|.$

the de les e

[2]

Show that $|\mathbf{a}.\mathbf{b}|^2 + |\mathbf{a}\times\mathbf{b}|^2 = (|\mathbf{a}||\mathbf{b}|)^2$.

9

[2]

ANGLO-CHINESE JUNIOR COLLEGE 2020

exactly.

H2 MATHEMATICS 9758/01

Given further that 3c - 3b = a, |a| = 2, |b| = 3, |a,b| = 5, find the area of trapezium OACB

[Turn over

7

- The functions f and g are defined as follows: f:x $\mapsto 7(x-a)^2 - 1, x \in \mathbb{R}, x < 3$
 - $g: x \mapsto 1 + b e^{-x}, x \ge 0,$

where a and b are real constants.

(i) State the smallest value of a such that f^{-1} exists.

For the rest of this question, a = 4.

(ii) Explain if f^{-1} exists, and if it does, find $f^{-1}(x)$ and state its domain.

[3]

[1]

(iii) Find the largest value of b such that the composite function fg exists. For this value of b, find fg(x), state its domain, and find its range. [4]

11

[Turn over

[2]

The lines l and m are defined by the equations

$$l: \mathbf{r} = \mathbf{i} - \mathbf{k} + \lambda(2\mathbf{i} - 6\mathbf{j} + 3\mathbf{k}),$$
$$m: \frac{x-1}{4} = \frac{a-y}{a} = \frac{z+3}{4}.$$

Given that the lines intersect, show that a = 6. (i)

Find the position vector of N, the foot of perpendicular from the point A(5, 0, 1) to (ii) the line l. [3]

ANGLO-CHINESE JUNIOR COLLEGE 2020

8

(iii) Hence or otherwise, find the position vector of the two points on *l* that are 5 units from *A*.

13

- 9 The plane π passes through the point with position vector $\mathbf{i}-3\mathbf{k}$ and contains the line with equation $\mathbf{r} = \mathbf{i} + \mathbf{j} + \lambda(2\mathbf{i} \mathbf{j} + \mathbf{k})$.
 - (i) Show that the cartesian equation of the plane π is 2x+3y-z=5.

[2]

[2]

9 [Continued]

(ii) Find the shortest distance from P(-5, 6, -5) to the plane π .

The line L that passes through P and is parallel to 3i-2j+2k intersects the plane π at the point Q. (iii) Find the coordinates of Q. [2]

(iv) Hence or otherwise, find the length of projection of \overrightarrow{PQ} on the plane π . [2]

$$\sum_{r=1}^{n} \frac{2r+3}{r(r+1)(r+2)} = A - \frac{3}{2(n+1)} - \frac{1}{2(n+2)},$$

where *A* is a constant to be determined.

[4]

[Turn over

[2]

10 [Continued]

(i) Explain why $\sum_{r=1}^{\infty} \frac{2r+3}{r(r+1)(r+2)}$ converges, and state the convergence limit. [2]

Find the least value of *n* such that $\sum_{r=1}^{n} \frac{2r+3}{r(r+1)(r+2)} > \frac{8}{5}$ (ii)

ANGLO-CHINESE JUNIOR COLLEGE 2020

H2 MATHEMATICS 9758/01

(iii) Evaluate

$$\frac{9}{3\times4\times5} + \frac{11}{4\times5\times6} + \frac{13}{5\times6\times7} + \dots + \frac{2N+1}{N(N^2-1)},$$

leaving your answer in terms of N.

[3]

- 11 A curve C has parametric equations $x = \frac{t}{\sqrt{1-4t^2}}$ and $y = \sin^{-1} 2t$, for $-\frac{1}{2} < t < \frac{1}{2}$.
 - (i) Show that $\frac{dy}{dx} = 2(1-4t^2)$ and explain why the gradient is always positive for all points on the curve. [4]

(ii) Describe the behaviour of C as x→±∞. Sketch C, stating clearly the equations of any asymptotes and the coordinates of any points of intersection with the axes. [3]

(iii) Given that A is the point on C with parameter $\frac{1}{2\sqrt{2}}$, find the equation of *l*, the tangent to C at the point A, leaving your answer in exact form. [3]

[Turn over

11 [Continued]

Show that I meets the curve C again at another point B and find the coordinates of B. [2]

12

[For this question, leave all numerical answers to the nearest cent.]

Ann is buying an apartment that is projected to be valued at \$500 000 on 1 January 2021. She intends to pay \$200 000 upfront, and take a loan of \$300 000 from a bank that charges interest at 2.5% per year, compounded on the outstanding loan amount at the end of each year.

The loan is disbursed on 1 January 2021 and she starts her yearly instalment payment of Sx on that date.

(i) Show that the outstanding loan amount at the end of *n* years after interest is charged is

 $\left[1.025^{n}(300\ 000)-41x(1.025^{n}-1)\right].$

[3]

For the rest of this question, Ann's yearly instalment is x, as calculated in (ii). (iii) Calculate the total amount she paid the bank in interest.

The apartment that Ann is buying typically appreciates in value by 3% per year. (iv) Find the value of Ann's apartment after 10 years.

(v) If Ann sells the apartment on 1 January 2031 before paying her usual instalment, by first calculating the outstanding loan amount that she needs to repay the bank, find the amount she earns from the sale. [2]

H2 MATHEMATICS 9758/01

[2]

- [1]

- 13 [A cone of radius r and height h has volume $\mathcal{V} = \frac{1}{3}\pi r^2 h$.]
 - (a) An ornament consists of a sphere of fixed radius r cm inscribed in a right circular cone. The sphere is in contact with the base of the cone at the point P, and with the inner surfaces of the cone at the points D and E respectively, as shown in the diagram. Each of the lengths AB and AC makes an angle of θ radians with the downward vertical.

(i) Show that the volume of the cone, $V \text{ cm}^3$, is given by $V = \frac{1}{3}\pi r^3 (1 + \csc\theta)^3 \tan^2\theta.$

[2]

(ii) Using differentiation, show that the volume of the cone is minimum when $\sin \theta = \frac{1}{3}$. [5]

23

Turn over

13 [Continued]

(b) Another ornament in the shape of an hour-glass is made up of two identical right circular cones of fixed height H cm and slant height $\sqrt{6}H$ cm as shown in the diagram below. The hour-glass is filled with some luminous liquid such that when inverted, the liquid in the upper cone flows into the lower cone at a rate of $4 \text{ cm}^3 \text{s}^{-1}$ through a hole of negligible size at K. At time t s, the depth of the liquid in the lower cone at t s, is given by

$$W = \frac{5}{3}\pi \Big[H^3 - (H-h)^3 \Big].$$
 [2]

Find the rate of increase of the depth of the liquid in the lower cone when the depth of the liquid in the lower cone is $\frac{1}{25}H$ cm. Leave your answer in exact form in terms of π and H. [3]

ANGLO-CHINESE JUNIOR COLLEGE 2020

H2 MATHEMATICS 9758/01

H2 MATHEMATICS 9758/01

.

2020 ACJC H2 Math Promo Solutions & Marker's Report

Qn	Solution	Comments
1	$y = \frac{1}{f(x)}$	This question was generally well-done. A small number of students excluded the points at the two <i>x</i> -intercepts, eg (0, 0) and (4, 0) which is not
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Some students did not label the <i>x</i> -intercepts as coordinates.
2	Let x, y and z be the number of successful spins that won 40, 60 or 100 coins respectively. $x + y + z = 2395 \times 0.8$ $40x + 60y + 100z = 117 \ 640$ $(0.25 \times 40x) + (0.35 \times 60y) + (0.40 \times 100z) = 40 \ 255$ From G.C, x = 836, $y = 595$, $z = 485$. Hence 485 spins won 100 coins that month.	x, y and z should be clearly defined. Some students were not clear with the definitions and ended up forming equations which were inconsistent with each other or the definitions. No or little credit was given for such cases.
Y	HASUTERS HannPaper Handwide Delivery (Whatsapp Only Beecons)	Quite a number of students missed one equation and only formed two equations. They then incorrectly tried to use some limitations to solve the question. Students should also be aware that something is wrong if negative values or values greater than 2395 (the total number of spins made) were obtained. It is good practice to write a short statement to answer the question.

Qn	Solution	Comments
3	$(y-kx)^2 + 8y - 12 = 0 (1)$	This question was generally
а -	Differentiating with respect to x ,	well-done.
	$2(y-kx)\left(\frac{dy}{dx}-k\right)+8\frac{dy}{dx}=0$	Common mistakes include the
	$2(y - kx)\left(\frac{dx}{dx} - k\right) + 3\frac{dx}{dx} = 0$	wrong sign when expanding
	$[2(y-kx)+8]\frac{dy}{dx} - 2k(y-kx) = 0$	$2y\frac{\mathrm{d}y}{\mathrm{d}x} - 2k\left(x\frac{\mathrm{d}y}{\mathrm{d}x} + y\right) + 2k^2x + 8\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
	dy = 2k(y-kx)	into
	$\frac{dy}{dx} = \frac{1}{2(y-kx)+8}$	$2y\frac{\mathrm{d}y}{\mathrm{d}x} - 2kx\frac{\mathrm{d}y}{\mathrm{d}x} + 2ky + 2k^2x + 8\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{k(y-kx)}{k}$	
	dx - y - kx + 4	Students should also note that
	NON HON	expected to simplify the final
	ALTERNATIVELY,	answer, instead of leaving it as
	$(y-kx)^2 + 8y - 12 = 0$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2k(y-kx)}{k}$
	$y^2 - 2kxy + k^2x^2 + 8y - 12 = 0$	dx 2y - 2kx + 8
	Differentiating with respect to x ,	
	$2y\frac{\mathrm{d}y}{\mathrm{d}x} - 2k\left(x\frac{\mathrm{d}y}{\mathrm{d}x} + y\right) + 2k^2x + 8\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	
	$\left(2y - 2kx + 8\right)\frac{\mathrm{d}y}{\mathrm{d}x} = 2ky - 2k^2x$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{k(y-kx)}{y-kx+4}$	
	Tangent is parallel to y-axis at $x = 2 \implies y - 2k + 4 = 0$	A minority group wrongly
	$\Rightarrow y = 2k - 4$	interpreted 'the tangent to C at
	Substitute into (1) at $x = 2$:	x = 2 is parallel to y-axis' as
	$(-4)^2 + 8(kx-4) = 12$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \text{ or } y = 0.$
	8(2k-4) = -4	ux
	ALTERNATIVEL Y and 86660031	Some students obtained $y = 2k - 4$ but did not know how to carry on.
J K	Sub $x = 2$ into (1): $(v - 2k)^2 + 8v - 12 = 0$	Many students also wasted
	$v^2 + (8 - 4k)v + 4k^2 - 12 = 0$	time in rewriting equation of C
	Since $x = 2$ is tangent to C, discriminant = 0	as $y^2 - 4ky + 4k^2 + 8y - 12 = 0$
	$(8-4k)^2 - 4(4k^2 - 12) = 0$	and then substituting
	$64 - 64k + 16k^2 - 16k^2 + 48 = 0$	y = 2k - 4 to find k, instead of
	. 7	using the original equation
	$k = \frac{1}{4}$	$(y-2k)^2 + 8y-12 = 0$ to find k.

On	Solution	Comments
Qn 4 (cont'd)	Solution Curves intersect on $x > 0$, therefore $ x = x$ $\Rightarrow x = \frac{c}{x-c}$ $\Rightarrow x^2 - cx - c = 0$	Responses to this part were varied. A good proportion of students were able to solve the quadratic equation using the formula or completing the square, with some carelessness in signs in the formula or the constants in completing the square (e.g. $\left(x - \frac{c}{2}\right)^2 - \frac{c}{4} - c = 0$).
	$\Rightarrow x = \frac{c \pm \sqrt{c^2 + 4c}}{2}$ $\Rightarrow x = \frac{c + \sqrt{c^2 + 4c}}{2} (\because x > c)$	drawn earlier in the question, and solved two quadratic equations and/or listed down more than one solution at the end, without rejecting invalid answers. Some solutions were also not very clear with how they deal with the modulus on the left hand side, even though they eventually got the same answer.
	DALY EDUCATION	Of the remaining population of the students, some students did not seem to know how to solve quadratic equations. Some seemed to be making the age-old mistake carried over from O Levels, concluding from x(x-c) = c that $x = c$ or $x-c = c$ (or equivalent). A good number of students also solved for the constant c instead of the variable x , ignoring the question's instructions to leave answers "in terms of c ".
4 (cont'd)	$y = \frac{c}{x - c} \xrightarrow{\text{replace } x \text{ by } x } y = \frac{c}{ x - c}$	Only a grand total of 4 students had gotten this fully correct.
Ķ	Hence for $ x > \frac{c}{ x -c}$, $x < \frac{-c - \sqrt{c^2 + 4c}}{2}$ or $-c < x < c$ or $x > \frac{c + \sqrt{c^2 + 4c}}{2}$ As a supervision only assisted by the second	 Students who were half correct largely fell into two overlapping categories: The vast majority of students overlooked a common blind spot for solving inequalities with graphs like these. Students are quick to spot the correct interval where the graphs intersect, but forget to check that the interval x < c, where the graphs do not intersect, also satisfies the inequality. Students should be reminded that when solving inequalities using graphs, they should inspect each interval of x-values separated by intersection points or vertical asymptotes. A good number of students also wrote down the correct solution for x > c/(x-c), but missed out on the solutions in the negative x region. It might be that
	alandwide Deliver,	some students overlooked the $ x $ in the denominator of the right hand side, which required students to reflect the graphs for $x > 0$ in the y-axis. Alternatively, to complete their solution, they simply needed to replace x with $ x $ in their solution, then express the full solution without the modulus. Several students also mistakenly wrote down $\frac{c-\sqrt{c^2+4c}}{2}$ instead of $\frac{-c-\sqrt{c^2+4c}}{2}$ as the bound for the negative x solution. They might have assumed that the other root of the equation $x^2 - cx - c = 0$ was the correct bound after applying the $ x $ substitution.

Qn	Solution	Comments
6	$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} = \mathbf{b} + \lambda \mathbf{a}$ for some $\lambda \in \mathbb{R}^+$.	Some students who explained by
5. C	Since \overrightarrow{BC} is in the direction of \overrightarrow{OA} .	merely rewriting as
		$OC = \lambda OA + OB$ to give
		$\mathbf{c} = \lambda \mathbf{a} + \mathbf{b}$, earned no marks.
		There were several neat
		explanations like $BC = \lambda OA$ to
		give $\mathbf{c} - \mathbf{b} = \lambda \mathbf{a}$. A few students
		used vector equation of a straight
		line. A few others mentioned that
		c can be expressed as a linear
		u = 1
	A real of transition = A real of $OAR + A$ real of ARC	$\mu = 1$.
·	Area of trapezium – Area of $OAB + Area of ABC$	trapezium were varied
	$=\frac{1}{2}\overline{OA}\times\overline{OB}+\frac{1}{2}\overline{BA}\times\overline{BC}$	Some students considered $\triangle AOC$
2		$+ \Delta COB$ giving
	$=\frac{1}{2} \mathbf{a}\times\mathbf{b} +\frac{1}{2} (\mathbf{a}-\mathbf{b})\times(\lambda\mathbf{a}) $	1 lavel 1 lavel
		$\left \frac{-1}{2} \mathbf{a}\times\mathbf{c} +\frac{-1}{2} \mathbf{c}\times\mathbf{b} \right $
	$=\frac{1}{2} \mathbf{a}\times\mathbf{b} +\frac{1}{2} -\lambda\mathbf{b}\times\mathbf{a} $	1_{1}
		$= \frac{1}{2} \mathbf{a} \times (\mathbf{b} + \lambda \mathbf{a}) + \frac{1}{2} (\lambda \mathbf{a} + \mathbf{b}) \times \mathbf{b} .$
	$=\frac{1}{-}(1+\lambda) \mathbf{a}\times\mathbf{b} $	
1	2	$ =-\frac{ \mathbf{a}\times\mathbf{b} +-\lambda \mathbf{a}\times\mathbf{b} }{2}$
	ANY AL	A few students mixed up cross
	DITACATION	product with dot product. They
	. EDC	had extra terms because
		$ \mathbf{a} \times \mathbf{a} = \mathbf{a} ^2$ which was WRONG.
		Some students considered
		parallelogram + triangle, a few of
		them ended up with
	0	$\lambda \mathbf{a} \times \mathbf{b} + \frac{1}{2}(1-\lambda) \mathbf{a} \times \mathbf{b} $, unable
	1.75	
	- CU 37/55	to factor out and proceed.
	1 A - A - A - A - A - A - A - A - A - A	Some students quoted the area of
	Papapapap Ora	modulus signs and giving wrong
1	X and Delivery	height. Area of trapezium is
	islandwar	$\frac{1}{1}(1 + 1)(1 + 1)$
		$\left \frac{-2(\lambda \mathbf{a} + \mathbf{a})(\mathbf{b} \times \mathbf{a})\right $
	$ \mathbf{a}\mathbf{b} ^2 + \mathbf{a}\times\mathbf{b} ^2 - (\mathbf{a} \mathbf{b} \cos\theta)^2 + (\mathbf{a} \mathbf{b} \sin\theta)^2$	A lot of students wrote
	$\begin{bmatrix} \mathbf{a},\mathbf{b} & \top \mathbf{a} \wedge \mathbf{b} & - \langle \mathbf{a} \mathbf{b} \cos b \rangle \end{bmatrix} \top \langle \mathbf{a} \mathbf{b} \sin b \rangle$	$ {\bf a},{\bf b} ^2 = {\bf a} ^2 + 2{\bf a},{\bf b} + {\bf b} ^2$ and
	$= (\mathbf{a} \mathbf{b})^{2} (\sin^{2}\theta + \cos^{2}\theta)$	
	$()^2$	$ \mathbf{a} \times \mathbf{b} = \mathbf{a} + 2\mathbf{a} \times \mathbf{b} + \mathbf{b} $ which
	$= (\mathbf{a} \mathbf{D})$	were WRONG, when it should be
		$ (\mathbf{a}+\mathbf{b}).(\mathbf{a}+\mathbf{b}) = \mathbf{a} ^2 + 2\mathbf{a}.\mathbf{b} + \mathbf{b} ^2$
		and $(\mathbf{a}+\mathbf{b})\times(\mathbf{a}+\mathbf{b})=0$
		Note:

 $|\mathbf{a}.\mathbf{b}|^2 \neq (\mathbf{a}+\mathbf{b}).(\mathbf{a}+\mathbf{b})$ $|\mathbf{a} \times \mathbf{b}|^2 \neq (\mathbf{a} + \mathbf{b}) \times (\mathbf{a} + \mathbf{b})$ $|\mathbf{a}.\mathbf{b}|^2 \neq |\mathbf{a}|^2 . |\mathbf{b}|^2$ unless $\cos \theta = 1$ $|\mathbf{a} \times \mathbf{b}|^2 \neq |\mathbf{a}|^2 \times |\mathbf{b}|^2$ unless $\sin \theta = 1$ A few students found λ by writing $3\mathbf{c} - 3\mathbf{b} = \mathbf{a} \Longrightarrow \mathbf{c} = \frac{1}{3}\mathbf{a} + \mathbf{b} \Longrightarrow \lambda = \frac{1}{3}$ $\lambda = \frac{\mathbf{c} - \mathbf{b}}{\mathbf{a}}$ which was WRONG. $|\mathbf{a} \times \mathbf{b}|^2 = (|\mathbf{a}||\mathbf{b}|)^2 - |\mathbf{a}.\mathbf{b}|^2 = 36 - 25 = 11$ Some students were unable to $|\mathbf{a} \times \mathbf{b}| = \sqrt{11}$ connect and apply the 2 proven results fully when they went the Therefore area of trapezium $=\frac{1+\frac{1}{3}}{2}\sqrt{11}=\frac{2}{3}\sqrt{11}$ extra step to find θ in $|\mathbf{a} \times \mathbf{b}|$ from a.b. Many common mistakes in not getting $|\mathbf{a} \times \mathbf{b}| = \sqrt{11}$ using $|\mathbf{a} \times \mathbf{b}|^{2} = (|\mathbf{a}||\mathbf{b}|)^{2} - |\mathbf{a} \cdot \mathbf{b}|^{2}$: • $|\mathbf{a} \times \mathbf{b}| = \sqrt{36 - 25} = \sqrt{9} = 3$ • $|\mathbf{a} \times \mathbf{b}| = 36 - 25 = 11$ • $|\mathbf{a} \times \mathbf{b}| = \sqrt{36} - \sqrt{25} = 1$ • $|\mathbf{a} \times \mathbf{b}| = \frac{\sqrt{36}}{\sqrt{25}} = \frac{6}{5}$

Qn	Solution	Comments
8(i)	$l: \mathbf{r} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-6\\3 \end{pmatrix} \qquad \qquad m: \mathbf{r} = \begin{pmatrix} 1\\a\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$	Students generally make mistakes here when converting the equation of <i>m</i> into vector form
	For intersection, $ \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-6\\3 \end{pmatrix} = \begin{pmatrix} 1\\a\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix} $ $ \frac{1+2\lambda = 1+4\mu}{3\lambda = -3+4\mu} = 0 \\ \Rightarrow -6\lambda = a - a\mu \\ 3\lambda - 4\mu = -2 \\ \end{cases} $ Solving the first and third equation gives $\lambda = -2, \mu = -1$	<i>m</i> into vector form, especially the j and k component. There are a handful of students who use the same letter for the parameter for both lines, i.e. λ . Hence resulting in inconsistent answers. There are others who also
	Because the lines intersect, therefore $\lambda = -2$, $\mu = -1$ satisfies the second equation $-6(-2) = a - a(-1) \Rightarrow 2a = 12 \Rightarrow a = 6$ (shown)	try to solve equations 1 and 2 and 3 together, resulting in long and tedious working.
(ii)	$l: \mathbf{r} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-6\\3 \end{pmatrix} \qquad \overrightarrow{OA} = \begin{pmatrix} 5\\0\\1 \end{pmatrix}$ Since N is on l, $\overrightarrow{ON} = \begin{pmatrix} 1+2\lambda\\-6\lambda\\-1+3\lambda \end{pmatrix} \Rightarrow \overrightarrow{AN} = \begin{pmatrix} -4+2\lambda\\-6\lambda\\-2+3\lambda \end{pmatrix}$	Those who studied well will get this right if they use the first method. There is an equal number of people using the first and second method with the latter making more conceptual mistakes.
V	$\overrightarrow{AN} \text{ is perpendicular to } l, \text{ therefore} \begin{pmatrix} -4+2\lambda \\ -6\lambda \\ -2+3\lambda \end{pmatrix}, \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix} = 0 \Rightarrow (-8-6) + \lambda(4+36+9) = 0 \Rightarrow \lambda = \frac{2}{3} = 0 = 0$	Those who used the first method usually will get full marks except for careless mistakes such as $49\lambda = 14 \Rightarrow \lambda = \frac{7}{2}$.
	$V_{N} = \begin{pmatrix} 7 \\ 0 \\ -1 \end{pmatrix} + \frac{2}{7} \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 7 \\ 0 \\ -7 \end{pmatrix} + \begin{pmatrix} 4 \\ -12 \\ 6 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 11 \\ -12 \\ -1 \end{pmatrix}.$	

Hence
$$\overline{NC} = \frac{3}{7} \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix}$$
 and $\overline{NB} = -\frac{3}{7} \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix}$.
Therefore,
 $\overline{OC} = \overline{ON} + \overline{NC} = \frac{1}{7} \begin{pmatrix} 11 \\ -12 \\ -1 \end{pmatrix} + \frac{3}{7} \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 17 \\ -30 \\ 8 \end{pmatrix}$
 $\overline{OB} = \overline{ON} + \overline{NC} = \frac{1}{7} \begin{pmatrix} 11 \\ -12 \\ -1 \end{pmatrix} - \frac{3}{7} \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 5 \\ 6 \\ -10 \end{pmatrix}$

Qn	Solution	Comments
8(iii)	ALTERNATIVELY,	Quite a number of students
(cont'd)	Let B be a point on l such that $AB = 5$.	who use the second method
	$(1+2\lambda)$	are careless with the
	Then $\overline{OB} = -6\lambda$ for some λ	forming of the vector \overline{AB} .
	$\left(-1+3\lambda\right)$	Hence they were unable to
	(1, 21) (5) (4, 21)	obtain the correct quadratic
	$\overrightarrow{1}$	equation.
	$\Rightarrow AB = \begin{vmatrix} -6\lambda \\ - \end{vmatrix} 0 = \begin{vmatrix} -6\lambda \\ - 0 \end{vmatrix}$	
	$\begin{pmatrix} -1+3\lambda \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$ $\begin{pmatrix} -2+3\lambda \end{pmatrix}$	
	$\left(-4+2\lambda\right)$	
	$\therefore AB = \begin{vmatrix} -6\lambda \end{vmatrix} = 5$	1 d
	$\left(-2+3\lambda\right)$	
	$\sqrt{(22 + 1)^2 + (22 + 2)^2} = 5$	
	$\Rightarrow \sqrt{(2\lambda - 4)^2 + (-6\lambda)^2 + (3\lambda - 2)^2} = 5$	
	$\Rightarrow (4+36+9)\lambda^{2} + (-16)12\lambda + 16 + 4 = 25$	s
	$\Rightarrow 49\lambda^2 - 28\lambda - 5 = 0$	TAL
	$\Rightarrow (7\lambda - 5)(7\lambda + 1) \neq 0$	ANTA
N/	5000 001 88660031	DUCATION
	$\Rightarrow 2 = \frac{7}{7}$ or $2 = \frac{1}{7}$	EDC
E	$f_{\text{trivide}} Oeithers$ (1) (2) (1) (2)	
1	$\overrightarrow{OR} = \begin{bmatrix} 1 & 5 \\ 5 & 6 \end{bmatrix}$ or $\overrightarrow{OR} = \begin{bmatrix} 1 & 1 \\ 1 & 6 \end{bmatrix}$	
	$ OB = \begin{bmatrix} 0 & +-7 & -0 \\ 1 & 7 & 2 \end{bmatrix}$ of $OB = \begin{bmatrix} 0 & -7 & -0 \\ 7 & 2 \end{bmatrix}$	
	(-1) (3) (-1) (3)	8
	$\begin{pmatrix} 17 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$	
	$=\frac{1}{7} -30$ $=\frac{1}{7} 6$	м
	(8) (-10)	

Qn	Solution	Comments
9(i)	Another vector parallel to the plane is	In this question, we see a lot
	$\begin{pmatrix} 1 \\ \end{pmatrix} \begin{pmatrix} 1 \\ \end{pmatrix} \begin{pmatrix} 0 \\ \end{pmatrix} \begin{pmatrix} 0 \\ \end{pmatrix} \begin{pmatrix} 0 \\ \end{pmatrix}$	of copy errors, missing
	$\begin{vmatrix} 0 \\ - \end{vmatrix} 1 \begin{vmatrix} -1 \\ -1 \end{vmatrix} / 1$	vectors or negative signs
	$\begin{pmatrix} -3 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} -3 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$	changing positions or
	$\begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$	numbers becoming another
	Therefore normal = $1 \times -1 = 6 \frac{1}{3}$	number due to bad
	$\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$	them.
	$ \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2 + 2 - 5 + 2 - 5 = 5 $	Those who studied are
8	Hence r . $3 = 0$. $3 = 2+3=3 \Rightarrow 2x+3y-z=5$.	usually able to do (i)
	(-1) (-3) (-1)	effortlessly. Common errors
	DATION	missing negative signs etc.
(ii)	$\begin{pmatrix} 2 \end{pmatrix}$ $\begin{pmatrix} -5 \end{pmatrix}$ $\begin{pmatrix} 3 \end{pmatrix}$	Apart from the the
	$\pi:\mathbf{r}$. $3 = 5$ $L:\mathbf{r} = 6 + \lambda -2$	projection method, there are
	$\begin{pmatrix} -1 \end{pmatrix}$ $\begin{pmatrix} -5 \end{pmatrix}$ $\begin{pmatrix} 2 \end{pmatrix}$	methods.
	Let a point on the plane be $A(1, 1, 0)$.	1. finding foot of
	Distance from P to the plane $\pi = \overrightarrow{AP}\mathbf{n} $	perpendicular and then
		2. finding parallel plane that
	$\begin{pmatrix} -6\\ 5 \end{pmatrix} \begin{pmatrix} 2\\ 2 \end{pmatrix}$	contains A and use the
	DAL DAL	formula for distance
	$=\frac{ (-5)(-1) }{\sqrt{2}}=\frac{8}{\sqrt{2}}$.	between 2 parallel planes.
	$\sqrt{2^2+3^2+1^2}$ $\sqrt{14}$	
		Some common mistakes are
p.		not using the unit vector,
		careless simple calculation
	99	errors.
	- CITES	There are a number of
1	100 ge660091	students who use cross
	mp apparent order	product which is a
E	Luide Delivery (conceptual error that needs
(iii)	For intersection of L and π .	Most students can do this
	((-5) (3))(2)	part correctly. Common
	$\begin{vmatrix} 6 \\ +\lambda \end{vmatrix} -2 \begin{vmatrix} 3 \\ -2 \end{vmatrix} = 5$	errors are simple calculation
	$\left(\left(-5 \right) \left(2 \right) \right) \left(-1 \right)$	mistakes.
	$(-10+18+5) + \lambda(6-6-2) = 5$	
	$\Rightarrow \lambda = 4$	
	$\begin{pmatrix} -5 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 7 \end{pmatrix}$	
	$\Rightarrow \overrightarrow{OQ} = \begin{vmatrix} 6 \\ +4 \end{vmatrix} -2 = \begin{vmatrix} -2 \\ -2 \end{vmatrix}$	

Qn	Solution	Comments
10	By partial fractions, $\frac{2r+3}{r(r+1)(r+2)} = \frac{1}{2} \left(\frac{3}{r} - \frac{2}{r+1} - \frac{1}{r+2} \right)$. Hence,	Too many students forgot how to do partial fractions. Too many made the same silly careless mistake when
	$\sum_{r=1}^{n} \frac{2r+3}{r(r+1)(r+2)} = \frac{1}{2} \sum_{r=1}^{n} \left(\frac{3}{r} - \frac{2}{r+1} - \frac{1}{r+2} \right)$	finding the coefficient for $\frac{1}{r}$.
	$=\frac{1}{2}\begin{bmatrix} \frac{3}{1} - \frac{2}{2} - \frac{1}{3} \\ +\frac{3}{2} - \frac{2}{3} - \frac{1}{4} \\ +\frac{3}{2} - \frac{2}{3} - \frac{1}{4} \\ +\frac{3}{2} - \frac{2}{3} - \frac{1}{4} \\ +\frac{3}{2} - \frac{2}{3} - \frac{1}{3} \\ +\frac{3}{n-2} - \frac{2}{n-1} - \frac{1}{n} \\ +\frac{3}{2} - \frac{2}{n-1} - \frac{1}{n+1} \\ +\frac{3}{2} - \frac{2}{n-1} - \frac{1}{n+2} \\ =\frac{7}{4} - \frac{3}{2(n+1)} - \frac{1}{2(n+2)} $	Many students had trouble seeing which terms in the expansion cancelled out, while some innovative ones simply substituted a value of <i>n</i> into $\sum_{r=1}^{n} \frac{2r+3}{r(r+1)(r+2)} = A - \frac{3}{2(n+1)} - \frac{1}{2(n+2)}$ to solve for <i>A</i> . Since this is a "show" question, credit is given for the value of <i>A</i> , but not for the method of difference required to find <i>A</i> .
	Hence $A = \frac{7}{4}$	
(i)	As $n \to \infty$, $\frac{3}{2(n+1)} \to 0$ and $\frac{1}{2(n+2)} \to 0$.	Even if students could not do the MOD part above, if they wrote down $\frac{3}{2}$ and $\frac{1}{2}$ to get
	Hence $\frac{7}{4} - \frac{3}{2(n+1)} - \frac{1}{2(n+2)} \rightarrow \frac{7}{4}$. Therefore convergence limit is $\frac{7}{4}$.	$\frac{1}{2(n+1)} \xrightarrow{\rightarrow} 0 \text{ and } \frac{1}{2(n+2)} \xrightarrow{\rightarrow} 0, \text{ to get}$ convergence limit as A, they would have been given full credit.
(ii)	$7 \frac{3}{4} \frac{1}{2(n+1)^{\text{erf}}} \frac{1}{2(n+2)} > \frac{8}{5}$ $\Rightarrow \frac{1}{2(n+1)} + \frac{1}{2(n+2)} < \frac{3}{20} = 0.15.$	Method mark for solving the inequality is awarded only if there is evidence student attempted to solve using G.C.
	From G.C., When $n = 12$, $\frac{3}{2(12+1)} + \frac{1}{2(12+2)} = 0.1511$ When $n = 13$, $\frac{3}{2(13+1)} + \frac{1}{2(13+2)} = 0.1405$	Though many students did use the GC pretty accurately here, many did not present the GC table to show how they got the answer. Students need to know that this working step is worth mark should their answer from the first part is wrong
	Hence least value of <i>n</i> is 13.	· · · · · · · · · · · · · · · · · · ·

Qn	Solution	Comments
(iii)	9 11 13 2 <i>N</i> +1	Students who expressed the
	$\frac{3\times4\times5}{3\times4\times5} + \frac{4\times5\times6}{4\times5\times6} + \frac{5\times6\times7}{5\times6\times7} + \dots + \frac{1}{N(N^2-1)}$	sum as $\sum_{r=4}^{N} \frac{2r+1}{r(r^2-1)}$ were
	$=\sum_{r=1}^{N-1} \frac{2r+3}{r+3}$	given credit, though many
	$\sum_{r=3}^{2} r(r+1)(r+2)$	could not continue to find its
	7 3 1 5 7	relationship with
	$=\frac{1}{4}-\frac{1}{2N}-\frac{1}{2(N+1)}-\frac{1}{6}-\frac{1}{24}$	$\sum_{r=3}^{N-1} \frac{2r+3}{r(r+1)(r+2)}$. In fact even
	$=\frac{5}{3}-\frac{3}{3}-\frac{1}{3}$	if they used the result given in
	8 $2N 2(N+1)$	the question without finding A ,
	LAVIAL	$A - \frac{3}{2(n+1)} - \frac{1}{2(n+2)}$, they
	DAN TION.	would still have gotten the
	EDUCAL	correct answer (since A
		cancels out), and full credit
		would have been earned.

Qn	Solution	Comments
11(i)	$t = 1 = \sin^{-1} 2t = 1$	Most students were able to
2 A	$x = \frac{1}{\sqrt{1-4t^2}}, y = \sin 2t, -\frac{1}{2} < t < \frac{1}{2}$	correctly differentiate the
	dr $(1-4t^2)^{\frac{1}{2}}-t(\frac{1}{2})(1-4t^2)^{-\frac{1}{2}}(-8t)$	expressions and perform the
	$\frac{dt}{dt} = \frac{(1-tt^2) - t(2)(1-tt^2)}{(1-tt^2)}$	parametric differentiation. Some
		careless mistakes were made
	$=\frac{(1-4t^2)^2\left\lfloor (1-4t^2)+4t^2\right\rfloor}{2}$	such as multiplying by 8t instead
	$(1-4t^2)$	of $-8t$. Some students also had
	$=(1-4t^2)^{-\frac{3}{2}}$	problems with the algebraic
	dy 2	manipulations to arrive at the
	$\frac{1}{\mathrm{d}t} = \frac{1}{\sqrt{1-4t^2}}$	required expression. No credit
	$dy = 2$ $(1 + 2)^{-\frac{3}{2}}$	was awarded if too many
	$\frac{dy}{dx} = \frac{1}{\sqrt{1-4t^2}} \div (1-4t^2)^{-2}$	"intermediate" mistakes were
	$\frac{3}{2}$	made.
	$=\frac{2}{\sqrt{1-4t^2}} \times (1-4t^2)^2$	
	$\sqrt{1-4t}$	Common error:
	$=2(1-4t^{2})$ (shown)	$(1-4t^2)^{\frac{3}{2}} = \left(\sqrt{1-4t^2}\right)^3$
	Since $-\frac{1}{2} < t < \frac{1}{2}$, $t^2 < \frac{1}{4} \therefore 4t^2 < 1$	$\neq \sqrt[3]{1-4t^2}$ (cube root!!)
	So $\frac{dy}{dx} = 2(1-4t^2) > 0$, thus gradient is positive for all points on	Few did not use the auotient or
	the curve.	product rule or used it wrongly.
	DALCATION	No credit was given for such
		cases.
		This is a "Show" question.
		Steps should not be skipped – it
		should be clear how the next
	9	expression is obtained. Little or
	al line (Ab	no credit was given if steps were
	SU TR	not clearly shown, even if the
1	A Paper onv secoods	answer was reached because the
	- amt art whatsapp	"answer" is given for this
	Candride Deliver	question.
	73%	In showing that the gradient is
		positive for all points on the
		curve, it is essential to state that
		$\left -\frac{1}{2} < t < \frac{1}{2} \right $, which then results
		in $t^2 < \frac{1}{4}$ (or equivalent).
		Starting with just $t^2 < \frac{1}{4}$ (or
1.8		equivalent), giving the incorrect

11 As $x \to \pm \infty$, $t \to \pm \frac{1}{2}$, $\therefore y \to \pm \frac{\pi}{2}$ (ii) the curve approaches $y = \pm \frac{\pi}{2}$. х 0 $v = -\frac{1}{2}\pi$ 11 (iii) 2.5 $= = \frac{\overline{2\sqrt{2}}}{\sqrt{\frac{1}{2}}} = \frac{1}{2}$, and $y = \sin^{-1} 2\left(\frac{1}{2\sqrt{2}}\right) = \frac{\pi}{4}$ Equation of tangent *l* is $y - \frac{\pi}{4} = 2(1 - 4\left(\frac{1}{8}\right))\left(x - \frac{1}{2}\right)$ $y = x - \frac{1}{2} + \frac{\pi}{4}$ and no working was shown.

reason for why $2(1-4t^2) > 0$ (or equivalent), such as $:: t^2 \ge 0$, or using just test points (e.g. substituting $t = \pm \frac{1}{2}$ or $t = \pm \frac{1}{2}$ earned no credit. Some students had some issues with the inequality signs also. Some students tried using the second derivative test or discriminant which is conceptually not right. The graph was quite badly drawn. The behavior of the curve was also often not stated or analysed. The analysis of the behavior of the curve was intended to aid in the sketching of the graph since the GC had its limitations in showing the extreme behavior of the curve. Often the behavior stated and the actual graph drawn were also not consistent. The origin and the correct equations of the asymptotes of the curve should be clearly shown as required by the question. As shown in part (i), no parts of the curve should have negative or 0 gradient (no stationary points). This question is a rather basic one of finding the tangent equation of a parametrically defined curve. For those who attempted this part, it was generally well done. Some careless mistakes were made in computing the gradient and coordinates at A. Credit was not given if any value was incorrect

A few students used the

parameter value of $\frac{1}{2\sqrt{2}}$ given

as the *x*-value when clearly it was the *t*-value (the parameter is *t*).

Qn	Solution	Comments
11 (iii)	Curve C: $x = \frac{t}{\sqrt{1-4t^2}}, y = \sin^{-1} 2t$ Line l: $y = x - \frac{1}{2} + \frac{\pi}{4}$ At the point of intersection B, Substitute $x = \frac{t}{\sqrt{1-4t^2}}, y = \sin^{-1} 2t$ into $y = x - \frac{1}{2} + \frac{\pi}{4}$, $\therefore \sin^{-1} 2t = \frac{t}{\sqrt{1-4t^2}} - \frac{1}{2} + \frac{\pi}{4}$ From GC, $t = 0.35355$ or $t = -0.47564$ Now, $t = 0.35355$ corresponds to point A Thus $t = -0.47564$, and $x = \frac{-0.47564}{\sqrt{1-4(-0.47564)^2}} = -1.54278$, $y = \sin^{-1} 2(-0.47564) = -1.25737$ Coordinates of B are $(-1.54, -1.26)$.	No credit was awarded if many mistakes were made in trying to obtain the Cartesian equation of C . Some students correctly substituted in the parametric equations of C into the tangent equation, but could not continue from there. The key was to use the GC to solve for the <i>t</i> -value and subsequently substitute the <i>t</i> -value back into the parametric equations of C to obtain the coordinates. Very few students obtained the correct coordinates of B .
		L

DANYAL					
Qn	Solution			Comments	
12(i)	Year	Beginning	End	Question stated that all numerical	
	1	$300\ 000 - x$	$1.025(300\ 000 - x)$	answers must be in nearest cent, unfortunately many students did not	
	2	$1.025(300\ 000 - x) - x$	$1.025^2(300\ 000-x)-1.025x$	notice this. To nearest cent = round off to 2 decimal places .	
	By the of 1.025" (= 1.025 = 1.025 = 1.025 = 1.025	end of the n^{th} year, the ou $(300\ 000 - x) - 1.025^{n^{-1}}x - \frac{1}{1000}$ $(300\ 000) - 1.025^{n^{-1}}x - 1.0$ $(300\ 000) - 1.025x(1.025)$ GP: a $(300\ 000) - 1.025x(\frac{1.025}{1.000})$ $(300\ 000) - 1.025x(\frac{1.025}{1.000})$ $(300\ 000) - 1.025x(\frac{1.025}{1.000})$	tstanding loan amount is 1.025x $25^{n-1}x 1.025x$ $3^{n-1} + 1.025^{n-2} + + 1)$ = 1, r = 1.025, n terms $25^n - 1)$ 25 - 1 -1). (shown)	off to 2 decimal places. Important tip to assure accuracy of answers, use 2 more decimal places for workings. Eg if question wants answers in nearest cent, students should be using 4 decimal places for workings, alternatively, students can make use of the STO function in the GC, to store the values. Part (i) is a proving question, hence students must give more details and workings instead of stating the answer. Note that the question is to calculate the outstanding loan at the end of the year.	
(ii)	On 1 Ja At the e 1.025 ¹⁹	nuary 2040, $n = 20$. end of 31 December 2039 $(300\ 000) - 41x(1.025^{19} -$, outstanding loan amount is -1).	Question stated that the last payment is on 1 January 2040, it means that it will be her 20^{th} payment = x .	
	For the 1.025 ¹⁹	last instalment of x to b (300 000) - 41x(1.025 ¹⁹ -	e on 1 January 2040, $-1) = x$	Students should relate to part (i) answer and solve for x .	
	\Rightarrow 479	595.0557 - 24.5447x = x			
	$\Rightarrow x = 1$	18774.77 (nearest cent)			

	ALTERNATIVELY, Outstanding amount at the end of 20 years is 0: $1.025^{20} (300\ 000) - 41x (1.025^{20} - 1) = 0$ Solving, x = 18774.77 (nearest cent).		
(iii)	$(18774.7694 \times 20) - 300000$	Not	e that she borrowed \$300000,
	= 75495.39 (nearest cent).	her payin paid 20x forg (ii) a inter	hast payment is the 20^{m} nent, hence the total amount including interest = -300000. Some students ot to relate part (iii) with part and went to calculate the rest paid only using another GP
		forn	nula.
(iv) (v)	$500\ 000 \times 1.03^{10} = 671\ 958.19$ (nearest cent). Outstanding loan amount on 31 December 2030 $= 1.025^{10}\ (300\ 000) - 41\ (18\ 774.7694)\ (1.025^{10}\ -1)$	$\frac{U_n}{U_n}$ it fo got Som depuint took	spart was well done, except for e students who used the = ar^{n-1} formula for GP and took r 9 years instead of 10 years and the wrong answer. The students calculate reciation instead of appreciation the value of the apartment, and the r = 0.97 instead of $r = 1.03$. The students interpreted the stion correctly, common errors bounting the months wrongly and
	= 168 425.93 (nearest cent) Amount Ann earns = value on 1 Jan 2031 – upfront payment – outstanding loan – all instalments = 671 958.1897 –200 000 – 168 425.9313 – (10×18774.7694) = 115 784.56 (nearest cent).	Onl mar	ment of \$200000 and alments paid \$10x. y one student obtained full ks for Q12.
On	Solution		Commonts
Qn 13(a) (i)	$V = \frac{1}{3}\pi(PC)^{4}(AP)$ In ΔAOE , $\sin\theta = \frac{sap(POW)}{AO} \Rightarrow AO = r \csc\theta$ istandaride Debuerry $\theta = \frac{ap(POW)}{AO} \Rightarrow AO = r \csc\theta$ In ΔAPC , $\tan\theta = \frac{PC}{AP} \Rightarrow PC = AP \tan\theta$ $= r(1 + \csc\theta) \tan\theta$	DA ED	Quite a number of students wrote $\sin \theta = \frac{r}{AO}$ $\Rightarrow AO = r \sin \theta$, which is very careless. Some students mistaken <i>O</i> as the midpoint of <i>AP</i>
	$V = \frac{1}{3}\pi r^{3}(1 + \csc\theta)^{3} \tan^{2}\theta \text{ (shown)}$		and wrote $AP = 2AO = \frac{2r}{\sin\theta}$,

which leads to a wrong expression in the show part.

		Many students mistaken r as the radius of the cone, however, r is given as the radius of sphere in the question. eg $V = \frac{1}{3}\pi r^2 [r(1 + \csc\theta)]$ $= \frac{1}{3}\pi r^3 (1 + \csc\theta)$
	DANTYAL EDUCATION ED	Some students have gotten the correct expression for the radius and height, however, they expanded the expression when finding the volume and this made the expression very complicated. A better strategy is to factorize the common factors and the correct expression can be derived easily.
13(a) (ii)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = \frac{1}{2}\pi r^3 [3(1 + \csc\theta)^2 (-\csc\theta\cot\theta)\tan^2\theta]$	Many students did not realise that r is a constant
(11)	$(1 + \csc\theta)^3 2\tan\theta \sec^2\theta$	and θ is the variable. As
7	$= \frac{1}{3}\pi r^{3}(1 + \csc\theta)^{2}[-3\csc\theta\tan\theta + (1 + \csc\theta)2\tan\theta\sec^{2}\theta]$ dV	a result, they differentiated V with respected to r, which is totally wrong.
	$\frac{1}{d\theta} = 0$	Some students did not
	$\Rightarrow \frac{1}{3}\pi r^3 (1 + \csc\theta)^2 [-3\csc\theta \tan\theta + (1 + \csc\theta)^2 \tan\theta \sec^2\theta] = 0$	understand the question. They substituted
	$\Rightarrow (1 + \csc \theta)^2 = 0$	$\sin\theta = \frac{1}{2}$ into $\frac{dV}{dt}$ and
	or $-3\left(\frac{12}{\sin\theta}\right)\left(\frac{\sin\theta}{\cos\theta}\right) + \left(1 + \frac{1}{\sin\theta}\right)\left(\frac{2\sin\theta}{\cos\theta}\right)\left(\frac{1}{\cos^2\theta}\right) = 0$	$3 d\theta$ did not know how to continue from there.
	$ \stackrel{\text{islation}}{\Rightarrow} \operatorname{cosec} \theta = -1 \text{or} -\frac{3}{\cos \theta} + \left(\frac{\sin \theta + 1}{\sin \theta}\right) \left(\frac{2\sin \theta}{\cos^3 \theta}\right) = 0 $	To find the min value,
	$\Rightarrow \sin \theta = -1 \text{or} -\frac{3}{\cos \theta} + \frac{2\sin \theta}{\cos^3 \theta} + \frac{2}{\cos^3 \theta} = 0$	$\frac{dV}{dt^2} = 0$ and show that
	(N.A.) or $-3\cos^2\theta + 2\sin\theta + 2 = 0$	$d\theta$
	or $-3(1-\sin^2\theta) + 2\sin\theta + 2 = 0$	$\sin \theta = -$ after solving 3
	or $3\sin^2\theta + 2\sin\theta - 1 = 0$ or $(\sin\theta + 1)(3\sin\theta - 1) = 0$	the equation.
	or $\sin\theta = -1$ or $\sin\theta = -\frac{1}{3}$	
	(N.A.)	

When
$$\sin \theta = \frac{1}{3}$$
, from GC, $\frac{d^2 V}{d\theta^2} = 75.4r^3 > 0$ since $r > 0$
 $\therefore V$ is minimum when $\sin \theta = \frac{1}{3}$.

Volume of liquid in lower cone at time *t*,

$$W = \frac{1}{3}\pi R^2 H - \frac{1}{3}\pi x^2 (H - h)$$

$$= \frac{1}{3}\pi \left(\sqrt{5}H\right)^2 H - \frac{1}{3}\pi \left(\sqrt{5}(H - h)\right)^2 (H - h)$$

$$= \frac{5}{3}\pi H^3 - \frac{5}{3}\pi (H - h)^3 \text{ (shown)}$$

KIASU Exampaper Exampaper Only Beecoogi Islandwide Delivery (Winatsapp

Qn	Solution	Comments
(b) (cont'd)	$\frac{dW}{dh} = 5\pi (H - h)^2 . \text{ Given } \frac{dW}{dt} = 4 \text{ cms}^{-1}$ Now, $\frac{dW}{dt} = \frac{dW}{dh} \times \frac{dh}{dt}$ $4 = 5\pi (H - h)^2 \times \frac{dh}{dt}$ When $h = \frac{1}{25}H$, $4 = 5\pi \left(\frac{24}{25}H\right)^2 \times \frac{dh}{dt}$ $dh = 125$	Many students did not realise that <i>H</i> is a constant and <i>h</i> is the variable. As a result, they differentiated <i>W</i> with respected to <i>H</i> , which is totally wrong. Common mistakes: • Differentiated <i>W</i> with respect to <i>H</i> . • Sub $h = \frac{1}{25}H$ into <i>W</i> and
	$\frac{dn}{dt} = \frac{125}{144\pi H^2} \text{ cms}^{-1}$ Alternatively, $W = \frac{5}{3}\pi H^3 - \frac{5}{3}\pi (H-h)^3$	 differentiated W with respect to H. Sub H = 25h into W and differentiated W with respect to h.
	Differentiating with respect to t, $\frac{dW}{dt} = 5\pi (H-h)^2 \frac{dh}{dt}$	A few students made a careless mistake by keeping the term with H^3 when differentiating W with respect to h
	Sub. $\frac{dt}{dt} = 4$, $h = \frac{1}{25}H$, $\therefore 4 = 5\pi \left(H - \frac{1}{25}H\right)^2 \frac{dh}{dt}$ $\frac{dh}{dt} = \frac{125}{144\pi H^2} \text{ cms}^{-1}$	A few students have gotten the correct answer but forgot to simplify.

