1	a(5a-2b)(5a+2b)		
	$=a\left(\left(5a\right)^2-\left(2b\right)^2\right)$		
	$=a\left(25a^2-4b^2\right)$	M1	Correct expansion
	$=25a^{3}-4ab^{2}$	A1	

Sec 4 Express Mathematics 2024 Prelims Marking Scheme

2	$3^x + 3^{x+2} = 90$		
	$3^{x} + 3^{x} \times 3^{2} = 90$	M1	
	$3^x \left(1+9\right) = 90$		
	$3^{x} = 9$		
	$3^{x} = 3^{2}$		
	x = 2	A1	

3	$2x^2 + 4xy - 3x - 6y$		
	$\frac{1}{2x^2 + xy - 6y^2}$		
	2x(x+2y)-3(x+2y)		Factorise by
	$=\frac{2x^2 + xy - 6y^2}{2x^2 + xy - 6y^2}$		grouping for
	2	M1	numerator
	$-\frac{(x+2y)(2x-3)}{2x-3}$		
	$-\frac{1}{2x^2+xy-6y^2}$		
	(x+2y)(2x-3)		Factorise
	$=\frac{1}{(2x-3y)(x+2y)}$	M1	denominator
	-2x-3		
	-2x-3y	A1	

4	(a)	LCM of A and B is $q \times 3^{m+2} \times 7$ and at the same time		
		the LCM of A and B is $3^3 \times 5 \times 7$.		
		m = 1	B1	
		<i>q</i> = 5	B 1	
	(b)	$A = 3^3 \times 7$ and $B = 3 \times 5 \times 7$		
		HCF of A and B		
		$=3\times7$		
		= 21	B1	

5	The size/height of the bar graph.		Stating that the
			graph does not
			start from zero is
		B1	accepted too.
	It can be misleading because for example, the		A relevant
	size/height of the graph in 2019 is twice that of the		example has to be
	graph in 2010 but this does not represent their actual		given.
	temperatures.	B1	

6	(a)	$(v^9)^{-\frac{2}{3}}$		
		$\left(\frac{y}{27x^{-6}}\right)^{-1}$		
		$y^{9\times\left(-\frac{2}{3}\right)}$		Multiply $\left(-\frac{2}{3}\right)$ to
		$=\frac{1}{3^{3\times\left(-\frac{2}{3}\right)}x^{-6\times\left(-\frac{2}{3}\right)}}$	M1	each index
		$=\frac{y^{-6}}{3^{-2}x^4}$		
		$=\frac{3^2}{r^4 v^6}$		$\frac{9}{x^4 y^6}$ is also
			A1	accepted
	(b)	$\frac{25}{-5^{y}}$		
		125^{2-x}		
		$\frac{5^2}{(5^3)^{2-x}} = 5^y$		Any other equivalent form of 5^m will be
				5 = 5 will be
		$\frac{5^2}{5^{6-3x}} = 5^y$		
		$5^{2-6+3x} = 5^y$	M1	
		$5^{3x-4} = 5^y$		
		Comparing index,		
		3x - 4 = y		
		$x = \frac{y+4}{2}$		
		3	A1	

7	(a)	$9x^2 + 24xy + 16y^2$		
		$= \left(3x + 4y\right)^2$	B1	
	(b)	Let $x = a^4$, $144a^8 - (9a^8 + 24a^4y + 16y^2)$ $= 144x^2 - (9x^2 + 24xy + 16y^2)$ $= (12x)^2 - (3x + 4y)^2$	M1	Attempt to factorise an expression in the form $a^2 - b^2$, after making use of part (a) answer
		= (12x + 3x + 4y)(12x - 3x - 4y) = (15x + 4y)(9x - 4y) = (15a ⁴ + 4y)(9a ⁴ - 4y)	A1	

8	(a)	$q = \frac{k}{2}$, where k is the proportionality constant.		
		r^2		
		q and r are the initial intensity and distance		
		respectively.		
		When the distance is reduced by 40% , the new distance		
		$\frac{3r}{18}$		
		5		
		New intensity		
		$=\frac{k}{k}$		
		$\left(3r\right)^2$		
		$\left(\overline{5}\right)$	M1	
		<i>k</i>		
		$-\overline{9r^2}$		
		25		
		25k		
		$=\frac{1}{9r^2}$		
		25		
		$= - \frac{1}{Q} q$	A1	
	(b)	Percentage difference		7
	(-)	New Intensity – Initial Intensity		177 - % will be
		= ×100%		accepted too
		25		
		$\frac{2S}{2}q-q$		
		$=\frac{9}{100\%} \times 100\%$		
		q		
		$=\frac{10}{9} \times 100\%$		
		=178% (3 s.f.)	B1	

9	y y		Both shape and <i>y</i> -
	\square		intercept needs to
			be drawn and
			indicated correctly
	(0,1)		
		B1	

10	SC = RD (given)		No marks for this
			step
	$\angle SCD = \angle RDA$ (alternate angles)	M1	
	CD = DA (sides of a rhombus are equal)	M1	
	By SAS congruency test, triangle SCD is congruent to		
	triangle RDA.	A1	

11	$x^2 - 10x - 2$		
	$=(x-5)^2-25-2$		
	$=(x-5)^2-27$	M1	
	Minimum point is		
	(5,-27)	A1	

12	(a)	$n(\xi)$		
		= 3×3		
		= 9	B1	
	(b)	Р		
		$= \left\{ (-1,0), (0,-1), (0,0), (0,1) \right\}$	B 1	
	(c)	Q		
		$=\{(-2,1),(-1,1)\}$	B 1	

13 The diagram below shows a triangle *ABC*.

Note that marks will not be awarded if relevant arcs are not drawn for parts (a) and (b) respectively.

14	(a)	n(W) = 2	B1	
	(b)	$\varnothing, \{0\}, \{\{0\}\}, \{0, \{0\}\}$	B1	
	(c)	$A \cup B' / (A' \cap B)' / (A \cup B)' \cup A / (A \cap B) \cup B'$	B1	

15	$x-3 \le \frac{5-x}{3} < \frac{x+1}{2}$		
	$x - 3 \le \frac{5 - x}{3}$		
	$3x - 9 \le 5 - x$		
	$4x \leq 14$		
	$x \le 3\frac{1}{2}$	M1	
	$\frac{5-x}{5-x} < \frac{x+1}{5-x}$		
	3 2		
	10 - 2x < 3x + 3		
	7 < 5x		
	$1\frac{2}{5} < x$	M1	
	$1\frac{2}{5} < x \le 3\frac{1}{2}$	A1	

16	$\angle BAC = 90^{\circ}$ (right angle in a semicircle)	M1	
	$\cos \angle ABC = \frac{AB}{BC}$ $\frac{8}{17} = \frac{AB}{34}$	M1	Only awarded with the relevant values substituted in this step.
	$AB = 16 \text{ cm}$ $AC = \sqrt{34^2 - 16^2}$ $= 30$ $\cos \angle ACD = -\cos \angle ACB$	M1	
	$= -\frac{AC}{BC}$ $= -\frac{30}{34}$ $= -\frac{15}{17}$	A1	
	$=-\frac{1}{17}$	A1	

17	(a)	$T_7 = 8^2 - 7$		
		= 57	B 1	
	(b)	$T_n = \left(n+1\right)^2 - n$	B1	
	(c)	$T_{n+1} - T_n$		
		$=(n+2)^{2}-(n+1)-[(n+1)^{2}-n]$	M1	
		$= n^{2} + 4n + 4 - n - 1 - \left[n^{2} + 2n + 1 - n\right]$		
		=2n+2		
		=2(n+1)	M1	
		<u>I agree</u> . Since the difference $T_{n+1} - T_n$ is <u>a multiple of 2</u> ,		
		hence the difference will always be an even integer.	A1	

18	(a)	$15 \div 3 = 5$		
		$Q = (-2 + 5 \times 2, 1)$		
		=(8,1)	B1	
	(b)	Gradient of <i>PR</i>		
		$=\frac{4-1}{(1-1)^{2}}$		
		13-(-2)		
		$=\frac{1}{2}$		
		5	M1	
		Let the equation of the line <i>PR</i> be $y = mx + c$		
		$4 = \frac{1}{1} \times 13 + c$		
		5		
		$c = \frac{7}{-}$		
		5		
		Equation of line <i>PR</i> :		
		1 7		
		$y = \frac{1}{5}x + \frac{1}{5}$	A1	
	(c)	W = (13,0)	B 1	
	(d)	Length of line segment QR		
		$=\sqrt{(13-8)^2+(4-1)^2}$	M1	
		$=\sqrt{34}$		
		Perimeter of PQRS		
		$= 2 \times \sqrt{34} + 2 \times 10$	M1	
		= 31.7 units (3 s.f.)	A1	

19	$20.3 \times 10^3 \times 365$ = 7409500		
	$=7.41\times10^{6}$ (3 s.f.)	B 1	

20	(a) (i)	$\mathbf{P} = \begin{pmatrix} 3 \\ 4 & 50 \end{pmatrix}$	D1	
	(a) (ii)	$\mathbf{R} = \begin{pmatrix} 36 & 40 \\ 48 & 39 \\ 45 & x \end{pmatrix} \begin{pmatrix} 3 \\ 4.50 \end{pmatrix}$ $= \begin{pmatrix} 288 \\ 319.5 \\ 135 + 4.5x \end{pmatrix}$	В1	
	(b)	The elements in matrix \mathbf{R} represents the total production cost for the muffins sold at Outlets A , B and C respectively.	B1	
	(c)	$1.7\mathbf{R} = 1.7 \begin{pmatrix} 288 \\ 319.5 \\ 135 + 4.5x \end{pmatrix}$	M1	
		$= \begin{pmatrix} 489.6\\543.15\\229.5+7.65x \end{pmatrix}$		
		$ \begin{pmatrix} 5 & 4 \\ 6 & 5 \end{pmatrix} \begin{pmatrix} 489.6 \\ 543.15 \\ 229.5 + 7.65x \end{pmatrix} $	M1	
		= (1072.02 + 7.65x) Total amount collected from sale = \$ (1072.02 + 7.65x)	A1	
	(d)	1072.02 + 7.65x = 1454.52 x = 50	B1	

21	(a)	Number of students who are in a sports team		
		$-\frac{1}{2} \times 36$		
		-3^{-50}		
		=12		
		Number of leaders in a sports team		
		=12-4		
		= 8	B1	
	(b)	Let the number of students who are members in a performing		
		arts club be <i>n</i> .		
		P(both students selected are members in a performing arts club)		
		n n-1		
		$=\frac{-36}{36} \times \frac{-35}{35}$		
		Hence,		
		n(n-1) 1		
		$\frac{1}{1260} = \frac{1}{42}$	M1	
		n(n-1) - 30	1711	Completing
		n(n-1) = 50		the square
		$n^2 - n - 30 = 0$		or quadratic
		(n-6)(n+5) = 0	M1	formula is
				accepted
				too.
		n = 6 or $n = -5$ (rej :: <i>n</i> cannot be negative)	A1	
	(c)	I disagree with Derrick's claim because;		
		a student can be both a leader and in a performing arts club.		
		Or		
		being a leader and being in a performing arts club are not		
		mutually exclusive.	B1	

22	$8 \text{ cm}^2 : 2048 \text{ m}^2$		
	$=1 \text{ cm}^2 : 256 \text{ m}^2$		
	$=1 \text{ cm}^2 : 2560000 \text{ cm}^2$	M1	
	=1 cm: 1600 cm		
	n = 1600	A1	

23	4 technicians can repair 416 computers in 16 days		
	4 technicians can repair 26 computers in 1 day		
	4 technicians can repair 260 computers in 10 days	M1	
	4 technicians can repair 156 computers in 6 days		
	1 technician can repair 156 computers in 24 days		
	3 technicians can repair 156 computers in 8 days	M1	
	Total number of days taken = $10+8$ = 18	A1	

24	(a) (b)	No, you cannot because the cumulative frequency diagram only allows you to find probability of less than (less than or equals to) 5 weekly exercise hours or probability of at least (more than) 5 weekly exercise hours. $(100-60)\% \times 120 = 48$ k = 3					B1 B1	
	(c)	Town B	Lower Quartile 1.6	Median 2.8	Upper Quartile 5.8	Interquartile Range 4.2	B1 B1	1 mark correct median and 1 mark for correct interquartile range.
	(d)	Town A On average, t exercise hour There is a lar	Lower Quartile 1.9 he people in s than Town ger spread in	Median 3.5 Town A ha B since its weekly ex	Upper Quartile 5 ave a higher median is h cercise hours	Interquartile Range 3.1 weekly nigher. s in Town <i>B</i>	B1	
		Town A.	quartile rang	te is nigher	as compare	ed to that in	B1	

25	(a)	$\angle FGD = 180^{\circ} - \angle FHD$		
		$=180^{\circ}-40^{\circ}$ (angles in opposite segments)		
		$=140^{\circ}$	B 1	
	(b)	$\angle CDO = 90^{\circ}$ (tangent \perp radius)	B1	
	(c)	$\angle ODH = 40^{\circ}$ (base \angle of isosceles triangle)	M1	
		$\angle FOD = 40^{\circ} + 40^{\circ}$ (external angle of a triangle)		
		$=80^{\circ}$		
		$\angle BOF = 360^{\circ} - 90^{\circ} - 90^{\circ} - 62^{\circ} - 80^{\circ} \ (\angle \text{ sum of}$		
		quadrilateral BODC)		
		$=38^{\circ}$	A1	
	(d)	$\angle BDF = \frac{38^{\circ}}{2}$ (angle at centre = 2× angle at		
		circumference)		
		$=19^{\circ}$	M1	
		$\angle OFD = \frac{180^\circ - 80^\circ}{2}$ (base \angle of isosceles triangle)		
		$=50^{\circ}$		
		$\angle FJD = 180^{\circ} - 50^{\circ} - 19^{\circ}$		
		$=111^{\circ}$	A1	

26	(a)	Let the height of the cone in Figure 2 be <i>h</i> .		
		Since triangle QWS is similar to triangle VWT,		
		$h = \frac{12}{12}$		
		h-9 8	M1	
		12n - 108 = 8n h = 27		
		Volume of A		
		$=\frac{1}{3}\pi(6^{2})h-\frac{1}{3}\pi(4^{2})(h-9)$	M1	
		$=\frac{1}{3}\pi(36)(27) - \frac{1}{3}\pi(16)(18)$		
		$=\frac{1}{3}\pi[684]$		
		$=228\pi$		
		$=716 \text{ cm}^3 (3 \text{ s.f.})$	A1	
	(b)			
		Height (cm)		
		30		
				1 mark is for
		20		correctly plotted
				point $(50,9)$.
		10 (50.9)		1 mark is for the
				correct shapes for
				both graphs time
		20 40 60 80 (seconds)	B1	from 0 to 50 and $time 50$ to 80
			ы	seconds.