

(a)	Outline the advantages of having such multistep pathways.1. ref. to signal amplification2. ref. to coordination / regulation3. ref. to specificity of response	[2]
(b)(i)	Explain why IL6 cannot act directly on the DNA in the nucleus.1. IL-6 is hydrophilic2. cannot pass through cell membrane	[2]
(ii)	 Based on your knowledge on RTKs and with reference to Fig. 1.1, explain how IL6 least to a cellular response. 1. IL6-IL6R complex binds to gp130 2. gp130 dimerises 3. ref. to cross-phosphorylation 4. JAK phosphorylates STAT3 5. dimerised STAT3 activate expression of gene 	ads [5]
(iii)	 Suggest how regulation of STAT3 activation is an example of negative feedback. ref to. relevant stimulus ref. to gp130 degraded ref. to idea of negative feedback in this context 	[3]
(c)(i)	 With reference to Fig. 1.2 and Table 1.1, identify and explain which region(s) of gp130 required for IL6 signalling pathway. 1. ref. to R4, R5, R6 required 2. ref. to relevant supporting data from Fig. 1.2 3. ref. to relevant supporting data from Table 1.1 	are [3]
(ii)	Explain how the structure of the transmembrane domain of gp130 contributes to its function[2]1. ref. to hydrophobic nature2. ref. to embedding of gp130 within membrane	on.
(d)	 With reference to Fig. 1.3, explain the significance of process Q in the formation membrane-bound and soluble forms of IL6R. 1. ref. to alternative splicing 2. ref. to relevant supporting data from Fig. 1.3 3. ref. to relevant supporting data from Fig. 1.3 	of [3]

(e) Suggest why early detection of PDAC is challenging. [1] ref. to any valid reason

- (f)(i) Using the information in Fig. 1.1 and Table 1.2, identify which gene is the best target for effective treatments and explain your choice. [3]
 - 1. gp130 gene
 - 2. ref. to relevant supporting data from Fig. 1.1
 - 3. ref. to relevant supporting data from Table 1.2
 - (ii) Table 1.3 shows a few genes that are often found to be mutated in PDAC patients. With your knowledge and the relevant data provided, complete Table 1.3 to predict:
 - the level of gene expression, using " \uparrow " or " \downarrow "
 - if the gene is a proto-oncogene (POG) or tumour suppressor gene (TSG).

l able 1.3				
gene	level of expression	POG or TSG		
<i>p</i> 53	\downarrow	TSG		
STAT3	\uparrow	POG		
SOCS3	\checkmark	TSG		

Table 4.2

[2]

- (g)(i) Calculate the amount of DEN to be injected into a 14-day old mouse that weighs 10 g. You should show your working. [1] 250 µg
 - (ii) Discuss the effect of gp130 on tumour initiation and tumour progression. [3]
 - 1. gp130 promotes tumour initiation and progression
 - 2. ref. to relevant supporting data from Fig. 1.4
 - 3. ref. to relevant supporting data from Fig. 1.5

[Total: 30]

- (a) Explain why the gene *IFNA2* must be obtained via reverse transcription of the mature mRNA instead of directly from the genome of B lymphocytes. [2]
 - 1 mature mRNA only contains exons
 - 2 mature mRNA is reversed transcribed to give continuous coding DNA sequence
 - 3 E. coli does not have spliceosomes
- (b)(i) Explain the role of the gene *lacl* in the control of transcription of the *IFNA2* gene between 0 hours and 4 hours.
 [2]
 - 1 *lacl* is regulatory gene
 - 2 repressor binds to operator and prevents transcription
 - (ii) With reference to Fig. 2.2, describe the changes in the concentration of recombinant IFN-α in the culture containing IPTG from when IPTG was added at 4 hours to the end of the experiment at 28 hours.
 - 1 concentration of IFN-α produced increases steeply after addition of IPTG
 - 2 peak is at 8 hours / 4 hours after addition of IPTG
 - 3 decrease is less steep
 - 4 correct data quoted with units
 - (iii) Suggest two reasons for the difference between the concentration of recombinant IFN- α in the culture at 8 hours in the presence of lactose and the concentration of recombinant IFN- α in the culture at 8 hours in the presence of IPTG. [2]
 - 1 lactose has to be converted to allolactose
 - 2 lactose is broken down, hence less lactose / allolactose bind to repressor
 - 3 IPTG will be at higher concentration than allolactose
 - 4 IPTG has higher affinity for repressor protein than allolactose
 - 5 more IPTG enters
- (c) Suggest how *AMP*^R allows genetically engineered *E. coli* containing the recombinant plasmid to be identified. [1]

only E. coli that have taken up the plasmid will grow in the presence of ampicillin

[Total: 10]

(a) Assuming that the Hardy-Weinberg principle applies to this population, calculate the number of plants in the field that are heterozygous.
 [3]

Show your working and give your answer to the nearest whole number.

- 1 use formula $p^2 + 2pq + q^2 = 1$ and total number of plants to calculate genotypic frequency
- 2 calculate allelic frequency of dominant and recessive alleles
- 3 use allelic frequencies to calculate number of heterozygous plants in the field
- (b) A student concluded that flower colour in *I. nil* shows continuous variation.

Explain why the student made this conclusion.

[2]

- 1 colours not discrete / range / include intermediates
- 2 more than one genes
- **3** environment affects colour
- (c)(i) Explain how the stomatal response shown in Fig. 3.1 would allow *I. pes-caprae* to survive the effects of climate change. [3]
 - 1 increase in CO₂ concentration causes mean width of stomatal aperture to decrease
 - 2 less water lost through stomata
 - 3 compensates for low water availability
 - (ii) It has been hypothesised that an increase in atmospheric CO₂ concentrations might result in an increase in the rate of photosynthesis and consequently, an increase in growth of plants.

Suggest why there might not be significant increase in growth of *I. pes-caprae* plants despite increase in atmospheric CO_2 concentrations. [2]

- 1 increased in earth surface temperature leads to an increase in the rate of enzymecatalysed reactions
- 2 increase in rate of respiration, leading to loss of carbon as CO₂

[Total: 10]

- (a) Describe the features of DNA structure that allow DNA to stably store and accurately replicate large amount of genetic information. [15]
 - **S1** DNA being less susceptible to degradation
 - **S2** 2' carbon of deoxyribose having an attached hydrogen atom
 - **S3** DNA coiling into a tight helix
 - **S4** sugar-phosphate backbone of a DNA chain
 - **S5** phosphodiester bonds formed between 5' phosphate and 3' hydroxyl groups
 - **S6** phosphodiester bonds being covalent bonds
 - S7 double helix structure
 - **S8** phosphate groups that project outside the double-helix
 - **S9** exposure to outside influences of only the sugar-phosphate backbone
 - S10 nitrogenous bases that orientate inwards toward the central axis
 - **S11** nitrogenous bases being safely tucked inside the double-helix
 - S12 extensive hydrogen bonds between base pairs
 - S13 hydrophobic interactions between the stacked base pairs
 - S14 DNA double-helix being wound around histones to form nucleosomes
 - S15 nucleosomes being folded into higher order structures such as solenoid / chromosome
 - A1 to complementary base-pairing
 - A2 between A and T and between C and G
 - A3 base sequence of one strand could determine the base sequence of its complementary strand
 - A4 both strands acting as <u>templates</u> for semi-conservative DNA replication
 - A5 genetic information being redundant / present more than once in DNA molecule
 - A6 use of intact strand as a template for repair
 - A7 base sequence along each DNA strand can be varied in countless ways
 - A8 each gene having a unique base sequence
- (b) Discuss how the processes of cell division allow DNA to be stably inherited and yet, capable of genetic variation in eukaryotes. [10]
 - S1 each DNA molecule undergoing semi-conservative DNA replication
 - S2 production of two genetically identical (daughter) DNA molecules
 - S3 coiling of chromatin into discrete chromosomes
 - **S4** preventing entanglement of chromatin and DNA breakage during the separation of genetic material
 - **S5** chromosomes aligning singly at the metaphase plate / equatorial plate
 - S6 separation of sister chromatids towards opposite poles of the cell
 - S7 daughter chromosomes reaching the opposite poles of the cell
 - **S8** cytokinesis as the division of the cytoplasm to produce two daughter cells
 - **S9** each daughter cell having the complete diploid set of DNA / daughter chromosomes being distributed equally to the daughter cells
 - V1 pairing of homologous chromosomes
 - V2 crossing over between the non-sister chromatids of homologous chromosomes
 - V3 new combinations of paternal and maternal alleles
 - V4 independent assortment of homologous chromosomes
 - V5 random distribution of paternal and maternal chromosomes

[Total: 25]

- (a) Describe the features of the processes of aerobic respiration that allow energy from a glucose molecule to be harnessed. [15]
 - A1 enzyme-catalysed reactions e.g. glucose / pyruvate / citrate being the substrates
 - A2 redox reactions
 - A3 substrate-level phosphorylation during glycolysis / Krebs cycle
 - A4 oxidative phosphorylation
 - A5 reduced coenzymes transfer electrons down the electron transport chain
 - A6 across the inner mitochondrial membrane
 - A7 final electron acceptor oxygen being reduced to water
 - A8 energy released from the electrons flowing through the ETC
 - A9 power the pumping of H⁺ ions across the inner mitochondrial membrane
 - A10 to establish an proton gradient
 - A11 diffusion of hydrogen ions through the ATP synthase complex
 - A12 phosphorylation of ADP
 - A13 3 ATP per NADH and 2 ATP per FADH₂
 - A14 glycolysis occurring in cytosol / cytoplasm
 - A15 link reaction / Krebs cycle occurring in mitochondrial matrix in the presence of oxygen
- (b) Discuss the significance of membranes in aerobic respiration.
- [10]

- M1 hydrophobic core of cell surface membrane
- M2 formation of an effective barrier to the movement of polar / charged molecules
- M3 phosphorylated glucose being retained in cytoplasm
- M4 transporter proteins allowing for facilitated diffusion such as glucose transporters (GLUT) on cell surface membrane
- M5 inner mitochondrial membrane being highly folded
- M6 increasing surface area for embedding electron transport chain / ATP synthase
- M7 electron transport chain allowing for movement of electrons down energy levels
- M8 ATP synthase catalysing phosphorylation of ADP with P_i to ATP
- M9 inner mitochondrial membrane, being selectively permeable
- M10 formation of proton gradient
- M11 compartmentalisation
- M12 intermembrane space being more acidic than the cytosol
- M13 providing the optimum conditions for cytosolic enzymes to function

[Total: 25]