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1. ALGEBRA

Quadratic Equation

For the quadratic equation ax? + bx + ¢ = 0,

_ —b++/b*-4ac

X =
2a

Binomial Theorem

(a+b)"=a" +(Da”‘lb+[ga”‘2b2 +...+[:ja”‘rbr +..4Db",

n! _n(n=1).....,n—r+1)
ri(n—r)! - r!

: L n
where n is a positive integer and ( j =
r

2. TRIGONOMETRY

Identities
sin?A + cos?A =1
sec?A =1 + tan?A
cosec?A = 1 + cot?A
sin( A+ B) =sin AcosB +cosAsin B

cos(A + B) = cosA cosB +sinAsinB
+
tan(A+ B) = tan AttanB

1¥tan Atan B
sin2A=2sin Acos A
cos2A=cos® A—sin? A=2cos> A—1=1—2sin? A
tan 2A:2ta—nf‘
1-tan® A

Formulae for A ABC
a b ¢
sin A sinB sinC

a?=Db%+ c? - 2bccosA

A = 1bcsinA
2
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(@  Solve the equation log,, . 4—log, (2x+5)5 =-3. [5]
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(b)  Given that 2** +2*"* =16%, find the value of x. [4]
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2  Theequation of acurveis y = In(s ;:Jré]

(i)  Explain why the curve does not have a stationary point. [4]

(i) If y decreases at the rate of 0.4 units/s, find the rate of change of x when x = 2. [2]
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()  Express in partial fractions.

SR —eXx+d
2x% + x° [5]



N 4x* —
(i) Hence, show that LL‘);X%);& dx=6|n§—4|n2+%. [4]
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Solution to this question by accurate drawing will not be accepted.
The parallelogram ABCD is such that A is (—2, 6) and C is (4, 3). Given that point B lies on
the x-axis and BC is perpendicular to the line 2y +12x = 20, find

(@ (i) the coordinates of B and of D, [4]
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(if) the area of parallelogram ABCD. [2]

(b) Eisapoint on AC produced such that AE : CE =4 : 1. Find the coordinates of
E. [2]
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5  Acircle C with centre P and radius a cm lies on and above the x-axis at (4, 0).

(i)  Find the equation of the circle in terms of a. [1]

(i)  State the equation of the tangent to the circle at the highest point in terms of a. [1]
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(iif) 1t is given that the gradient of the tangent to the circle at K is —%. The line

joining P and K is produced to touch the x-axis at S.
Find the length of PS in terms of a. [5]

(iv)  Find the equation of another circle which is the reflection of circle C about the
line x = 1. [1]
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2
(i)  Prove that o=

(1-cos4x)=sin®x.

[3]
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(i) Hence, find the exact values of x that satisfy the equation
2
sec” X

[5]

(1-cos4x) =cos” x+sinx for -t <x < radians.
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(i)  Write 5++/7 cos@—13sin @ in the form p+ Rcos(8+ca), where R >0 and

0° < <90°. [3]

(i) Hence find the largest value of 5++/7 cos@—13sin @ for 60° < 0+ <120°. [2]
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(iii)  Solve the equation 5++/7 cos@—13sin @ =0 where 0°< @ <180°. [3]
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8 (i) Find%(xtanzx). [2]
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I tlsglvent att € curve y = 1(X passest rou the point | —, — | and IS suc
(i) Itis given that th f(x) hghhp'(jgj d is such

2
that f'(x)= w. Using the result of part (i), find f(x). [6]
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y=~2x+1-2

[

d

The diagram shows part of the curve y =+/2x+1—-2 intersecting the line I at x = 4.

The shaded region A is bounded by the curve, the line I and the x-axis.
The shaded region B is bounded by the line Iy, the x-axis and the line x = 4.
The shaded region C is bounded by the curve, the line |1, the x-axis and the y-axis.

(i)  Given that region A and region B have the same area, find the equation of the
line I [6]
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Continuation of working space for Question 9(i)

(i)  Hence, find the area of shaded region C. [3]
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10 A particle moves in a straight line, so that, t seconds after passing O, its velocity, v m/s, is
given by v=10e°* —4.

(1)  Find the initial acceleration of the particle. [2]

(i) Find the value of t when the particle is at instantaneous rest. [3]
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(iii)  Find the total distance travelled by the particle in the third second. [4]
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11  The diagram shows an inverted smaller cone of radius r cm and height h cm, where r
and h can vary, inside a bigger upright cone of base radius 8 cm and height 24 cm. The
vertex of the smaller cone touches the centre of the base of the bigger cone.

A

< -

+«— 8cm —»

(i)  Show that the volume, V cm?, of the smaller cone is given by

V =1(576h—48h2 +h?).
27 [3]
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(i) Hence, find the greatest volume of the smaller cone. [5]

END OF PAPER
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W33 BPGHS AMath Prelim PL solukion
K]

(@)  Solve the equation log,..s4—log, (2x +5)5 =-3.

oyt fop (2145)° = -
j&ogz(llﬁ) 2

Q- _
Xog T ) " 5}103 (2145) 3

Let }2031( 2145) = @,

a _ -
—a—Sa 3

Q- 50" = -3a
50>-30-2 =0

(50+2)co-1N = O

fog, C2Xt5) = 5 oo Jog (1149)=]
a-% = tH or Q) = O

_3
= = o S'F of l: i
1 a\a//cw ) -

[3]
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(b)  Given that 2**' +2*** =16, find the value of x. [4]
p &
2%+ 27 = b
p
* (ata?) = 1
b *
X

10 = :Z—

%1 = 10
14g8 = 1
1= A
= xﬂg
= 11l (o 35-1°~)//
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2  The equation of acurveis y= ]n(3 .22x +; j
x —

(i)  Explain why the curve does not have a stationary point.

[ )

An (234 = dn (2% 5)]

( =)

[ 2(22-5) .;z(axm]

|

1

W W

(2X+1)(2X-5)

|
W

[ 3, ]
(20+1(2%-5)
numerator 0 and (21+l)(11 5)
- 44 49
S‘.nceA denominotor + 0 Jgi '

Since j—&- +0 , Hhe cunie does not have a staonary point -

(i) Ify decreases at the rate of 0.4 units/s, find the rate of change of x when x = 2.

i oy

dy _ d ax
R
-4 .
" ] [2o- ;]

dx - oy = L
& =0T

= —0.5 units|s
7

[4]

[2]
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4 —2x+1 .

() Express ————— in partial fractions.
4r-antl op LBy
X=X+ I ¢ X A%t
St = A4 T B(aH) + CX
sub x=0, sub L=-7,
1= A4 al) 4] = 1)
+C=3
c=12
Sub x=1,
4-24) = AGYH 1(3) T 12
3p =-12
A=-4

F



7

44x* - 2x+1 9 1
(i)  Hence, showthatJ- = +x: dx:61ng—4h12+z. ”
X

4+ -4 1
2 1+xl*zx+| X

= fér 4 4 o+ () dx

- [ g + Ly uxn(zxm]

N [—HMJF %__ ! \f2,€2nﬂ]~ [*4102+§ p 2%
X

I

THNG - oS+ 4l + L+ 65

6 (A9-4n5) = 4 (n4-An2) + er

Hn% - 402 + zr" ( shown)

=
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Solution to this question by accurate drawing will not be accepted.

The parallelogram ABCD is such that 4 is (=2, 6) and C is (4, 3). Given that point B lies on

the x-axis and BC is perpendicular to the line 2y +12x =20, find

(i)  the coordinates of B and of D,

Q}j +129L = 20

y+6x = 10
y= -6x+10

grodient of 8C = ~I+ b
|

- ——

Y
B0 Y= frte o
c,

cub (4,3), 4-X
A

[4]



(i)  the area of parallelogram 4BCD. [2]
hog = 112 -l 4 b -2
A= 200 0o3 9 4
- ;11(o-4z+3e+%—(—ls)—%—o-(—é%)
-
= 1| 14|
= 32 unifs®

z

(ili) Eis a point on AC produced such that AE : CE =4 : 1. Find the coordinates of

£ . Fom A 0 C
AR b) / Difference in X =6

v Diffeence i y = 3
Dift- ih X = &
DifL. iny = I

[2]

E(Ad-l) 3_'>
= (6,2)

=
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1 ad above -

A circle C; with centre P and radius a cm lies on the x-axis at (4, 0).
A

(i)  Find the equation of the circle in terms of a.

cente (4, 0)

2

p
{
l
(-4)"+ 63—00* = q )% s 1

(i)  State the equation of the tangent to the circle at the highest point in terms of a.

H.‘ghes’r il = (4, 20)

= Al
=

[1]

[1]
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(iif) It is given that the gradient of the tangent to the circle at X is —g—. The line

joining P and K is produced to touch the x-axis at S.
Find the length of PS in terms of a. [5]

.-
Grodient € PS = <17 73 i

= 3

+ |
((4,) 5(1,0) : \

a-o _ 32

=t
4—“ = )&‘31

31/ = ld- 40 _ J&S/l
e ,,q_a

x= 4- 30
s(4-%a, 0) | 7
s = | (4-%50-4)"+ (0-0)"

[ 162 452
a0 10

(iv) Find the equation of another circle which is the reflection of circle C; about the
linex=1. [1]

new cerrhe - (_;21 Q)
@ fadius =

(1+2) + 63—0\)1

=0
=
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(M)

12

sec’ x
Prove that : (l -cos 4x) =sin® x.

HS = €L (|- os4X)
9

|- (1-asi"ax)

K

2( asmxcosx)J
8605 X

=
= (&ﬂh&l)
(

851 X COS x)
Smsl

= qn'x

= RHS  (proven)

—~

[3]



13

(il)  Hence, find the exact values of x that satisfy the equation
2
sec” x

8

(1-cos4x)=cos’ x+sinx for —n < x <m radians. [5]
G = S + sk
an*y = 1-sih’x + sihk

Qs - sink -1 = 0

(asinx+i) (sihx-1) =0

Sih'x‘: "ﬁ or STHX/: \
- _T
basic& = S'h|9. X Y
=T
4
03, 04
T
A= THE o -7
I (o)~ AT e
p () = o ()
L= 3%[—&” or HGI—QT[
= -9m = -1
b 6
= —S\T[ 1T
§ or [ or
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(i)  Write 5++/7 cos@—13sin @ in the form p+Rcos(6’+a), where R > 0 and

0°<a<90°.

R= J(F)*+ (13)*
= e
= fon”' (%)

= 78.49631204

- 5+ [Mecos(0+785") (o ldp)
Z

(i)
when B+ = 60,
5+ JTT6 cos (60°)
= 5+J|—7_€-;(Ji)

16 C 3sf)
V4

I

Hence find the largest value of 5+ V7 cos@-13sin @ for 60° <O +a <120°.

[3]

[2]
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(iii)  Solve the equation 5 + 7 cos@—13sin@ = 0 where 0° <8 <180°. [3]
5+ [T 005 (6 +7849631204) =0

-5
cos( 6+78.49631204) = fi;

basiC ¥ = c0s”! (JT_’I_S—(;—)
= 67.858876
0, @3
B +718.4963120% = 180~ 67.858876 or

_ a3 or Ib9.4° (o “’"F'>
0= 33.6/ r g

280+67.858876
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8 (i) Find %(xtanzx). [2]

;i (x-f-ani):) = ﬁnz); + x(;ﬁanx) 56611»

= dovx + AxTanxsec -
=
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(i) It is given that the curve y = f(x) passes through the point (%, %] and is such
4xtan xsec’ x

that f'(x) = — Using the result of part (i), find f(x). [6]

[Hry + aoctansec’™ d = XHame + G,
[y dx + [ adanasec’x dx = Xfanx G
f&)&anxseczx dx = han X, -j sec’x =1 dx +C
= ooy - (tan-x) + G
= xtan’x - 4anx + X + G

4tanxsec’x .
j : dy, = ’?‘(Jﬂﬂnx—"ﬂnl"}%) + G

1 or 113 Co3st)
~"—
fx) = %(eranlx—Jranx +2) 4 % - %
=
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The diagram shows part of the curve y =+/2x+1-2 intersectihg the line /; at x = 4.

The shaded region 4 is bounded by the curve, the line /; and the x-axis.
The shaded region B is bounded by the line /i, the x-axis and the line x = 4.
The shaded region C is bounded by the curve, the line /i, the x-axis and the y-axis.

(i)  Given that region A and region B have the same area, find the equation of the

line /;.
when y=0,
om -a=0
o =2

ALt = 4
3
=3
W = [, (ay-a dx
3 N 4
N ax}
- e s

1\

O
(“I ol

|

oQ
1

1
—

N

C"’l Pl

[6]
when X= 4 J

J=I1 -2
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Continuation of working space for question 9(i)

4,1, (%,0)

| _gz
Grodient = 4-2

(ii))  Hence, find the area of shaded region C.

2 ¥
Areo, of region D = -jol (20H) -2 dX
3

feo of region C = (jﬁ %x&)_

-

T at)?
|

-1 F41-

2
3
X

2 units”
z

[51]

2
3

wheh X=0,
3:3760) -3

"

[3]
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10 A particle moves in a straight line, so that, ¢ seconds after passing O, its velocity, v m/s, is

given by v=10e** -4

(1)  Find the initial acceleration of the particle. [2]

dv
A= 3%

ol
= 106 " (o)

-0t
= -4¢

= -4¢’

= -4 mle”
Z

(i)  Find the value of # when the particle is at instantaneous rest. [3]
when v=0,
-0 =
06 - 4 =0

— 32%7%83
= Cio 3S'F)
Q.29 s =
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(iii)  Find the total distance travelled by the particle in the third second.

108'04£ +

= ,t C
-0l 1
N —D.LH7~4t +C

When t=a,
- -a5¢ P 4125
- 576678

When += 2.29072683,
-04(3.29012683) _ 4 (2.29072683) + 25

5= -abe
- 543709
When £=3)

—o4(3) 2
g= -3be 4(:3) +25 £22,

= 5470145 D pea

t=3
Tofa) distance
- (5.83709-5.76678) 1 (583709~ 5470145)

- 0Bt m Cho %)
Y

[4]
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11  The diagram shows an inverted smaller cone of radius » cm and height # cm, where r
and 4 can vary, inside a bigger upright cone of base radius 8 cm and height 24 cm. The
vertex of the smaller cone touches the centre of the base of the bigger cone.

A

24 cm

+«— 8¢cm —»

(i)  Show that the volume, ¥ cm?, of the smaller cone is given by

v ==—(576h~48K* + 7).
27

3]
L _ 34-h
8 7 a4
_ 34-h
r._
3
2

/576-48h+h*
W(S - )k

= g—[}— (576h~+8h1+ Lxs) ( shown)
V4
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(i)  Hence, find the greatest volume of the smaller cone. [5]

& (5T-%h + 38
dv _
;m—o

L (576-%hT3h) =0
$2-32h 1192 =0

(h=234)(h—8) =0
h=24 o h=38
! 2
P V=§%r [S%(S)-H(S) + (8)3]

_ 938 ¢n (o 3sF)

z

. 4
T ﬂ(-%*éh)
= Tt e
- -559 <0
— is th retesT
Sihce _‘BUL <0, the volume is ™e 9
ol when h=18.

END OF PAPER
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