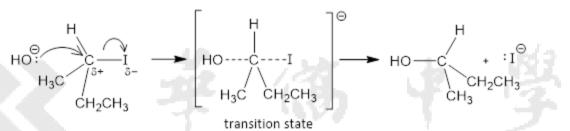
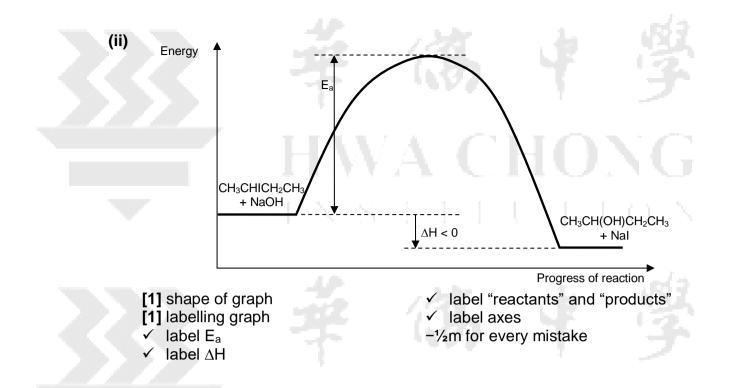


HWA CHONG INSTITUTION 2019 C2 H2 CHEMISTRY PRELIMINARY EXAM SUGGESTED SOLUTIONS


Paper 2

[1] for each correct structure

(b) (i) Mechanism: Bimolecular Nucleophilic Substitution (S_N2) [1]


[1] for:

- ✓ OH⁻ is the nucleophile that attacks C^{δ+} of C–I (attack from the side that's opposite to the I)
- ✓ partial charges: C^{δ+}-C^{β-}
- \checkmark curly arrow going from <u>lone pair</u> of OH⁻ to C^{$\delta+$} of C–I
- ✓ curly arrow going from C–I bond, to I

[1] for:

- ✓ transition state negatively charged (need not label "transition state")
- ✓ I⁻ is produced at the end of the reaction
- ✓ no slow or fast step
- -1/2m for every mistake

2019 HCI C2 H2 Chemistry Preliminary Exam / Paper 2

- (c) The halogens Cl₂, Br₂ and I₂ exist as simple non-polar covalent molecules. From Cl₂ to Br₂ to I₂, the size of the electron cloud and hence, the polarisability of the halogen molecule increases [1]. More energy is needed to overcome the stronger dispersion forces between the molecules. Hence, the volatility of the halogens decreases [1] from chlorine to iodine.
- (d) (i) $2HX \rightarrow H_2 + X_2$ [1]
 - (ii) Down the group, <u>as atomic radius increases</u> from C*l* to I, the <u>bond length of the H–X bond increases</u> / <u>bond strength decreases</u> [1].
 Hence, <u>less energy is needed to break the H–X bond</u>. Thus, the thermal stability of the hydrogen halides <u>decreases</u> down the group [1].

Remarks: can also justify by quoting the bond energy data, H-CI = +431, H-Br = +366, H-I = +299 kJ mol⁻¹. Weaker H-X bond needs less energy to break during thermal decomposition

(e) From Data Booklet,

	<i>E</i> [₽] /V
Br₂ + 2e⁻ 🕽 2Br⁻	+1.07
$I_2 + 2e^- \rightleftharpoons 2I^-$	+0.54

Bromine reacts with $S_2O_3^{2-}$ to form $S_4O_6^{2-}$, which will be further oxidised to SO_2 and subsequently SO_4^{2-} .

 E^{9}_{cell} = +1.07 - (+0.09) = +0.98 V > 0 (spontaneous) E^{9}_{cell} = +1.07 - (+0.51) = +0.56 V > 0 (spontaneous) E^{9}_{cell} = +1.07 - (+0.17) = +0.90 V > 0 (spontaneous)

lodine reacts with $S_2O_3^{2-}$ to form $S_4O_6^{2-}$ but there is no further oxidation of $S_4O_6^{2-}$ to SO_2 . $E^{\theta}_{cell} = +0.54 - (+0.09) = +0.45 \text{ V} > 0 \text{ (spontaneous)}$

 E_{cell}^{e} = +0.54 – (+0.51) = +0.03 V > 0 (spontaneous but extent of reaction is too small)

[1] E^{\bullet}_{cell} for reaction with bromine or showing that the $E^{\bullet}_{(Br2/Br-)}$ > all the 3 E^{\bullet} [1] E^{\bullet}_{cell} for reaction with iodine or showing that $E^{\bullet}_{(l2/l-)}$ > +0.09 V but only slightly larger than +0.51 V

[$\frac{1}{2}$] spontaneous since $E^{e}_{cell} > 0$

[1/2] spontaneous but extent of reaction too small

2 (a) (i) $K_a = [H^+][A^-] / [HA]$ $K_a = (10^{-5.5})(1) / 4$ $K_a = 7.91 \times 10^{-7} \text{ mol dm}^{-3}$ $pK_a = - \lg(7.91 \times 10^{-7}) = 6.10 \text{ [1]}$

OR

 $pH = pKa + lg[A^-]/[HA]$ 5.5 = pKa + lg(1/4) $pK_a = 6.10$ [1]

(ii) 1:1 [1]

(iii) Let x be the volume of NaOH required to achieve maximum buffer capacity

For visua	alizati	ion:	1			
0 cm ³		Х			20.00	cm ³

Since the ratio of the $[A^-]$:[HA] in the buffer is 1:4, a titre value of 20.00 cm³ must correspond to 4 units. Hence, maximum buffer capacity must occur when there are 2.5 units of $[A^-]$ and 2.5 units of [HA]. **[1]**

Therefore, the volume of NaOH required, x, corresponds to 1.5 units.

Volume of NaOH required = 20.00/4 × 1.5 = 7.5 cm³ [1]

OR

Let x be the volume of NaOH required to achieve maximum buffer capacity Since the ratio of the $[A^-]/[HA]$ in the buffer is 1:4, (20 - 2x) / (20) = 1/4 [1]

Ð

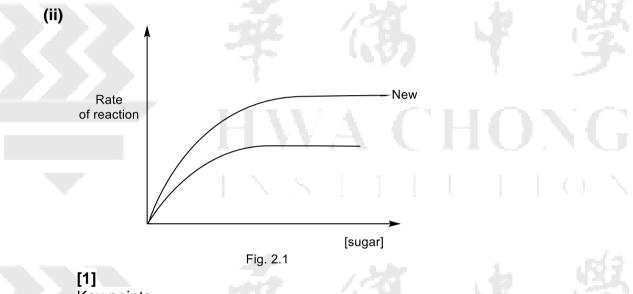
OC

+ OH⁻

2(10 - x) = 20/4x = 7.5 cm³[1]

(iv)

11


0Θ

 $+ H_2O$

(v) Given that the region of rapid pH change will be at about pH 9.4, I would use an indicator with a working range that coincides with that pH range [1], which would be cresolphthalein. [1]

(b) (i) Initially, the graph is a straight line/increases steadily. This is because the reaction is first order wrt to [sugar]/ rate is directly proportional to [sugar]/ more enzyme-substrate complex can be formed by increasing [sugar]. [1] Thus, the rate of reaction increase.

The graph plateaus/becomes horizontal/becomes zero order wrt [sugar] because the enzyme is now saturated/all active sites are occupied [1], thus, the rate of reaction cannot be increased by increasing [sugar].

Key points

- Initial rate increases more quickly
- Plateau occurs at a higher concentration of sugar
- Plateau occurs at a higher rate
- (iii) Order wrt to [sugar]:

Comparing experiment 1 and 2,

When [sugar] is doubled from 0.20 mol dm⁻³ to 0.40 mol dm⁻³, the relative rate of reaction doubled.

Thus, [sugar] is directly proportional to the rate of reaction, and is first order. [1] for explanation

Order wrt to [zymase]:

Comparing experiment 1 and 3,

When [sugar] is halved from 0.20 mol dm⁻³ to 0.10 mol dm⁻³, the relative rate of reaction is expected to halve.

When [zymase] is doubled from 0.010 mol dm⁻³ to 0.020 mol dm⁻³, the relative rate is doubled from $\frac{1}{2}$ to 1

Thus, [zymase] is directly proportional to the rate of reaction, and is first order. [1] for explanation

[1/2] x 2 for each correctly identified order

3 (a) (i) $\begin{bmatrix} Ca \end{bmatrix}^{2+} \begin{bmatrix} :C : : X \\ : X \\ : X \end{bmatrix}^{2-}$

Anion:

additional electrons of opposite symbol were accepted additional electrons of third symbol were accepted dative bonds were rejected [1/2] for each ion

- (ii) $CaC_2(s) + 2H_2O(l) \rightarrow Ca(OH)_2(aq) + C_2H_2(g)$ [1] [1] balanced equation with correct state symbols
- (b) (i) 180°

[1] for correct bond angle (only one needs to be labelled on the diagram itself), and correct Lewis structure which must show linear shape.

Type of hybridisation: sp [1]

- (ii) Two characteristics of ethyne, and explanation:
 - 1. Ethyne has a <u>small molecular size</u>, which means the <u>volume of the</u> <u>particles of ethyne is small compared to the volume of the container</u>, and so can be considered negligible just as for ideal gases; and
 - 2. Ethyne is a <u>non-polar molecule</u>, so it has relatively <u>weak intermolecular</u> <u>dispersion forces</u>, which could therefore be considered negligible, just as for ideal gases.

[1]

[1] x 2 for each characteristic

- (c) (i) Total initial pressure = x + y= 760 mm Hg
 - (ii) Since *p* mm Hg is the change in partial pressure of ethyne during the combustion:

								_
	C ₂ H ₂ (g)	+	5/2 O ₂ (g)	\rightarrow	2CO ₂ (g)	+	$H_2O(l)$	- N
Initial partial pressure / mm Hg	x		У		0		1_()	
Change / mm Hg	-p	2	-5/2p		+2p		1	
Final partial pressure / mm Hg	х - р		y – 5/2p	Ø	2р			5

Total pressure after combustion $= (x - p) + (y - \frac{5}{2}p) + 2p$

$$= [(x + y) - \frac{3}{2}p] \text{ mm Hg}$$

[1] Correct expression of total pressure after combustion in terms of x, y and p

(iii) Total initial pressure = (x + y) mm Hg Total pressure after combustion = $(x + y) - \frac{3}{2}p$ mm Hg

Since a reaction occurs, p must be > 0

so $(x + y) - \frac{3}{2}p < (x + y)$,

i.e. (final pressure) < (initial pressure)

and \therefore the term " $-\frac{3}{2}p$ " represents a fall in pressure from the original (*x* + *y*) mm Hg (shown)

[1] Convincing argument in which there is a comparison of initial and final pressures in terms of x, y and p.

(iv) From (ii) and (iii), we know that the fall in pressure inside the flask corresponds to difference in height (atmospheric pressure remains unchanged):

 $\frac{3}{2}p = 65$ $p = 65 \div (3/2)$ = 43.3 (to 1 d.p.) (in mm Hg)

[1] Answer must be to 1 d.p. to get the full credit.

(v) (I) Since final partial pressure of CO₂ is 2p \therefore P_{CO2} = $2p = \underline{86.7 \text{ mm Hg}}$ [1] (to 3 s.f.)

(II) If all oxygen was used up, then y - 5/2p = 0∴ y = 5/2py = 5/2 (65 ÷ 3/2) = 108.3 mm Hg (1 d.p.)

= <u>108</u> mm Hg (3 s.f.) [½]

And x = 760 - 108.3 = 651.7 mm Hg (1 d.p.) = <u>652</u> mm Hg (3 s.f.) [½]

(d) (i) pV = nRTFrom graph, $\eta_{H2} = \underline{1.06}$ mol (accepted 1.04 – 1.06) [1] for correct reading of no. of moles of H₂ from graph

> $P_{H_2} = nRT/V = (1.06)(8.31)(1250 + 273) / (0.100)$ = 134,155 Pa = <u>1.34 × 10⁵ Pa</u> = <u>134 kPa</u> (to 3 s.f.) [1] for correct use of ideal gas equation, and answer

> > $\frac{\text{ALTERNATIVE:}}{\text{From graph, } \eta_{(\text{total})}} = (1.06 + 0.30 + 0.26) \\= 1.62 \text{ mol}$

$$P_{(\text{total})} = n_{(\text{total})} RT/V = (1.62)(8.31)(1250 + 273) / (0.100) = 205,029 \text{ Pa}$$

$$P_{H2} = (\text{mole fraction of } H_2) \times P_{(\text{total})} = (1.06/1.62) \times 205,029 = 134,155 \text{ Pa} = 1.34 \times 10^5 \text{ Pa} = 134 \text{ kPa} \text{ (to 3 s.f.)}$$

$$\begin{pmatrix} \text{(ii)} & \mathcal{K}_{p} = \frac{(P_{H2})^{3}(P_{C2H2})}{(P_{CH4})^{2}} \\ = \frac{(n_{H2})^{3}(n_{C2H2})}{(n_{CH4})^{2}} \times \left(\frac{RT}{V}\right)^{4-2} \\ = \frac{(n_{H2})^{3}(n_{C2H2})}{(n_{CH4})^{2}} \times \left(\frac{RT}{V}\right)^{4-2} \\ = \frac{(n_{H2})^{3}(n_{C2H2})}{(n_{CH4})^{2}} \times \left(\frac{RT}{V}\right)^{2} \end{bmatrix} \quad \text{[1] for convincing proof and use of pV = nRT}$$

$$= \frac{(n_{H2})^{3}(n_{C2H2})}{(n_{CH4})^{2}} \times \left(\frac{RT}{V}\right)^{2} \qquad \text{[1] for substitution of correct terms from graph}$$

$$= \frac{8.47 \times 10^{10} \text{ Pa}^{2} (3 \text{ s.f.}) \qquad \text{[1] for correct answer and units}$$
Other accepted units of $\mathcal{K}_{p}: (J^{2} \text{ m}^{-6})$

$$= Pa^{2}$$

- (iii) When the temperature is changed from 1250 °C to 1000 °C, the value of K_p would <u>decrease / be smaller</u> [1].
- (e) (i)

0

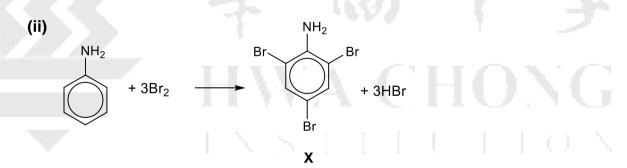
 $H \longrightarrow CH_2 - CH_3$ [1] Propanal [1] (must be spelt clearly and correctly, no benefit of doubt)

(ii) To each separate samples of propyne and propanal, (any of the following):

		Chemical test	Observations			
Y			propyne	propanal		
	1	Add 2,4-DNPH	No orange ppt	Orange ppt formed		
	2	warm with Tollen's reagent	No silver mirror	Silver mirror produced		
	3	warm with Fehling's solution	No brick-red ppt	Brick-red ppt formed		
	4	add aqueous bromine	Yellow-orange aqueous bromine decolourised	Yellow-orange colour remains		
	5	Add Br ₂ (<i>l</i>) (at r.t., no UV) or	Reddish-brown liquid bromine decolourised	Reddish-brown colour remains		
		Br ₂ in CC <i>l</i> ₄ (at r.t., no UV)	Orange-red Br ₂ in CCl ₄ decolourised	Orange-red colour remains		

6	Heat with acidified potassium	Orange colour remains	Orange solution turns green
	dichromate	- 1.74	

Careful! hot acidified or alkaline KMnO₄ is not ideal here as both propyne and propanal can undergo oxidation (propyne undergoes oxidative cleavage, while propanal will be oxidsed to propanoic acid). However, students who added hot *acidifed* KMnO₄ to both compounds and used the effervescence of CO₂ to identify propyne (effervescence not seen for propanal) were awarded the mark.


Careful! Cold KMnO₄ to form the diol for propyne is a dubious choice, as propanal may still get oxidized in cold conditions, so decolourisation might happen for both compounds.

[1] correct choice of test

[1] correct distinguishing observation (incorrect colours of ppts or solutions were penalized)

Ecf was only awarded if product drawn in (e)(i) was an aldehyde or ketone

- 4 (a) The π cloud has <u>high electron density</u>/is electron-rich that will <u>attract</u> electron-deficient electrophiles but will repel electron-rich nucleophiles. [1]
 - (b) Electrophilic addition destroys the delocalisation in the π electron cloud/disrupts aromaticity which requires a significant amount of energy, whereas electrophilic substitution retains aromaticity. [1]
 - (c) (i) Step 1: Conc. HNO₃, conc. H₂SO₄, maintained at 55 °C [1] Step 2: 1. Sn, (excess) conc. HC*l*, heat 2. NaOH(aq) [1]

[1] for X [1] for equation (ecf for equation if X is monosubstituted)

(iii) <u>Nitrobenzene < benzene < phenylamine.[1/2]</u>

The <u>nitro group is electron withdrawing and withdraws electron density from the</u> π electron cloud on the benzene ring [½], reducing the <u>susceptibility of the</u> <u>benzene ring towards electrophiles/deactivating the ring towards electrophiles</u> [½]. The NH₂ group on phenylamine is electron-donating as it can <u>donate its</u> <u>lone pair of electrons to the ring</u> and <u>increases electron density</u> of the π electron cloud in the benzene ring. [½] (only need to mention susceptibility towards electrophiles/activating or deactivating towards electrophiles once)

(d) D has only 4π electrons in the ring, so it doesn't satisfy criteria 4. [1]

F has two carbon atoms in the ring that are sp^3 hybridised, so those carbons do not have available p orbitals, so it doesn't satisfy criteria 2

OR

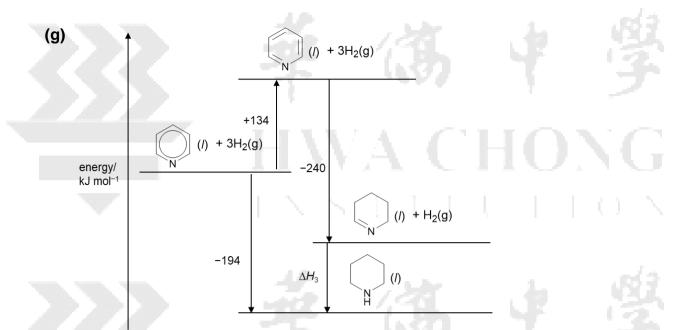
F does not satisfy criteria 3, since the p orbitals are not overlapped in a continuous fashion/ since the structure is not planar at the carbons that are sp^3 . [1]

(e) (i) p orbital sp² orbital

[1] for correct shape, arrangement and label for p orbital
 [1] for correct shapes, arrangement and label for sp² orbitals

(ii) <u>2</u> [1]

(iii) p orbital. [1]


- (iv) The lone pair on N of pyrrole is <u>delocalised</u> into the π cloud and is <u>less/not</u> <u>available</u> for donation to a H⁺. [1]
- (f) (i) Furan has very low resonance energy of <u>80 kJ mol⁻¹</u> [1], so disrupting its aromaticity requires very little energy OR formation of strong σ bonds in an addition can compensate for the loss in its small resonance energy [1].

(ii) δ. CH₂CH₃

hydrogen bond

[1] (correct bond, lone pair, partial charges and label) (-1/2 per mistake)

The <u>hydrogen</u> atom <u>bonded to the</u> highly <u>electronegative O</u> on ethanol has a very significant δ + <u>charge</u> and the electron density in the covalent bond is highly polarised towards the oxygen atom. As a result, the H can form a very strong <u>attraction to the lone pair of electrons</u> on the highly electronegative <u>oxygen</u> <u>atom on furan</u>. This is a hydrogen bond. **[1]**

Cycle: [2]

 $-[\frac{1}{2}]$ m per mistake (max $\frac{1}{2}$ m for cycle if students put the diene on the highest energy level, the $\frac{1}{2}$ m can only be awarded if they put in -194 at the correct position)

By Hess' Law,

 $\Delta H_3 = -(-120 - 120) - 134 + (-194) = -88 \text{ kJ mol}^{-1}$ [1] ecf for correct use of Hess' Law.

