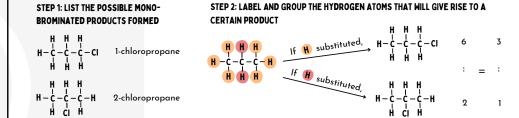


Alkanes

To experience why **90%** of MACRO students score A/B in A Levels, text us at +65 83662396:)

FREE RADICAL SUBSTITUTION


Question: Describe the mechanism involved when propane is reacted with chlorine in the presence of UV light to form 1-chloropropane.

REACTION MINDMAP

PREDICTING THE RATIO OF DIFFERENT MONO-SUBSTITUTED PRODUCTS

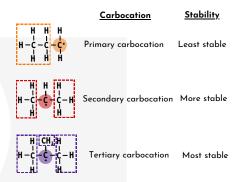
Question: State and predict the ratio of the different mono-chlorinated products formed when propane reacts with chlorine under uv.

STABILITY OF ALKYL RADICAL

Question: While the statistical ratio between 1- and 2-chloropropane is 3:1, the observed ratio was found to be 1:2.
Use the concept of stability of radicals to explain this discrepancy.

	<u>Radical</u>	<u>Stability</u>	Key Concept
H H H H – C – C – C – C – C – C – C – C – C –	Primary radical	Least stable	Alkyl groups are electron-donating groups. The more electron-donating alkyl groups attached to the carbon radical, the more electron density donated , the more stable the radical and the easier it is to be formed .
H H H H C C C H H H	Secondary radical	More stable	Answering Technique 1-chloropropane is formed from a primary radical while 2-chloropropane is formed from a secondary radical. With more
H CH3 H H - C - C - C - H H - C - C - H	Tertiary radical	Most stable	electron-donating alkyl groups attached to the carbon radical, the secondary radical is stabilized to a greater extent. Hence, 2-chloropropane is formed at higher proportions.

Alkenes

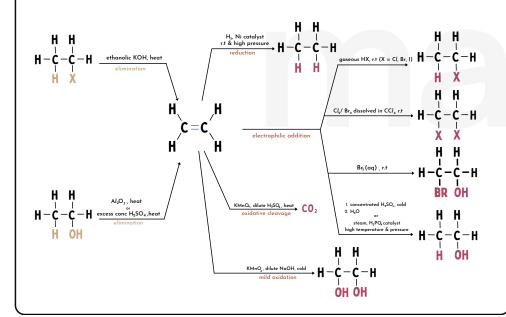

For any H1/H2 Chemistry related queries, text us at +65 83662396:)

ELECTROPHILIC ADDITION

Question: Describe the mechanism involved when propene is reacted with HCl at room temperature to form 2-chloropropane.

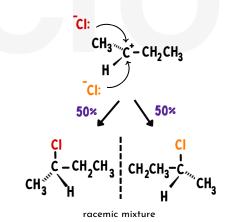
MAJOR AND MINOR PRODUCT OF E.A

Question: When propene is reacted with HCl at room temperature, two possible products are formed: 1-chloropropance and 2-chloropropane. Explain why 2-chloropropane is the major product.

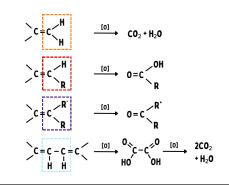

Key Concept

Alkyl groups are **electron-donating** groups. The more electron-donating alkyl groups attached to the carbocation, the **more electron density donated**, the **more stable** the carbocation and the **easier it is to be formed**.

Answering Technique


1-chloropropane is formed from a primary carbocation while 2-chloropropane is formed from a secondary carbocation. With more electron-donating alkyl groups attached to the secondary carbocation, its positive charge will be dispersed greater and the carbocation will be stabilized to a greater extent.

REACTION MINDMAP



RACEMIC MIXTURE

Question: When but-2-ene and HCl react, the product mixture is optically inactive under plane-polarized light. Explain.

OXIDATIVE CLEAVAGE

Answering Technique

First step of electrophilic addition results in the formation of a **trigonal** planar carbocation intermediate. The nucleophile is thus able to attack from the top or bottom face of the carbocation with equal probability. Equal proportion of enantiomers /racemic mixture is formed, which cancels each other out when rotated through plane-polarized light.