

1	INEQUALITIES + COMPLEX NUMBERS			
Part	Assessment Objectives	Mark Scheme	Feedback	
(i)	- solve an equality involving modulus functions either algebraically or graphically - deduce the solution of an inequality of the form $\frac{f(x)}{g(x)} \ge 0$ where f(x) and $g(x)$ are linear expressions, based on the solution obtained from solving the equality	Suppose $w \in \Re$, $ 2w-1 \le w+1 $ $(2w-1)^2 \le (w+1)^2$ $4w^2 - 4w + 1 \le w^2 + 2w + 1$ $3w^2 - 6w \le 0$ $3w(w-2) \le 0$ $0 \le w \le 2$ $\left \frac{2w-1}{w+1}\right \ge 1$ $ 2w-1 \ge w+1 $ $3w(w-2) \ge 0$ $w \le 0, w \ge 2, w \ne -1$		
(ii)	 express a complex number in its algebraic form represent complex numbers expressed in cartesian form by points in the Argand diagram 	Suppose $w \in C$, let $w = x + iy$, where $x, y \in \mathbb{R}$. Since $ 2w-1 \le w+1 $, $ 2(x+iy)-1 \le x+iy+1 $, $ (2x-1)+2yi \le (x+1)+iy ^2$, $ (2x-1)+2yi ^2 \le (x+1)+iy ^2$, $(2x-1)^2 + 4y^2 \le (x+1)^2 + y^2$, note that $ a+bi ^2 \equiv a^2 + b^2$, $4x^2 - 4x + 1 + 4y^2 \le x^2 + 2x + 1 + y^2$, $3x^2 - 6x + 3y^2 \le 0$, $x^2 - 2x + y^2 \le 0$.		

1	INEQUALITIES + COMPLEX NUMBERS			
Part	Assessment Objectives	Mark Scheme	Feedback	
		Then, via completing the square, $(x-1)^2 + y^2 \le 1$, which represents a circle of radius 1 and centred about (1, 0), together with its interior. Im $f(x) = \frac{1}{2}$ $f(x) = \frac{1}{2}$ f		

2	AP & GP		
Part	Assessment Objectives	Mark Scheme	Feedback
(a)		Let <i>n</i> be the no. of months. Then	
		$n_{(2,r+(r-1),l)} > 2000$	
		$\frac{-(2a+(n-1)a)}{2} \ge 2000$	
		n_{100} (110) 2000	
		$\Rightarrow -(100 + (n-1)10) \ge 2000$	
		$\Rightarrow \frac{n}{2}(90+10n) \ge 2000$	
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		$\Rightarrow n^2 + 9n - 400 \ge 0$	
		Solving, $n \leq -25, n \geq 16$.	
		16 complete months to fully repay the debt.	
(b)(i)	Find the general of a GP and	Balance at end of 1 month = $1.02(2000 - 50)$	
	use it to find a particular value	Balance at end of 2 months = $1.02[1.02(2000 - 50) - 50]$	
		$= 1.02^2(2000) - 50(1.02^2 + 1.02)$	
		Balance at end of <i>n</i> months	
		$= 1.02^{n}(2000) - 50(1.02^{n} + \dots + 1.02)$	
		$= 1.02^{n}(2000) - 50\left(\frac{1.02(1.02^{n} - 1)}{1.02 - 1}\right)$	
		$= 2550 - 1.02^{n}(550)$	
		Outstanding amount at 1 January 2013	
		$= 2550 - 1.02^{12}(550) = \1852.47	
(ii)	Solve inequality using general	loan repaid \Rightarrow balance $\leq 0 \Rightarrow 2550 - 1.02^n (550) \leq 0 \Rightarrow n \geq$	
	term.	77.46 so he takes 78 months.	

3	SIGMA NOTATION/METHO	DD OF DIFF/MI	
Part	Assessment Objectives	Mark Scheme	Feedback
(i)	Able to prove a statement using the method of mathematical induction	Let P_n be the statement $u_n = \frac{n-1}{(n+1)^2}$ for all $n \ge 1$.	
	involving a recurrence relation.	When $n = 1$, LHS = $u_1 = 0$ RHS = $\frac{1-1}{(1+1)^2} = 0$	
		Since LHS = RHS, P_1 is true and forms the basis for	
		induction.	
		Assume P_k to be true, i.e. $u_k = \frac{k-1}{(k+1)^2}$.	
		RTP: $u_{k+1} = \frac{k}{(k+2)^2}$.	
		LHS = $u_{k+1} = u_k + \frac{4+k-k^2}{[(k+1)(k+2)]^2}$	
		$= \frac{k-1}{(k+1)^2} + \frac{4+k-k^2}{[(k+1)(k+2)]^2}$	
		$=\frac{(k-1)(k+2)^2+4+k-k^2}{(k+1)^2(k+2)^2}$	
		$=\frac{k^{3}+3k^{2}-4+4+k-k^{2}}{(k+1)^{2}(k+2)^{2}}$	
		$=\frac{k^{3}+2k^{2}+k}{(k+1)^{2}(k+2)^{2}}=\frac{k(k^{2}+2k+1)}{(k+1)^{2}(k+2)^{2}}$	
		$=\frac{k}{\left(k+2\right)^2}=$ RHS	
		Therefore, $P_k \Rightarrow P_{k+1}$. Hence by MI, P_n is true for all $n \ge 1$.	

3	SIGMA NOTATION/METHOD OF DIFF/MI			
Part	Assessment Objectives	Mark Scheme	Feedback	
(ii)	Able to apply the method of difference to find the sum of a series.	$\sum_{n=2}^{N} \frac{4+n-n^2}{\left[(n+1)(n+2)\right]^2} = \sum_{n=2}^{N} u_{n+1} - u_n$		
	Able to evaluate sum to	$= u_{N+1} - u_2$		
	infinity of a convergent series.	$=\frac{N+1-1}{\left(N+1+1\right)^2}-\frac{2-1}{\left(2+1\right)^2}$		
		$=\frac{N}{\left(N+2\right)^2}-\frac{1}{9}$		
		Sum to infinity $=-\frac{1}{9}$		
(iii) HOT	Able to identify a change of index for a summation in order to evaluate it using a previously known summation.	$\sum_{n=2}^{\infty} \frac{2+3n-n^2}{[n(n+1)]^2} = \sum_{n=2}^{\infty} \frac{4+(n-1)-(n-1)^2}{[(n-1+1)(n-1+2)]^2}$ $= \sum_{r=1}^{\infty} \frac{4+r-r^2}{[(r+1)(r+2)]^2}$ $= \frac{4+1-1^2}{[(1+1)(1+2)]^2} - \frac{1}{9}$ $= 0$		

4	VECTORS		
Part	Assessment Objectives	Mark Scheme	Feedback

4	VECTORS		
Part	Assessment Objectives	Mark Scheme	Feedback
(i)	Determine if 2 lines intersect and find intersection point.	$\frac{x-1}{2} = -z - 1, y = 2 \Longrightarrow \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, \lambda \in \mathfrak{R}, \text{ and}$	
		$x+3 = 4 - y = z + 2 \Longrightarrow \mathbf{r} = \begin{pmatrix} -3\\4\\-2 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \ \mu \in \Re.$	
		At the intersection point (denoted by <i>P</i>),	
		$\overrightarrow{OP} = \begin{pmatrix} 1+2\lambda \\ 2 \\ -1-\lambda \end{pmatrix} = \begin{pmatrix} -3+\mu \\ 4-\mu \\ -2+\mu \end{pmatrix}, \text{ for some scalars } \lambda, \mu.$	
		Solving, $\lambda = -1, \mu = 2$. (via our GC.)	
		Hence, $\overrightarrow{OP} = \begin{pmatrix} 1+2\lambda \\ 2 \\ -1-\lambda \end{pmatrix} \Big _{\lambda=-1} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}.$	
		As such, I_1 and I_2 intersect at the point $P \equiv (-1, 2, 0)$.	
		<u>Alternative solution</u> :	
		Let $P(x, y, z)$ denote the point of intersection between lines l_1 and l_2 , if it exists.	
		Since <i>P</i> lies on I_1 , $\frac{x-1}{2} = -z - 1$ and $y = 2$.	

4	VECTORS		
Part	Assessment Objectives	Mark Scheme	Feedback
Part	Assessment Objectives	Mark SchemeSince P lies on l_2 , $x+3=4-y=z+2$.As $y=2$ and $x+3=4-y$ in particular, $x=-1$.As $y=2$ and $4-y=z+2$ in particular, $z=0$.Check that $P(x, y, z) = (-1, 2, 0)$ satisfies the remainingequation $\frac{x-1}{2} = -z-1$ (eq. 1),so as to determine whether $P(x, y, z) = (-1, 2, 0)$ is	Feedback
		indeed a point of intersection btw. the lines l_1 and l_2 , i.e. satisfies all equations of line l_1 as well as all equations of line l_2 . LHS of (eq. 1) = $\frac{-1-1}{2} = -1$. RHS of (eq. 1) = $-0-1 = -1$. As such the lines l_1 and l_2 intersect at $(-1, 2, 0)$.	
(11)	Find angle between 2 lines	The acute angle between lines l_1 and l_2 is $= \cos^{-1} \left(\frac{\begin{vmatrix} 2 \\ 0 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ -1 \\ 1 \end{vmatrix} \right) = \cos^{-1} \left(\frac{ 1 }{\sqrt{5}\sqrt{3}} \right), .$ $= 75.03678^{\circ} \text{ or } 1.309638,$	

4	VECTORS		
Part	Assessment Objectives	Mark Scheme	Feedback
(jij)	Find foot of perpendicular	$\approx 75.0^{\circ}$ (1 d.p.) or 1.31 (3 s.f.). (Accept answer for angle in radians, which is dimensionless.) Let <i>N</i> be foot of perpendicular from <i>A</i> (1, 2, -1) to <i>l</i> ₂ , and <i>A</i> ' be	
	from point to line Use Midpoint/Ratio Theorem to find the reflection point Form equation of line joining 2 points given their position vectors	the reflection of A in I_2 . (Note that the point (-1, 2, 0) lies on line I_3 .)	
		P(H,2,0) N $\in l_2$ $\overrightarrow{ON} = \begin{pmatrix} -3+\mu \\ 4-\mu \\ -2+\mu \end{pmatrix}$ for some $\mu \in \Re$. Since $\overrightarrow{AN} \perp l_2$,	

4	VECTORS		
Part	Assessment Objectives	Mark Scheme	Feedback
		so $\overrightarrow{AN} \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
		$\Rightarrow \mu = \frac{7}{3}. \text{ As such, } \overrightarrow{ON} = \begin{pmatrix} -3+\mu \\ 4-\mu \\ -2+\mu \end{pmatrix} \Big _{\mu = \frac{7}{3}} = \frac{1}{3} \begin{pmatrix} -2 \\ 5 \\ 1 \end{pmatrix}.$	
		$\overrightarrow{ON} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OA'}) \implies \overrightarrow{OA'} = 2\overrightarrow{ON} - \overrightarrow{OA} = \frac{1}{3} \begin{pmatrix} -7\\4\\5 \end{pmatrix}$	
		A direction vector of I_3 is $\begin{pmatrix} -1\\2\\0 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} -7\\4\\5 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 4\\2\\-5 \end{pmatrix}$.	
		So an equation of I_3 is $\mathbf{r} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + \nu \begin{pmatrix} 4 \\ 2 \\ -5 \end{pmatrix}, \nu \in \Re$.	
		Alternative Solution 1 :	
		Let \mathbf{m}_3 be a direction vector for line I_3 .	
		$m_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$	

4	VECTORS		
Part	Assessment Objectives	Mark Scheme	Feedback
		$ \begin{array}{c} $	
		Since the acute angle between I_2 and I_3 is the same as the acute angle between I_1 and I_2 , which is $\cos^{-1}(\frac{1}{\sqrt{15}})$ so $\frac{1}{\sqrt{15}} = \frac{\mathbf{m}_2 \cdot \mathbf{m}_3}{ \mathbf{m}_2 \mathbf{m}_3 }$ (eq. 1)	
		Since the (obtuse) angle between I_1 and I_3 is twice the acute angle between I_1 and I_2 , which is $\cos^{-1}(\frac{1}{\sqrt{15}})$ so $\underbrace{\cos\left(2\cos^{-1}\left(\frac{1}{\sqrt{15}}\right)\right)}_{=2\left[\cos\left(\cos^{-1}\left(\frac{1}{\sqrt{15}}\right)\right)\right]^2 - 1 = \frac{2}{15} - 1 = -\frac{13}{15}}_{=1}$ (eq. 2) Choose \mathbf{m}_3 to be a unit vector, i.e. $ \mathbf{m}_3 = 1$ (eq. 3)	

4	VECTORS		
Part	Assessment Objectives	Mark Scheme	Feedback
		With $\mathbf{m}_1 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$, $\mathbf{m}_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\mathbf{m}_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ for some x, y & z,	
		(eq. 1) yields $x - y + z = \frac{\sqrt{5}}{5}$,	
		(eq. 2) yields $2x - z = -\frac{13}{15}\sqrt{5}$, and	
		(eq. 3) yields $x^2 + y^2 + z^2 = 1$.	
		Solving this set of equations gives	
		$x = -\frac{4}{15}\sqrt{5}$, $y = -\frac{2}{15}\sqrt{5}$ and $z = \frac{1}{3}\sqrt{5}$.	
		As such, $\mathbf{m}_3 = -\frac{\sqrt{5}}{15} \begin{pmatrix} 4\\2\\-5 \end{pmatrix}$,	
		So an equation of I_3 is $\mathbf{r} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + \nu \begin{pmatrix} 4 \\ 2 \\ -5 \end{pmatrix}, \nu \in \Re$.	
		Alternative Solution 2 :	
		Let A' be the reflection image of point A (on I_1) in I_2 .	
		Let $\mathbf{m}_3 = \overrightarrow{PA'}$ and $\mathbf{m}_1 = \overrightarrow{PA}$.	
		٦	

4	VECTORS		
Part	Assessment Objectives	Mark Scheme	Feedback
		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	
		Observe that $\mathbf{m}_1 \cdot \hat{\mathbf{m}}_2 = \mathbf{m}_2 \cdot \hat{\mathbf{m}}_2$, (eq. 1)	
		and that $\underline{\mathbf{m}}_1 \times \underline{\mathbf{m}}_2 = -\underline{\mathbf{m}}_3 \times \underline{\mathbf{m}}_2$. (eq. 2)	
		(Note that $\mathbf{m}_1 \cdot \hat{\mathbf{m}}_2 = \mathbf{m}_3 \cdot \hat{\mathbf{m}}_2$ = <i>PN</i> , while $\mathbf{m}_1 \times \hat{\mathbf{m}}_2$ and	
		$\mathbf{m}_3 imes \hat{\mathbf{m}}_2$ are vectors perpendicular to the plane containing	
		the lines I_1 , I_2 , I_3 , with opposite direction to each other, and with length AN.)	
		Let $\mathbf{m}_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Since $\mathbf{m}_1 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$, & $\hat{\mathbf{m}}_2 = \frac{1}{3} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, hence	
		(eq. 1) yields $\frac{1}{3} = \frac{x - y + z}{3}$, and	

4	VECTORS		
Part	Assessment Objectives	Mark Scheme	Feedback
		(eq. 2) yields $\frac{1}{3} \begin{pmatrix} -1 \\ -3 \\ -2 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} y+z \\ z-x \\ -x-y \end{pmatrix}.$	
		Consolidating the comparison of the x and y-component, as	
		well as using the former equation yields the system of	
		equations	
		x - y + z = 1	
		$\left\{\begin{array}{l} y+z=1\\ -x+z=3 \end{array}\right\}$	
		whose solution is $x = -\frac{4}{3}, y = -\frac{2}{3}, z = \frac{5}{3}$.	
		As such, $\mathbf{m}_3 = -\frac{1}{3} \begin{pmatrix} 4 \\ 2 \\ -5 \end{pmatrix}$, and	
		A vector equation for l_3 is $\mathbf{r} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + \nu \begin{pmatrix} 4 \\ 2 \\ -5 \end{pmatrix}, \nu \in \mathfrak{R}.$	

5	FUNCTIONS / TRANSFORMATIONS			
Part	Assessment Objectives	Mark Scheme	Feedback	
(a)	- Using of function notation to represent the various	After Step 1,	1.	
	transformations and subsequently, the combination	y = f(x) - y = f(x+1)		
	of these transformations	After Step 2,		
		y = f(x+1) - > y = f(x+1) + 5		
		After Step 3,		
		y = f(x+1) + 5 - > y = f(2x+1) + 5		
		Thus, $h(x) = f(2x+1) + 5$		
		n(x) - 5 = f(2x + 1)		
		$h(\frac{x-1}{2}) - 5 = f(x)$		
		Thus, $f(x) = 4\left(\frac{x-1}{2}\right)^2 + 4\left(\frac{x-1}{2}\right) + 9 - 5 = x^2 + 3$		
(b)	- understanding the rule of a given function to obtain	2 2.5 + 3.09 =2(3)+4=10		
	output with the given input	(i)		
	- determining the range of a			
	function from its graph			

5	FUNCTIONS / TRANSFORMATIONS			
Part	Assessment Objectives	Mark Scheme	Feedback	
		g(0.12) + g(3)		
		$= \left\lceil \frac{0.12+1}{2} \right\rceil + \left\lceil \frac{3+1}{2} \right\rceil$ $= \left\lceil 0.56 \right\rceil + \left\lceil 2 \right\rceil$		
		=1+2		
		= 3		
		$y = \begin{bmatrix} x+1 \\ 2 \end{bmatrix}$ $(ii) = 3 + 0 = 0$ $2 + 0 = 0$ $1 = 0$ $0 + 1 + 1 \rightarrow X$		
		(iii) Range of $g = Z^+$		

6	TRANSFORMATIONS			
Part	Assessment	Mark Scheme	Feedback	
	Objectives			
		y = f'(x) (a,0) (c,0) (x = 2)		

7	PARAMETRIC EQUATION	NS/DEFINITE INTEGRALS/ TANGENT/NORMAL	
Part	Assessment Objectives	Mark Scheme	Feedback
(i)	- obtain the graph of a pair of parametric equations using a graphic calculator	Intercepts at $(0, \frac{\sqrt{3}}{2}), (0, -\frac{\sqrt{3}}{2}), (-1, 0)$ and $(3, 0)$	
(ii)	- find the area under a curve given its parametric equations	$Area = 2\int_{-1}^{3} y dx$ $= 2\int_{\pi}^{0} \sin \theta (-2\sin \theta) d\theta$ $= 2\int_{\pi}^{0} \cos 2\theta - 1 d\theta$ $= 2\left[\frac{\sin 2\theta}{2} - \theta\right]_{\pi}^{0}$ $= 2\pi$	
(iii)	- find and use the equation of normal to the curve, defined parametrically	$\frac{dx}{d\theta} = -2\sin\theta \qquad \frac{dy}{d\theta} = \cos\theta$ $\frac{dy}{dx} = \cos\theta \left(\frac{-1}{2\sin\theta}\right) = \frac{-1}{2}\cot\theta$ Gradient of tangent = $\frac{-1}{2}\cot\theta$	

7	PARAMETRIC EQUATIONS/DEFINITE INTEGRALS/ TANGENT/NORMAL			
Part	Assessment Objectives	Mark Scheme	Feedback	
		Gradient of normal = $2 \tan \theta$		
		Equation of normal at the point $(2\cos\theta + 1, \sin\theta)$:		
		$y - \sin \theta = 2 \tan \theta (x - 2 \cos \theta - 1)$		
		When $x = 0$,		
		$y - \sin \theta = 2 \tan \theta (-2 \cos \theta - 1)$		
		$y = -4\sin\theta - 2\tan\theta + \sin\theta$		
		$= -3\sin\theta - 2\tan\theta$		
		Coordinates of $R = (0, -3\sin\theta - 2\tan\theta)$		
		When $y = 0$,		
		$-\sin\theta = 2\tan\theta(x - 2\cos\theta - 1)$		
		$-\sin\theta = 2x\tan\theta - 4\sin\theta - 2\tan\theta$		
		$2x\tan\theta = 3\sin\theta + 2\tan\theta$		
		$x = \frac{3}{2}\cos\theta + 1$		
		Coordinates of Q = $\left(\frac{3}{2}\cos\theta + 1, 0\right)$		
		Area of triangle OPQ		
		$=\frac{1}{2}\left(\frac{3}{2}\cos\theta+1\right)\left -3\sin\theta-2\tan\theta\right =\frac{1}{2}\left(\frac{3}{2}\cos\theta+1\right)\left(3\sin\theta+2\tan\theta\right)$		

8	APPLICATIONS OF DIFFERENTIATION		
Part	Assessment Objectives	Mark Scheme	Feedback
(i)	- to find the area of a regular hexagon	Base Area of Packaging = $6\left(\frac{1}{2}x^2\sin 60^0\right) = \frac{3\sqrt{3}x^2}{2}cm^2$.	
(ii)	- to solve a minima problem involving area and volume of a hexagonal prism	Volume = $\frac{3\sqrt{3}x^2}{2}h = 972$ $h = \frac{1944}{3\sqrt{3}x^2}$ Area of the material, $A = 2\left(\frac{3\sqrt{3}x^2}{2}\right) + 6xh$ $= 3\sqrt{3}x^2 + \frac{6x(1944)}{3\sqrt{3}x^2}$ $= 3\sqrt{3}x^2 + \frac{3888}{\sqrt{3}x}$ $\frac{dA}{dx} = 6\sqrt{3}x - \frac{3888}{\sqrt{3}x^2} = 0$ $18x^3 - 3888 = 0$ $x^3 = 216$ x = 6 $\frac{d^2A}{dx^2} = 6\sqrt{3} + \frac{7776}{\sqrt{3}x^3} > 0$ Area is minimum when $x = 6$ cm Minimum Area	

8	APPLICATIONS OF DIFFERENTIATION			
Part	Assessment Objectives	Mark Scheme	Feedback	
		$= 3\sqrt{3}(6^{2}) + \frac{3888}{\sqrt{3}(6)}$ = 561.1844 \approx 561.18 (2 d. p.)		
(iii)		Minimum cost of packaging = $\frac{\$0.05}{100 \text{ cm}^2} \times (561.1844\text{ cm}^2) = \$0.28 \text{ (nearest cent)}$		

9	MACLAURIN'S SERIES		
Part	Assessment Objectives	Mark Scheme	Feedback
(i)	 to carry out implicit differentiation repeatedly 	$\ln(y+1) = 1 + \tan^{-1} x$ $\frac{1}{y+1} \frac{dy}{dx} = \frac{1}{1+x^2}$	
		$\frac{dy}{dx} = \frac{y+1}{1+x^2}$	
		$\frac{d^2 y}{dx^2} = \frac{(1+x^2)\frac{dy}{dx} - (y+1)(2x)}{(1+x^2)^2}$	
		$(1+x^2)^2 \frac{d^2 y}{dx^2} = (1+x^2)\frac{dy}{dx} - (y+1)(2x)$	
		$(1+x^2)\frac{d^2y}{dx^2} = \frac{dy}{dx}(1-2x)$	
(ii)	- to find the Maclaurin's series for a function	$(1+x^2)\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2}(2x) = \frac{dy}{dx}(-2) + (1-2x)\frac{d^2y}{dx^2}$	
		When $x = 0$,	
		$\frac{y-e}{dy}$	
		$\frac{dy}{dx} = e$	
		$\frac{d^2 y}{dx^2} = e$	
		$\frac{d^3 y}{dx^3} = -e$	
		$y = (e - 1) + ex + \frac{ex^2}{2} - \frac{ex^3}{6} + \dots$	

9	MACLAURIN'S SERIES		
Part	Assessment Objectives	Mark Scheme	Feedback
(iii)	-to use the binomial expansion of $(1+x)^n$ to obtain the unknowns <i>a</i> and <i>b</i>	$(a+bx)^{-1} = \frac{1}{a} \left(1 + \frac{b}{a}x\right)^{-1} = \frac{1}{a} \left(1 - \frac{b}{a}x + \dots\right)$ $\frac{1}{a} = e - 1 \Rightarrow a = \frac{1}{e - 1}$ $-\frac{b}{a^2} = e \Rightarrow b = -\frac{e}{(e - 1)^2}$	

10	COMPLEX NUMBERS		
Part	Assessment Objectives	Mark Scheme	Feedback
	Find the nth roots of a complex number	(a) $z^{3} = 2 - 2\sqrt{3}i$ $z^{3} = 4e^{i\left(-\frac{\pi}{3}\right)}$ $z = 4^{\frac{1}{3}}e^{\frac{1}{3}i\pi\left(-\frac{1}{3}+2k\right)}, k = 0,\pm 1$ $z = 4^{\frac{1}{3}}e^{i\pi\left(-\frac{1}{9}\right)}A^{\frac{1}{3}}e^{i\pi\left(\frac{5}{9}\right)}A^{\frac{1}{3}}e^{i\pi\left(-\frac{7}{9}\right)}$	
	Solve simple equations involving a complex variable by equating real parts and imaginary parts.	(b)(i) Since $z = 3i$ is a root of $az^4 + z^3 + 11z^2 + bz + 18 = 0$ $a(3i)^4 + (3i)^3 + 11(3i)^2 + b(3i) + 18 = 0$ 81a - 27i - 99 + 3bi + 18 = 0 Compare real coefficien t, $a = 1$ Compare imaginary coefficien t, $b = 9$	
	Solve equations with real coefficients when a pair of complex roots is given.	(b)(ii) $z^4 + z^3 + 11z^2 + 9z + 18 = 0$ Since all coefficients are real, z = -3i and $z = 3i$ are conjugate roots $z^4 + z^3 + 11z^2 + 9z + 18 = (z + 3i)(z - 3i)(z^2 + pz + q)$ By comparing coefficients, q = 2, p = 1 $z^2 + z + 2 = 0$ $z = \frac{-1 \pm i\sqrt{7}}{2}, 3i, -3i$	

11	COMPLEX NUMBERS			
Part	Assessment Objectives	Mark Scheme		Feedback
(c)	Sketch the loci of simple equations in the Argand diagram. These loci includes circle, half line and perpendicular bisector	(0,4) (0,4) (-2,0) (3,0) (3,-5) (3,-5)		
		draw a circle with correct center $ z-3 = 5$	[B1]	
		draw a circle with correct radius	[B1]	
	Able to employ geometry in Argand diagram to	Draw a half line, with the correct argument. $\pi - \tan^{-1}\left(\frac{1}{2}\right)$	[B1]	
	intersection between two	Draw a half line, excluding the starting point at (8, 0)	[B1]	
	loci.	Indicate the 2 reference points correctly for perpendicular bisector	[B1]	
		Draw a perpendicular bisector correctly. $ z+2 = z-3+5i $	[B1]	
	Able to shade the correct region based on the	p = 0 + 4i	[B1]	
	given inequalities.	Shade the correct region	נאו	