

Name:	Teachers'	Class	Reg No.
Date:		4	

Chapter 12: Differentiation

Reference Book: Additional Maths 360 Volume B, Marshall Cavendish

You will learn how to,

- Relate the derivative of a function to the gradient of tangent.
- Differentiate functions using the basic rules of differentiation,
 - → Constant multiple rule: $\frac{d}{dx} [af(x)] = a \frac{d}{dx} [f(x)]$, where a is a constant
 - Power rule: $\frac{d}{dx} x^n = nx^{n-1}$, n is a rational number
 - Sum and difference rule: $\frac{d}{dx} [f(x) \pm g(x)] = \frac{d}{dx} [f(x)] \pm \frac{d}{dx} [g(x)]$
 - Chain rule: $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} \implies \frac{d}{dx} \left(u^n\right) = nu^{n-1} \frac{dy}{dx}$ to differentiate functions of the form $y = u^n$ where u = f(x)
 - Product rule: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$
 - Quotient rule: $\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} u \frac{dv}{dx}}{v^2}$

Introduction

The word "calculus" comes from Latin (*calculus*) and means a small stone used for counting. *Calculus* is the mathematical study of <u>change</u> and has two major branches; *Differential calculus*, which concerns itself with the rate of change and the gradient of curves, as well as *integral calculus*, which is regarding the accumulation of quantities and area under curves.

The First Derivative of y

The first *derivative* of y is denoted by f'(x) or , pronounced as "dee y dee x".

It is the *gradient function* of y, that is, it is the function that provides the value of the instantaneous gradient of y with respect to x at any required point.

→ Hence, the **gradient** (at a particular point) of a curve is defined as the derivative of a function or gradient function.

It is the result of differentiating y with respect to x.

The process of finding $\frac{dy}{dx}$ is called *differentiation*.

Notation

The notation $\frac{dy}{dx}$, is also known as the first derivative of y with respect to the variable x.

If f is a function of x, i.e. f(x), the first derivative of f with respect to x can be denoted by \rightarrow If y = f(x), then $\frac{dy}{dx} = f'(x)$.

Sometimes, you may be asked to find $\frac{d}{dx}(x^n)$. This represents the first derivative of x^n with respect to x. $\frac{d}{dx}(\cdot)$ is the differential operator. You simply need to differentiate the expression in the brackets with respect to the variable x. Similarly, $\frac{d}{dt}(\cdot)$ is the differential operator with respect to the variable t. t is commonly used to represent time.

The Power Rule

If $y = x^n$, where *n* is a rational constant, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = nx^{n-1}$$

*We "bring down" the power of the variable, followed by reducing the power by one.

The Constant Multiple Rule

If f(x) is a function and a is a constant, then

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[a f(x) \right] = a \frac{\mathrm{d}}{\mathrm{d}x} \left[f(x) \right]$$

The Constant Rule

Given a general function y = k, where k is a constant, we can use Constant Multiple Rule and the Power Rule to show that $\frac{dy}{dx} = 0$.

$$\frac{dy}{dx} = \frac{d}{dx}(k)$$

$$= \frac{d}{dx}(kx^{0})$$

$$= k \frac{d}{dx}(x^{0})$$
Constant Multiple Rule
$$= k(0 \times x^{0-1})$$
Power Rule
$$= 0$$

Class Practice 1:

Differentiate the following functions with respect to x.

	у	$\frac{\mathrm{d}y}{\mathrm{d}x}$		у	$\frac{\mathrm{d}y}{\mathrm{d}x}$
a	x^2	$(2)x^1 = 2x$	b	x ⁵	$(5)x^4 = 5x^4$
c	$3x^2$	$3(2)x^1 = 6x$	d	$5x^4$	$5(4)x^3 = 20 \ x^3$
e	πx^{10}	$10\pi x^9$	f	$-12x^{-\frac{7}{2}}$	$42x^{-\frac{9}{2}}$
g	$\sqrt[6]{x^7}$	$\frac{7}{6}\sqrt[6]{x}$	h	$17x^{\frac{7}{4}}$	$\frac{119}{4}x^{\frac{3}{4}}$
i	23x ⁻⁹	$-207x^{-10}$	j	$\frac{27}{\sqrt[3]{x}}$	$\frac{-9}{\sqrt[3]{x^4}}$

The Sum Rule and Difference Rule

If
$$y = f(x) \pm g(x)$$
,

$$\frac{d}{dx} [f(x) \pm g(x)] = \frac{d}{dx} [f(x)] \pm \frac{d}{dx} [g(x)]$$

Example 1

Differentiate $x^2 + 4x$ with respect to x.

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[x^2 + 4x \right] = 2x + 4$$

Example 2

Differentiate $-2x^3 + 4\sqrt{x} - 5$ with respect to x.

$$\frac{d}{dx} \left[-2x^3 + 4\sqrt{x} - 5 \right]$$

$$= \frac{d}{dx} \left[-2x^3 + 4\left(x\right)^{\frac{1}{2}} - 5 \right]$$

$$= -6x^2 + 2x^{-\frac{1}{2}} \quad OR \quad -6x^2 + \frac{2}{\sqrt{x}}$$

Class Practice 2:

Differentiate the following functions with respect to x.

(a)
$$\frac{\pi^2 x^2}{3} - \frac{2x^4}{5}$$

(b)
$$\frac{3x^8}{20} - \frac{\pi x^9}{11}$$

(a)
$$\frac{\pi^2 x^2}{3} - \frac{2x^4}{5}$$
(a)
$$\frac{d}{dx} \left(\frac{\pi^2 x^2}{3} - \frac{2x^4}{5} \right)$$

$$= \frac{2\pi^2 x}{3} - \frac{8x^3}{5}$$

(b)
$$\frac{3x^8}{20} - \frac{\pi x^9}{11}$$
(b)
$$\frac{d}{dx} \left(\frac{3x^8}{20} - \frac{\pi x^9}{11} \right)$$

$$= \frac{24x^7}{20} - \frac{9\pi x^8}{11}$$

$$= \frac{6x^7}{5} - \frac{9\pi x^8}{11}$$

2 Differentiate the following functions with respect to x.

(a)
$$\frac{6}{x^3} - \frac{1}{x} + 3$$

(b)
$$3x + 2\sqrt{x} - 3$$

(a)
$$\frac{6}{x^3} - \frac{1}{x} + 3$$
(a)
$$\frac{d}{dx} \left(\frac{6}{x^3} - \frac{1}{x} + 3 \right)$$

$$= \frac{d}{dx} \left(6x^{-3} - x^{-1} + 3 \right)$$

$$= -18x^{-4} + x^{-2}$$

$$= -\frac{18}{x^4} + \frac{1}{x^2}$$

(b)
$$\frac{d}{dx} (3x + 2\sqrt{x} - 3)$$

= $3 + 2 \left(\frac{1}{2}x^{-\frac{1}{2}}\right)$
= $3 + x^{-\frac{1}{2}}$
= $3 + \frac{1}{\sqrt{x}}$

Differentiate $\frac{6x^2 - \sqrt{x} + 2}{2x}$, $x \ne 0$, with respect to x. 3

$$\frac{d}{dx} \left(\frac{6x^2 - \sqrt{x} + 2}{2x} \right)$$

$$= \frac{d}{dx} \left(3x - \frac{1}{2}x^{-\frac{1}{2}} + x^{-1} \right)$$

$$= 3 + \frac{1}{4}x^{-\frac{3}{2}} - x^{-2}$$

$$= 3 + \frac{1}{4\sqrt{x^3}} - \frac{1}{x^2}$$

4 Differentiate the following functions with respect to x.

(a)
$$g(x) = (1 + \sqrt{x})(1 - \sqrt{x})$$

(b)
$$t = 3x^2 \left(2 - \sqrt{x}\right)$$

(a)
$$g'(x) = \frac{d}{dx} \left[(1 + \sqrt{x}) (1 - \sqrt{x}) \right]$$
$$= \frac{d}{dx} \left[1^2 - (\sqrt{x})^2 \right]$$
$$= \frac{d}{dx} \left[1 - x \right]$$
$$= -1$$

(b)
$$\frac{d}{dx}(t) = \frac{d}{dx} \left[3x^2 \left(2 - \sqrt{x} \right) \right]$$

$$\frac{dt}{dx} = \frac{d}{dx} \left[6x^2 - 3x^{\frac{5}{2}} \right]$$

$$= 12x - \frac{15}{2}x^{\frac{3}{2}}$$

$$= 12x - \frac{15\sqrt{x^3}}{2}$$

5 Calculate the gradient of each curve at the given point

(a)
$$y = 5x^2 - 4x + 2$$
, at $(1, 3)$

(b)
$$y = \frac{(x-1)(2x+3)}{x}$$
, at $x = -2$

(a)
$$y = 5x^2 - 4x + 2$$

$$\frac{dy}{dx} = \frac{d}{dx} (5x^2 - 4x + 2)$$

$$= 10x - 4$$
At $(1,3)$, $\frac{dy}{dx} = 10(1) - 4$

$$= 6$$

(b)
$$y = \frac{(x-1)(2x+3)}{x}$$

 $= \frac{2x^2 + x - 3}{x}$
 $= 2x + 1 - \frac{3}{x}$
 $\frac{dy}{dx} = \frac{d}{dx} \left(2x + 1 - \frac{3}{x} \right)$
 $= 2 + \frac{3}{x^2}$
At $x = -2$, $\frac{dy}{dx} = 2 + \frac{3}{(-2)^2}$
 $= 2\frac{3}{4}$

Given that the equation of a curve is $y = \frac{10}{x} - x$, find the coordinates of the points on the curve at which the gradient is $-\frac{7}{2}$.

$$y = \frac{10}{x} - x$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{10}{x} - x \right)$$
$$= \frac{d}{dx} \left(10x^{-1} - x \right)$$
$$= -10x^{-2} - 1$$

When the gradient is
$$-\frac{7}{2}$$
, $\frac{dy}{dx} = -\frac{7}{2}$
 $-10x^{-2} - 1 = -\frac{7}{2}$
 $10x^{-2} = \frac{5}{2}$
 $x^2 = 4$
 $x = 2$ or -2

When
$$x = 2$$
, $y = \frac{10}{2} - 2 = 3$
When $x = -2$, $y = \frac{10}{-2} - (-2) = -3$

 \therefore the coordinates of the points are (2, 3) and (-2, -3).

- A curve has the equation $y = x^3 + px + q$ where p and q are constants. The gradient of the curve at the point (3, 16) is 20.
 - (i) Find the value of p and of q.
 - (ii) Find the coordinates of the other point on the curve where the gradient is 20.
- $(i) y = x^3 + px + q$

Since the point (3, 16) lies on the curve,

$$16 = (3)^{3} + p(3) + q$$
$$3p + q = -11 \qquad -(1)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + p$$

Substituting x = 3 and $\frac{dy}{dx} = 20$,

$$20 = 3(3)^2 + p$$
$$p = -7$$

Substituting p = -7 into (1),

$$3(-7) + q = -11$$
$$q = 10$$

(ii) Given:
$$\frac{dy}{dx} = 20$$

 $3x^2 - 7 = 20$
 $3x^2 = 27$
 $x^2 = 9$
 $x = 3 \text{ or } -3$

When
$$x = -3$$
, $y = (-3)^3 - 7(-3) + 10$
= 4

The coordinates of the other point where the gradient is 20 are (-3, 4).

The Chain Rule

How would you differentiate $(3x^2 + 2)^2$ w.r.t. x?

How would you differentiate $(3x^2 + 2)^5$ w.r.t. x?

To expand first then differentiate is rather tedious. Is there a shorter way?

To obtain the above solution quickly, we apply the Chain Rule.

If y = f(u) and u = g(x), $\frac{dy}{du}$ and $\frac{du}{dx}$ exist, then the derivative of the function y = f[g(x)] exists and is given by,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$$

Note: The Chain Rule looks as if the du's are cancelled, when in fact, $\frac{du}{dx}$ is a single **notation** that **cannot be taken as a fraction**.

To differentiate $y = (3x^2 + 2)^5$, let $u = 3x^2 + 2$. $\therefore y = u^5$

Note, y is a function of u and u is a function of x.

$$\frac{\mathrm{d}y}{\mathrm{d}u} = 5u^4, \qquad \frac{\mathrm{d}u}{\mathrm{d}x} = 6x$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$
$$= 5u^{4} (6x)$$
$$= 30x (3x^{2} + 2)^{4}$$

Example 3

Differentiate $\sqrt{5x^3 + 4}$ with respect to x.

$$\frac{d}{dx} \left[\sqrt{5x^3 + 4} \right]$$

$$= \frac{d}{dx} \left[\left(5x^3 + 4 \right)^{\frac{1}{2}} \right]$$

$$= \frac{15}{2} x^2 \left(5x^3 + 4 \right)^{-\frac{1}{2}}$$

$$= \frac{15x^2}{2\sqrt{5x^3 + 4}}$$

Example 4

Differentiate $\left(x^2 + \frac{2}{x}\right)^8$ with respect to x.

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\left(x^2 + \frac{2}{x} \right)^8 \right]$$
$$= 8 \left(x^2 + \frac{2}{x} \right)^7 \left(2x - \frac{2}{x^2} \right)$$

Class Practice 3:

1 Use Chain Rule to differentiate $(1-6x)^9$ with respect to x.

$$\frac{d}{dx}(1-6x)^9$$
= 9(1-6x)⁸(-6)
= -54(1-6x)⁸

2 Differentiate $\sqrt{x^2 - 2x + 3}$ with respect to x.

$$\frac{d}{dx}\sqrt{x^2 - 2x + 3}$$

$$= \frac{d}{dx}(x^2 - 2x + 3)^{\frac{1}{2}}$$

$$= \frac{1}{2}(x^2 - 2x + 3)^{-\frac{1}{2}}(2x - 2)$$

$$= \frac{x - 1}{\sqrt{x^2 - 2x + 3}}$$

3 Use Chain Rule to find the derivative of
$$\frac{1}{2(x^3-1)^6}$$
.

$$\frac{d}{dx} \left[\frac{1}{2(x^3 - 1)^6} \right]$$

$$= \frac{d}{dx} \left[\frac{1}{2} (x^3 - 1)^{-6} \right]$$

$$= \frac{1}{2} (-6) (x^3 - 1)^{-7} (3x^2)$$

$$= -\frac{9x^2}{(x^3 - 1)^7}$$

Find the derivative of
$$h = \frac{1}{\left(2 - 3t + 5t^2\right)^4}$$
.

$$\frac{d}{dx}(h) = \frac{d}{dx} \left[\frac{1}{(2 - 3t + 5t^2)^4} \right]$$

$$= \frac{d}{dx} (2 - 3t + 5t^2)^{-4}$$

$$= -4(2 - 3t + 5t^2)^{-5} (-3 + 10t)$$

$$= \frac{4(3 - 10t)}{(2 - 3t + 5t^2)^5}$$

5 Find
$$\frac{dy}{dx}$$
 and the gradient of the curve at the point with the given value of y.

$$y = \frac{1}{(2x-5)^3}$$
, $y = \frac{1}{8}$

Given:
$$y = \frac{1}{(2x-5)^3}$$

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{1}{(2x-5)^3} \right]$$

$$= \frac{d}{dx} (2x-5)^{-3}$$

$$= -3(2x-5)^{-4} (2)$$

$$= \frac{-6}{(2x-5)^4}$$

Substituting
$$y = \frac{1}{8}$$
 into the equation of curve,

$$\frac{1}{8} = \frac{1}{\left(2x-5\right)^3}$$

$$(2x-5)^3 = 8$$
$$2x-5 = 2$$

$$2x-5=2$$

$$x = \frac{7}{2}$$

When
$$x = \frac{7}{2}$$
,

$$\frac{dy}{dx} = \frac{-6}{\left[2\left(\frac{7}{2}\right) - 5\right]^4}$$

$$= -\frac{3}{6}$$

The gradient of the curve at $y = \frac{1}{8}$ is $-\frac{3}{8}$.

- 6 (i) Given that $\frac{2x-1}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$, find the value of A and B.
 - (ii) Hence find the derivative of $\frac{2x-1}{(x-1)^2}$.

(i) Given:
$$\frac{2x-1}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$$
 From (i)
$$\Rightarrow \frac{2x-1}{(x-1)^2} = \frac{A(x-1)+B}{(x-1)^2}$$

$$\Rightarrow 2x-1 = A(x-1)+B$$

$$= \frac{d}{dx} \left[\frac{1}{x} \right]$$

$$= -2(x-1)$$
 Comparing x terms:
$$A = 2$$

$$= -2(x-1)$$

Hence
$$A = 2$$
 and $B = 1$.

When x = 1, B = 1

(ii)
From (i),
$$\frac{d}{dx} \left[\frac{2x-1}{(x-1)^2} \right] = \frac{d}{dx} \left[\frac{2}{x-1} + \frac{1}{(x-1)^2} \right]$$

$$= \frac{d}{dx} \left[\frac{2}{x-1} \right] + \frac{d}{dx} \left[\frac{1}{(x-1)^2} \right]$$

$$= -2(x-1)^{-2} - 2(x-1)^{-3}$$

$$= -2(x-1)^{-3} \left[(x-1) + 1 \right]$$

$$= -\frac{2x}{(x-1)^3}$$

7 Calculate the coordinates of the point on the curve $y = (2-5x)^3 + 1$ at which the gradient is 0.

Given:
$$y = (2-5x)^3 + 1$$

$$\frac{dy}{dx} = \frac{d}{dx} [(2-5x)^3 + 1]$$

$$= 3(2-5x)^2 (-5)$$

$$= -15(2-5x)^2$$

When the gradient is 0,

$$-15(2-5x)^{2} = 0$$
$$2-5x = 0$$
$$x = \frac{2}{5}$$

When the
$$x = \frac{2}{5}$$
, $y = \left[2 - 5\left(\frac{2}{5}\right)\right]^3 + 1$

The coordinates of the point at which the gradient is 0 are $\left(\frac{2}{5}, 1\right)$.

8 Calculate the coordinates of the point on the curve $y = \sqrt{x^2 - 4x + 1}$ at which the gradient is 2.

Given:
$$y = \sqrt{x^2 - 4x + 1}$$

$$\frac{dy}{dx} = \frac{d}{dx} \sqrt{x^2 - 4x + 1}$$

$$= \frac{d}{dx} (x^2 - 4x + 1)^{\frac{1}{2}}$$

$$= \frac{1}{2} (x^2 - 4x + 1)^{-\frac{1}{2}} (2x - 4)$$

$$= (x - 2) (x^2 - 4x + 1)^{-\frac{1}{2}}$$

When the gradient is 2,
$$\frac{dy}{dx} = 2$$

$$\frac{x-2}{\sqrt{x^2-4x+1}} = 2$$

$$(x-2)^2 = \left[2\sqrt{x^2-4x+1}\right]^2$$

$$x^2 - 4x + 4 = 4\left(x^2 - 4x + 1\right)$$

$$x^2 - 4x + 4 = 4x^2 - 16x + 4$$

$$3x^2 - 12x = 0$$

$$3x(x-4) = 0$$

$$x = 0 \text{ or } x = 4$$

When
$$x = 0$$
, $\frac{dy}{dx} = (0-2)[0^2 - 4(0) + 1]^{-\frac{1}{2}}$
= -2

x = 0 is rejected.

$$\Rightarrow x = 4 \text{ and } y = \sqrt{(4)^2 - 4(4) + 1}$$

The coordinates of the point on the curve at which the gradient is 2 are (4, 1).

The Product Rule

Product Rule states that if y = u(x)v(x), then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$$

Example 5:

Differentiate $x(3x+2)^2$ with respect to x.

$$\frac{d}{dx} \left[x(3x+2)^2 \right]$$

$$= x \frac{d}{dx} (3x+2)^2 + (3x+2)^2 \frac{dx}{dx}$$

$$= x \left[2(3x+2)(3) \right] + (3x+2)^2$$

$$= (3x+2) \left[6x + (3x+2) \right]$$

$$= (3x+2)(9x+2)$$

Example 6:

Differentiate $x^2\sqrt{1+2x^2}$ with respect to x.

$$\frac{d}{dx} \left[x^2 \sqrt{1 + 2x^2} \right]
= x^2 \frac{d}{dx} \left[(1 + 2x^2)^{\frac{1}{2}} \right] + (1 + 2x^2)^{\frac{1}{2}} \frac{d}{dx} (x^2)
= x^2 \left(\frac{1}{2} \right) (1 + 2x^2)^{-\frac{1}{2}} (4x) + (1 + 2x^2)^{\frac{1}{2}} (2x)
= 2x (1 + 2x^2)^{-\frac{1}{2}} \left[x^2 + (1 + 2x^2) \right]
= \frac{2x (3x^2 + 1)}{\sqrt{1 + 2x^2}}$$

Class Practice 4:

1 Differentiate $(2x-1)\sqrt{5x^2-1}$ with respect to x.

$$\frac{d}{dx}(2x-1)\sqrt{5x^2-1}$$

$$= (2x-1)\frac{d}{dx}(5x^2-1)^{\frac{1}{2}} + (5x^2-1)^{\frac{1}{2}}\frac{d}{dx}(2x-1)$$

$$= (2x-1)\left(\frac{1}{2}\right)(5x^2-1)^{-\frac{1}{2}}(10x) + 2(5x^2-1)^{\frac{1}{2}}$$

$$= (5x^2-1)^{-\frac{1}{2}}\left[5x(2x-1) + 2(5x^2-1)\right]$$

$$= \frac{20x^2-5x-2}{\sqrt{5x^2-1}}$$

2 Express $x^2(x-1)\sqrt{5+6x}$ as a product of two factors. Then differentiate it with respect to x.

$$x^{2}(x-1)\sqrt{5+6x} = (x^{3}-x^{2})\sqrt{5+6x}$$

$$\frac{d}{dx}\left[x^{2}(x-1)\sqrt{5+6x}\right]$$

$$= \frac{d}{dx}\left[(x^{3}-x^{2})\sqrt{5+6x}\right]$$

$$= (x^{3}-x^{2})\frac{d}{dx}(5+6x)^{\frac{1}{2}} + (5+6x)^{\frac{1}{2}}\frac{d}{dx}(x^{3}-x^{2})$$

$$= (x^{3}-x^{2})\left(\frac{1}{2}\right)(5+6x)^{-\frac{1}{2}}(6) + (5+6x)^{\frac{1}{2}}(3x^{2}-2x)$$

$$= x(5+6x)^{-\frac{1}{2}}\left[3(x^{2}-x)+(5+6x)(3x-2)\right]$$

$$= \frac{x(3x^{2}-3x+18x^{2}+3x-10)}{\sqrt{5+6x}}$$

$$= \frac{x(21x^{2}-10)}{\sqrt{5+6x}}$$

Given that
$$y = x\sqrt{5-x^2}$$
, show that $\frac{dy}{dx} = \frac{5-2x^2}{\sqrt{5-x^2}}$.

Given:
$$y = x\sqrt{5-x^2}$$

$$\frac{dy}{dx} = \frac{d}{dx} \left[x\sqrt{5 - x^2} \right]$$

$$= x \frac{d}{dx} \left(5 - x^2 \right)^{\frac{1}{2}} + \left(5 - x^2 \right)^{\frac{1}{2}} \frac{dx}{dx}$$

$$= x \left(\frac{1}{2} \right) \left(5 - x^2 \right)^{-\frac{1}{2}} \left(-2x \right) + \left(5 - x^2 \right)^{\frac{1}{2}}$$

$$= \left(5 - x^2 \right)^{-\frac{1}{2}} \left[-x^2 + \left(5 - x^2 \right) \right]$$

$$= \frac{5 - 2x^2}{\sqrt{5 - x^2}}$$

- 4 The equation of a curve is $y = \sqrt{x}(x-3)^4$. Find
 - (i) $\frac{\mathrm{d}y}{\mathrm{d}x}$,
 - (ii) the x-coordinate(s) of the point(s) where $\frac{dy}{dx} = 0$.

(i) Given:
$$y = \sqrt{x} (x-3)^4$$

$$\frac{dy}{dx} = \frac{d}{dx} \left[x^{\frac{1}{2}} (x-3)^{4} \right]$$

$$= x^{\frac{1}{2}} \frac{d}{dx} (x-3)^{4} + (x-3)^{4} \frac{d}{dx} \left(x^{\frac{1}{2}} \right)$$

$$= x^{\frac{1}{2}} (4) (x-3)^{3} + (x-3)^{4} \left(\frac{1}{2} \right) \left(x^{-\frac{1}{2}} \right)$$

$$= \frac{(x-3)^{3} \left[8x + (x-3) \right]}{2\sqrt{x}}$$

$$= \frac{3(x-3)^{3} \left[3x - 1 \right]}{2\sqrt{x}}$$

(ii) When
$$\frac{dy}{dx} = 0$$
, then

$$\frac{3(x-3)^3[3x-1]}{2\sqrt{x}} = 0$$

$$\Rightarrow (x-3)^3 (3x-1) = 0$$

 $x = 3 \text{ or } x = \frac{1}{3}$

The equation of a curve is $y = x\sqrt{9-x^2}$. Find the gradient of the curve at each of the 5 points where it meets the line y = x.

Given:
$$y = x\sqrt{9 - x^2}$$

$$\frac{dy}{dx} = \frac{d}{dx} \left[x\sqrt{9 - x^2} \right]$$

$$= x \frac{d}{dx} (9 - x^2)^{\frac{1}{2}} + (9 - x^2)^{\frac{1}{2}} \frac{dx}{dx}$$

$$= x \left(\frac{1}{2} \right) (9 - x^2)^{-\frac{1}{2}} (-2x) + (9 - x^2)^{\frac{1}{2}}$$

$$= (9 - x^2)^{-\frac{1}{2}} \left[-x^2 + (9 - x^2) \right]$$

$$= \frac{9 - 2x^2}{\sqrt{9 - x^2}}$$

Substituting
$$y = x$$
 into $y = x\sqrt{9 - x^2}$,

$$x\sqrt{9-x^2} = x$$

$$x\sqrt{9-x^2} - x = 0$$

$$x\left(\sqrt{9-x^2} - 1\right) = 0$$

$$x = 0 \text{ or } \sqrt{9-x^2} - 1 = 0$$

$$\sqrt{9-x^2} = 1$$

$$9-x^2 = 1$$

$$x^2 = 8$$

$$x^2 = 8$$
$$x = \pm 2\sqrt{2}$$

When
$$x = 0$$
, $\frac{dy}{dx} = \frac{9 - 2(0)^2}{\sqrt{9 - 0^2}}$

When
$$x = 2\sqrt{2}$$
, $\frac{dy}{dx} = \frac{9 - 2(8)}{\sqrt{9 - (8)}}$

When
$$x = -2\sqrt{2}$$
, $\frac{dy}{dx} = \frac{9 - 2(8)}{\sqrt{9 - (8)}}$
= -7

The gradients of the curve at the points where it meets the line y = x are 3 and -7.

Find the coordinates of the point on the curve y = (3x-1)(x-2) at which the tangent is parallel to the line 5x - y = 0.

Given:
$$y = (3x-1)(x-2)$$

$$\frac{dy}{dx} = \frac{d}{dx}(3x-1)(x-2)$$

$$= (3x-1)\frac{d}{dx}(x-2) + (x-2)\frac{d}{dx}(3x-1)$$

$$= 3x-1+3(x-2)$$

$$= 6x-7$$

The gradient of the line 5x - y = 0 is 5; so the gradient of the tangent that is parallel to this line is 5.

When
$$\frac{dy}{dx} = 5$$
, $6x - 7 = 5$
 $6x = 12$
 $x = 2$

Substituting x = 2 into the equation of curve,

$$y = [3(2)-1](2-2)$$

= 0

The coordinates of the point on the curve are (2, 0).

Quotient Rule

To differentiate the function $y = \frac{x}{(x+2)^3}$, you could write it as $y = x(x+2)^{-3}$ and then apply the product rule. Therefore, you can also apply the quotient rule directly.

Quotient Rule states that if $y = \frac{u(x)}{v(x)}$, where $v \neq 0$, then

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u}{v} \right) = \frac{v \frac{\mathrm{d}u}{\mathrm{d}x} - u \frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$$

Notes: (i) $y = \frac{u(x)}{v(x)}$ can also be written as $y = u(x)v(x)^{-1}$.

(ii)
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u}{v} \right) \neq \frac{\frac{\mathrm{d}u}{\mathrm{d}x}}{\frac{\mathrm{d}v}{\mathrm{d}x}}.$$

Example 7:

Differentiate the following with respect to *x*:

(i)
$$y = \frac{3x^2}{1-4x}$$

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{3x^2}{1 - 4x} \right]$$

$$= \frac{(1 - 4x) \frac{d}{dx} (3x^2) - 3x^2 \frac{d}{dx} (1 - 4x)}{(1 - 4x)^2}$$

$$= \frac{(1 - 4x)(6x) - 3x^2 (-4)}{(1 - 4x)^2}$$

$$= \frac{6x - 24x^2 + 12x^2}{(1 - 4x)^2}$$

$$= \frac{6x(1 - 2x)}{(1 - 4x)^2}$$

(ii)
$$y = \frac{x^2}{(1+x)^2}$$

$$\frac{dy}{dx} = \frac{(1+x)^2 \frac{d}{dx}(x^2) - x^2 \frac{d}{dx}(1+x)^2}{(1+x)^4}$$

$$= \frac{(1+x)^2 (2x) - x^2 (2)(1+x)}{(1+x)^4}$$

$$= \frac{2x(1+x)^2 - 2x^2 (1+x)}{(1+x)^4}$$

$$= \frac{2x(1+x)[(1+x) - x]}{(1+x)^4}$$

$$= \frac{2x}{(1+x)^3}$$

Class Practice 5:

1 Use Quotient Rule to differentiate $y = \frac{x^2 + 2}{3 - x^3}$.

Given:
$$y = \frac{x^2 + 2}{3 - x^3}$$

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{x^2 + 2}{3 - x^3} \right]$$

$$= \frac{(3 - x^3) \frac{d}{dx} (x^2 + 2) - (x^2 + 2) \frac{d}{dx} (3 - x^3)}{(3 - x^3)^2}$$

$$= \frac{(3 - x^3)(2x) - (x^2 + 2)(-3x^2)}{(3 - x^3)^2}$$

$$= \frac{x \left[6 - 2x^3 + 3x^3 + 6x \right]}{(3 - x^3)^2}$$

$$= \frac{x \left[x^3 + 6x + 6 \right]}{(3 - x^3)^2}$$

2 Differentiate the following functions with respect to *x* and simplify your answer.

(a)
$$\frac{\sqrt{x}}{1-x}$$

(b)
$$\frac{5x^2}{\sqrt{3x^2-1}}$$

(a)
$$\frac{d}{dx} \left[\frac{\sqrt{x}}{1-x} \right] \\
= \frac{(1-x)\frac{d}{dx} \left(x^{\frac{1}{2}} \right) - \left(x^{\frac{1}{2}} \right) \frac{d}{dx} (1-x)}{(1-x)^{2}} \\
= \frac{(1-x)\left(\frac{1}{2}\right) \left(x^{-\frac{1}{2}} \right) - \left(x^{\frac{1}{2}} \right) (-1)}{(1-x)^{2}} \\
= \frac{\left(\frac{1}{2}x^{-\frac{1}{2}}\right) \left[(1-x) - 2(x)(-1) \right]}{(1-x)^{2}} \\
= \frac{\left(\frac{1}{2}x^{-\frac{1}{2}}\right) \left[(1-x) - 2(x)(-1) \right]}{(1-x)^{2}} \\
= \frac{x+1}{2\sqrt{x}(1-x)^{2}}$$

$$\frac{\frac{d}{dx} \left[\frac{\sqrt{x}}{1-x} \right]}{\left(1-x \right) \frac{d}{dx} \left(x^{\frac{1}{2}} \right) - \left(x^{\frac{1}{2}} \right) \frac{d}{dx} (1-x)}{\left(1-x \right)^{2}} \\
= \frac{(1-x) \left(\frac{1}{2} \right) \left(x^{-\frac{1}{2}} \right) - \left(x^{\frac{1}{2}} \right) \frac{d}{dx} (1-x)}{\left(1-x \right)^{2}} \\
= \frac{(1-x) \left(\frac{1}{2} \right) \left(x^{-\frac{1}{2}} \right) - \left(x^{\frac{1}{2}} \right) (-1)}{\left(1-x \right)^{2}} \\
= \frac{\left(\frac{1}{2} x^{-\frac{1}{2}} \right) \left[(1-x) - 2(x)(-1) \right]}{\left(1-x \right)^{2}} \\
= \frac{\left(\frac{1}{2} x^{-\frac{1}{2}} \right) \left[(1-x) - 2(x)(-1) \right]}{\left(1-x \right)^{2}} \\
= \frac{(1-x) \left(\frac{1}{2} \right) \left(x^{-\frac{1}{2}} \right) \left[(1-x) - 2(x)(-1) \right]}{\left(1-x \right)^{2}} \\
= \frac{(3x^{2}-1)^{\frac{1}{2}} \left[(10x) - (5x^{2}) \left(\frac{1}{2} \right) (3x^{2}-1)^{-\frac{1}{2}} (6x)}{\left[(3x^{2}-1)^{\frac{1}{2}} \right]^{2}} \\
= \frac{5x \left(3x^{2}-1 \right)^{-\frac{1}{2}} \left[2 \left(3x^{2}-1 \right) - 3 \left(x^{2} \right) \right]}{3x^{2}-1} \\
= \frac{5x \left(3x^{2}-2 \right)}{\left(3x^{2}-1 \right) \sqrt{3}x^{2}-1} \\
= \frac{5x \left(3x^{2}-1 \right) \sqrt{3}x^{2}-1}{3x^{2}-1} \\
= \frac{5x \left(3x^{2}-1 \right) \sqrt{3}x^{2}-1} \\
= \frac{5x \left(3x^{2}-1 \right) \sqrt{3}x^{2}-1}{3x^{2}$$

The equation of a curve is $y = \frac{\sqrt{2x-1}}{x}$. Calculate the gradient of the tangents to the curve at the point where x = 1.

Given:
$$y = \frac{\sqrt{2x-1}}{x}$$

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{\sqrt{2x-1}}{x} \right]$$

$$= \frac{x \frac{d}{dx} (2x-1)^{\frac{1}{2}} - (2x-1)^{\frac{1}{2}} \frac{dx}{dx}}{x^2}$$

$$= \frac{x \left(\frac{1}{2}\right) (2x-1)^{-\frac{1}{2}} (2) - (2x-1)^{\frac{1}{2}} (1)}{x^2}$$

$$= \frac{(2x-1)^{-\frac{1}{2}} \left[x - (2x-1) \right]}{x^2}$$

$$= \frac{1-x}{x^2 \sqrt{2x-1}}$$

When
$$x = 1$$
, $\frac{dy}{dx} = \frac{1 - (1)}{(1)^2 \sqrt{2(1) - 1}}$
= 0

The gradient of the tangent to the curve at the point where x = 1 is 0.

The rate of change of y when x = 1 is -4.

- 4 (i) Differentiate $(1-x^2)\sqrt{x+3}$ with respect to x.
 - (ii) Use the Quotient Rule to find the rate of change of $y = \frac{(1-x^2)\sqrt{x+3}}{x^3}$ with respect to x when x = 1.

to x when
$$x = 1$$
.

(i) $\frac{d}{dx} \left[(1-x^2)\sqrt{x+3} \right]$

$$= (1-x^2) \frac{d}{dx} (x+3)^{\frac{1}{2}} + (x+3)^{\frac{1}{2}} \frac{d}{dx} (1-x^2)$$

$$= (1-x^2) \left(\frac{1}{2} \right) (x+3)^{-\frac{1}{2}} (1) + (x+3)^{\frac{1}{2}} (-2x)$$

$$= \left(\frac{1}{2} \right) (x+3)^{-\frac{1}{2}} \left[1-x^2 - 4x(x+3) \right]$$

$$= \frac{1-12x-5x^2}{2\sqrt{x+3}}$$

$$= \frac{x^3 \frac{d}{dx} \left[(1-x^2)\sqrt{x+3} \right] - \left[(1-x^2)\sqrt{x+3} \right] \frac{d}{dx} (x^3)}{(x^3)^2}$$

$$= \frac{x^3 \left[\frac{1-12x-5x^2}{2\sqrt{x+3}} \right] - \left[(1-x^2)\sqrt{x+3} \right] (3x^2)}{x^6}$$

$$= \frac{x(1-12x-5x^2) - 6(1-x^2)(x+3)}{2x^4\sqrt{x+3}}$$

$$= \frac{x-12x^2 - 5x^3 + 6x^3 + 18x^2 - 6x - 18}{2x^4\sqrt{x+3}}$$

$$= \frac{x^3 + 6x^2 - 5x - 18}{2x^4\sqrt{x+3}}$$
At $x = 1$, $\frac{dy}{dx} = \frac{(1)^3 + 6(1)^2 - 5(1) - 18}{2(1)^4 \sqrt{(1) + 3}}$

$$= -4$$

The equation of a curve is $y = \left(\frac{5x+3}{10x-6}\right)^4$. Calculate the gradients of the tangents to the curve at the points where y = 16.

Given:
$$y = \left(\frac{5x+3}{10x-6}\right)^4$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{5x+3}{10x-6}\right)^4$$

$$= 4\left(\frac{5x+3}{10x-6}\right)^3 \times \frac{d}{dx} \left(\frac{5x+3}{10x-6}\right)$$

$$= 4\left(\frac{5x+3}{10x-6}\right)^3 \left[\frac{(10x-6)\frac{d}{dx}(5x+3) - (5x+3)\frac{d}{dx}(10x-6)}{(10x-6)^2}\right]$$

$$= 4\left(\frac{5x+3}{10x-6}\right)^3 \left[\frac{5(10x-6) - 10(5x+3)}{(10x-6)^2}\right]$$

$$= \frac{-240(5x+3)^3}{(10x-6)^5}$$

When
$$y = 16$$
, $\left(\frac{5x+3}{10x-6}\right)^4 = 16$

$$\Rightarrow \frac{5x+3}{10x-6} = \sqrt[4]{16} \quad \text{or} \quad \frac{5x+3}{10x-6} = -\sqrt[4]{16}$$

$$\frac{5x+3}{10x-6} = 2 \quad \frac{5x+3}{10x-6} = -2$$

$$5x+3 = 2(10x-6) \quad 5x+3 = -2(10x-6)$$

$$15x = 15 \quad 25x = 9$$

$$x = 1 \quad x = \frac{9}{25}$$

When
$$x = 1$$
, $\frac{dy}{dx} = \frac{-240[5(1) + 3]^3}{[10(1) - 6]^5}$
= -120

When
$$x = \frac{9}{25}$$
, $\frac{dy}{dx} = \frac{-240\left[5\left(\frac{9}{25}\right) + 3\right]^3}{\left[10\left(\frac{9}{25}\right) - 6\right]^5}$
$$= 333\frac{1}{3}$$

The gradients of the tangents to the curve at the points where y = 16 are -120 and $333\frac{1}{3}$.

A curve had the equation $y = \sqrt{\frac{x-a}{b-x}}$, where a < x < b, and a and b are constants. Show that the gradient of the curve at $x = \frac{a+b}{2}$ is $\frac{2}{b-a}$.

Given:
$$y = \sqrt{\frac{x-a}{b-x}}$$

$$\frac{dy}{dx} = \frac{d}{dx} \sqrt{\frac{x-a}{b-x}}$$

$$= \frac{d}{dx} \left[\frac{x-a}{b-x} \right]^{\frac{1}{2}}$$

$$= \frac{1}{2} \left[\frac{x-a}{b-x} \right]^{-\frac{1}{2}} \times \frac{d}{dx} \left(\frac{x-a}{b-x} \right)$$

$$= \frac{(b-x)^{\frac{1}{2}}}{2(x-a)^{\frac{1}{2}}} \times \frac{(b-x)\frac{d}{dx}(x-a) - (x-a)\frac{d}{dx}(b-x)}{(b-x)^2}$$

$$= \frac{(b-x)^{\frac{1}{2}}}{2(x-a)^{\frac{1}{2}}} \times \frac{(b-x)(1) - (x-a)(-1)}{(b-x)^2}$$

$$= \frac{b-a}{2(x-a)^{\frac{1}{2}}(b-x)^{\frac{3}{2}}}$$

When
$$x = \frac{a+b}{2}$$
, $\frac{dy}{dx} = \frac{b-a}{2\left(\frac{a+b}{2}-a\right)^{\frac{1}{2}}\left(b-\frac{a+b}{2}\right)^{\frac{3}{2}}}$

$$= \frac{b-a}{2\left(\frac{a+b-2a}{2}\right)^{\frac{1}{2}}\left(\frac{2b-(a+b)}{2}\right)^{\frac{3}{2}}}$$

$$= \frac{b-a}{2\left(\frac{b-a}{2}\right)^{\frac{1}{2}}\left(\frac{b-a}{2}\right)^{\frac{3}{2}}}$$

$$= \frac{b-a}{2\left(\frac{b-a}{2}\right)^{\frac{3}{2}}}$$

$$= \frac{b-a}{2\left(\frac{b-a}{2}\right)^{\frac{3}{2}}}$$

$$= \frac{2}{b-a} \quad [Shown]$$

^{**}All questions are taken from Additional Mathematics 360 textbook, 2nd Edition (Volume B). (published by Marshall Cavendish Education)