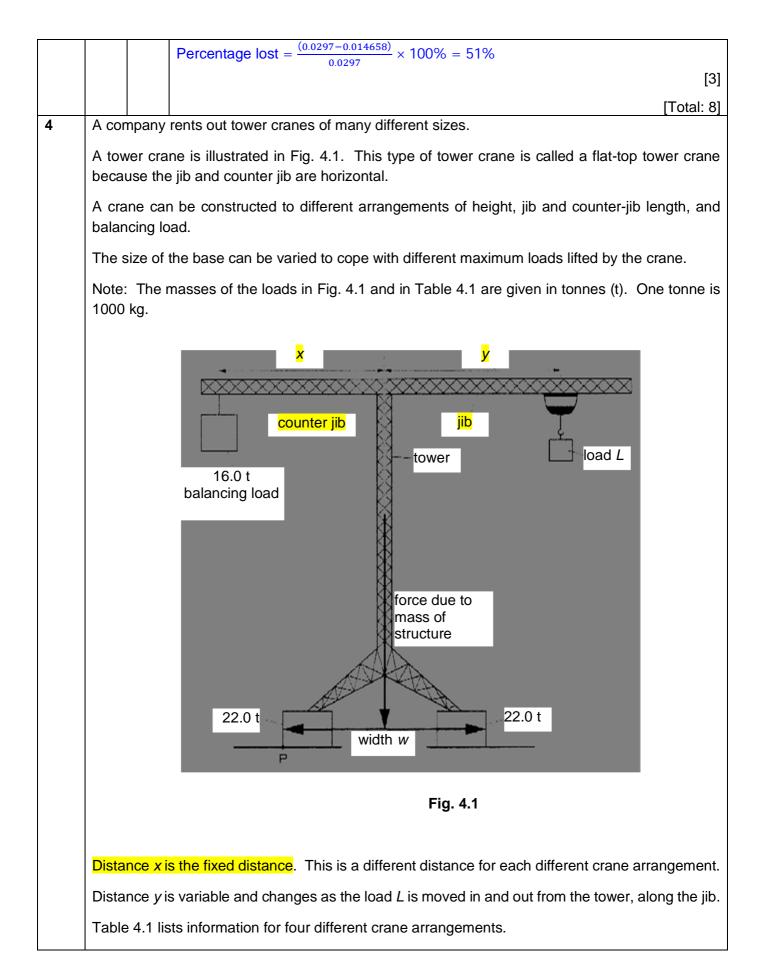
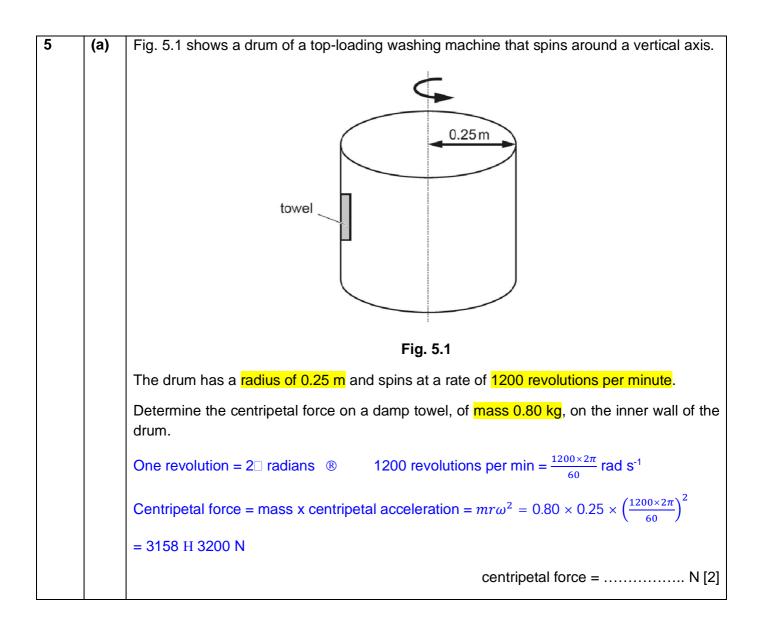

Section A

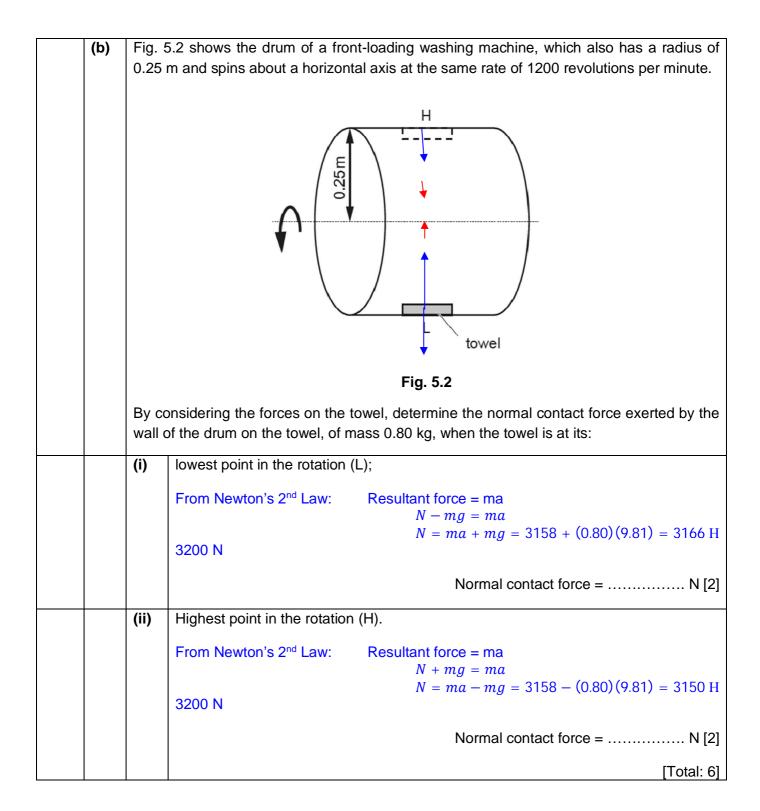
Answer all the questions in this section.

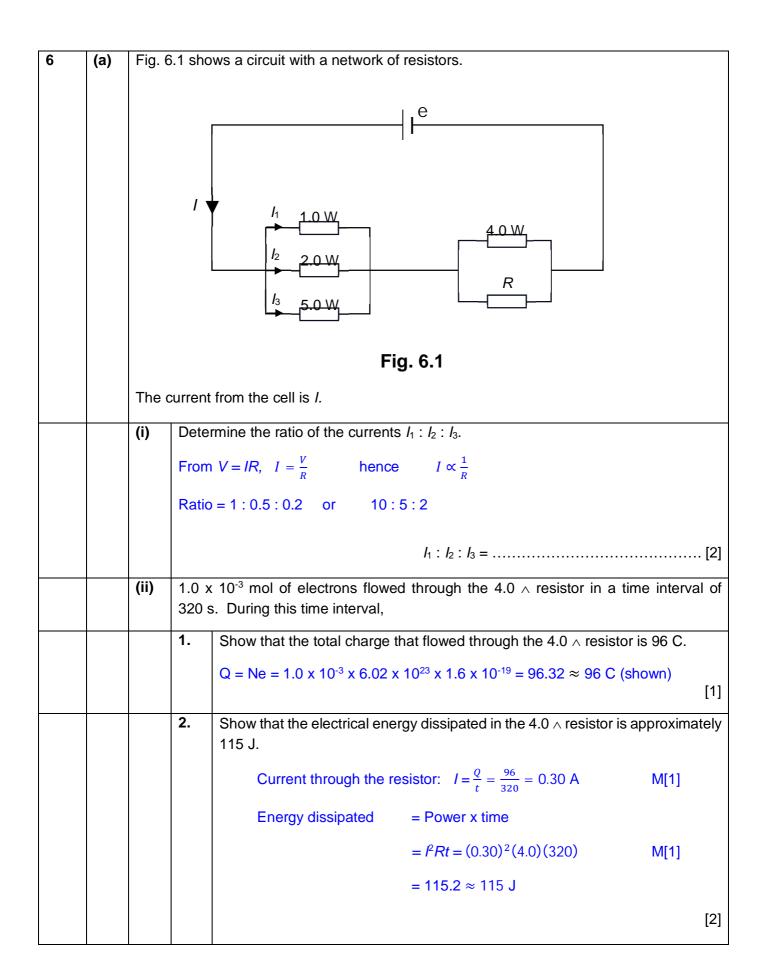


			$(0.60 \times 10^6)(y) = 1.47 \times 10^6 \times 0.80$	(B) $y = \frac{1.47}{0.60} \times 0.80 = 1.96 \text{ H} 2.0 \text{ m}$
--	--	--	--	--

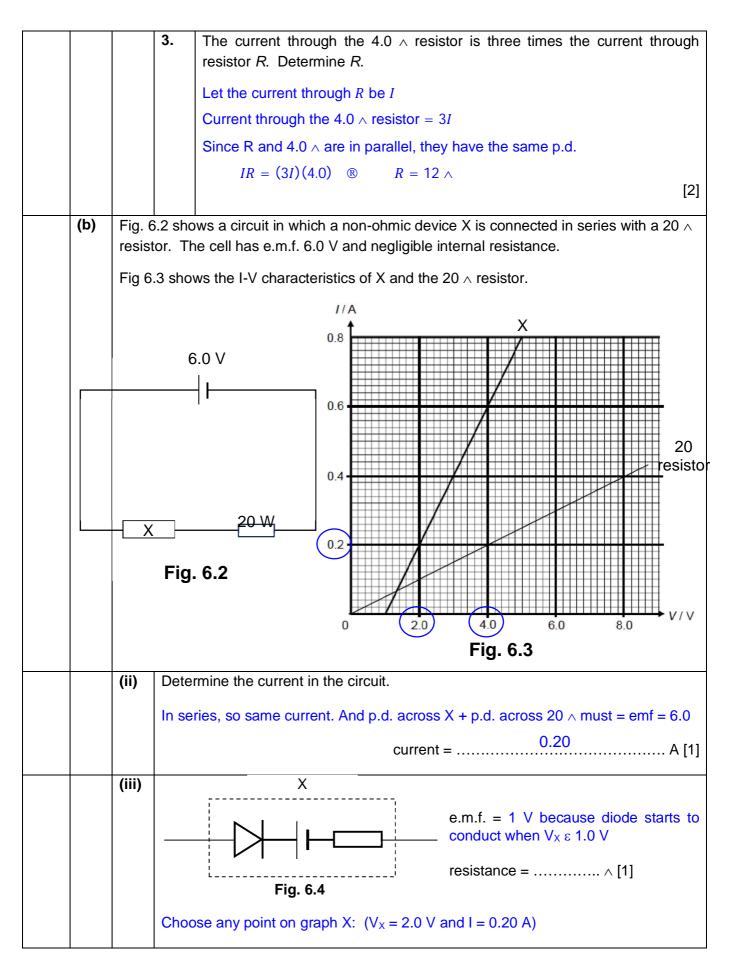
3	(a)	State the principle of conservation of linear momentum.				
		In the absence of a resultant external force acting on a system of interacting objects, the				
		total momentum of the system is constant.				
	(h)	Fig. 2.1 shows two diase. A and D and c frictionlass table collide head on. Dias A has				
	(b)	Fig. 3.1 shows two discs, A and B , on a frictionless table collide head-on. Disc A has a mass of 0.36 kg and disc B has a mass of 0.18 kg. Before colliding, disc A has a velocity of 0.40 m s ¹ and disc B a velocity of 0.10 m s ⁻¹ in the opposite direction. On colliding they stick together. Before collision $\begin{array}{c} 0.40 \text{ m s}^{-1} & 0.10 \text{ m s}^{-1} \\ \hline \mathbf{A} & \mathbf{B} \\ 0.36 \text{ kg} & 0.18 \text{ kg} \end{array}$				
		Fig. 3.1				
		Calculate				
		(i) the velocity of the discs after the collision.				
		From momentum conservation and taking velocity to the right as positive:				
		$(0.36)(0.40) + (0.18)(\Box 0.10) = (0.36 + 0.18)(v)$				
		$v = 0.233 \text{ m s}^{-1}$				
		velocity = $\dots \frac{0.233}{\text{rightwards}}$ m s ⁻¹ [direction = $\dots \frac{1}{10000000000000000000000000000000000$				
		 (ii) the kinetic energy lost during the collision expressed as a percentage of the initi kinetic energy of the two discs. 				
		Total kinetic energy before collision = $\frac{1}{2}(0.36)(0.40)^2 + \frac{1}{2}(0.18)(0.10)^2 = 0.0297$				
		Total kinetic energy after collision = $\frac{1}{2}(0.36 + 0.18)(0.233)^2 = 0.014658$				

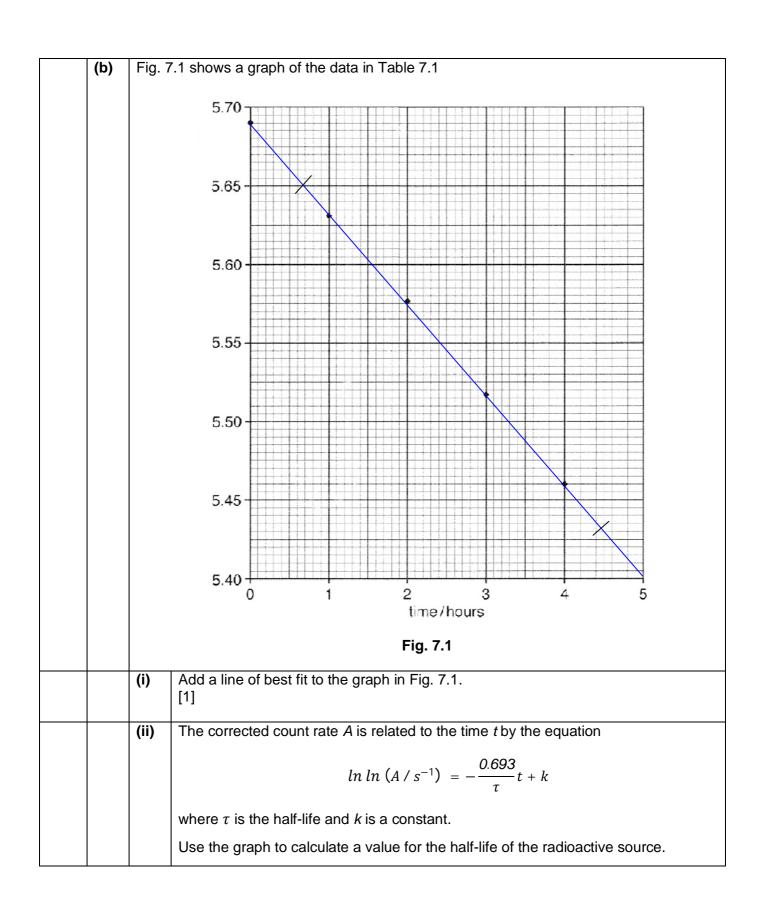



The maximum load L in tonnes that can be lifted for different distances y from the centre of the
tower for each arrangement is also shown.

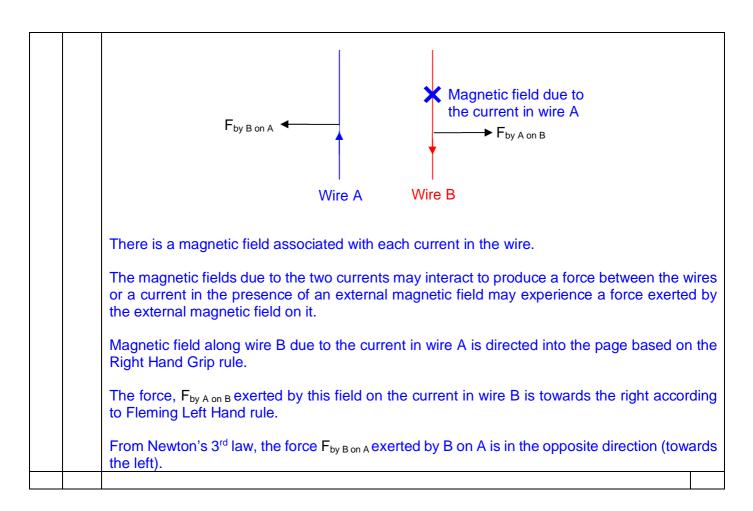

				Table 4.1			
crane t			total length of jib	distance <i>x</i> to 16.0 t	Maximum load L at different distances y/t		
arrang	jemer	nt a	nd counter jib / m	balancing load / m	y = 30 m	y = 52 m	y = 75 m
/	4		95.0	17.3	8.48	4.31	2.60
E	3		75.0	19.4	9.79	5.15	_
(С		75.0	21.1	10.81	5.77	_
	D		<mark>55.0</mark>	<mark>22.3</mark>	11.53	_	_
	(a)	(i)		eight of the 16.0 t balan 1000 x 9.81 = 1.57 x 1	·		
				١	weight =	۱	unit [2]
		(ii)	Using the data in $y = 52$ m.	n Table 4.1, explain wh	ny there is no de	tail provided fo	r crane D when
				4.1 and the data for cr of y H 55.0 □ 22.3 = 3			52 m [1]
	(b)	(i)	Show, for crane put the crane int	A, that the load and th o equilibrium.	ne balancing loa	nd given in the t	able can never
			Taking moments a	about the mid-point of th	e tower:		
			Anti-clockwise mo	ment due to 16.0 t balar	ncing load = 1.57	x 10 ⁵ x 17.3 = 2.	72 x 10 ⁶ Nm
			When y = 30 m, c	lockwise moment due to	load = (8.48)(100)	00)(9.81)(30) = 2	.50 x 10 ⁶ Nm
			When y = 52 m, c	lockwise moment due to	load = (4.31)(100)	00)(9.81)(52) = 2	.20 x 10 ⁶ Nm
			When y = 75 m, c	lockwise moment due to	load = (2.60)(100)	00)(9.81)(75) = 1	.91 x 10 ⁶ Nm
				ent due to the load is a ad, hence the two load	•		

	(ii)	When in use, crane A is in equilibrium. Suggest how this is achieved.
		The weight of the crane structure and the weight of the 22.0 t base will provide the necessary moment to keep the crane in equilibrium. Image: Counter (b) force due to mass of structure mass of struct
(c)	The	width w of the base of a crane is important in providing stability.
		crane C, the foundations of the base are two identical large cubic concrete masses, of mass 22.0 t. These masses are firmly attached to the crane.
	-	total mass of the crane structure is 17.0 t and the force due to the mass of the crane through the centre of the legs.
	The I	palancing load is 16.0 t and is 21.1 m from the centre of the tower.
		king moments about point P in Fig. 4.1, determine, <mark>for zero load</mark> , the <mark>minimum possible of <i>w</i> before the <mark>right hand concrete mass lifts from the ground</mark>.</mark>
	Let th	The width of the concrete mass be d
		$(1000)(9.81)\left(21.1 - \frac{w}{2}\right) = (22.0)(1000)(9.81)\left(\frac{d}{2}\right) + (17.0)(1000)(9.81)\left(\frac{w}{2}\right)$
	(10.0	
		+ (22.0)(1000)(9.81) $\left(w - \frac{d}{2}\right)$


	(16.0	$(21.1) - (16.0)\left(\frac{w}{2}\right) = (22.0)\left(\frac{x}{2}\right) + (17.0)\left(\frac{w}{2}\right) + (22.0)(w) - (22.0)\left(\frac{x}{2}\right)$					
	(16.0	$(21.1) = (17.0)\left(\frac{w}{2}\right) + (22.0)(w) + (16.0)\left(\frac{w}{2}\right) = w\left(\frac{17}{2} + 22 + \frac{16}{2}\right)$					
	<i>w</i> = 8	w = 8.77 m					
		minimum value of $w = \dots m$ [3]					
(d)	(i)	A motor on the crane lifts a load from the ground into position.					
		The motor needs to lift a load of 12000 kg a distance of 80 m.					
		Suggest a suitable time period for the duration of the lift and hence make a calculation to estimate the output power of the motor.					
		Suggested time =s Lifting speed H 10 to 100 cm s ⁻¹ Output power = $\frac{Gain in gpe}{time} = \frac{mgh}{t} = \frac{12,000 \times 9.81 \times 80}{500} = 20,000$ W (1 sig. fig.)					
		output power =					
	(ii)	The efficiency of the motor is 65%. Calculate the electrical power input required for your answer to (d)(i) .					
		Output power = 0.65 x Input power					
		Input power = $\frac{20,000}{0.65}$ = 31,000 W					
		Power input = W [2]					
		[Total: 16]					

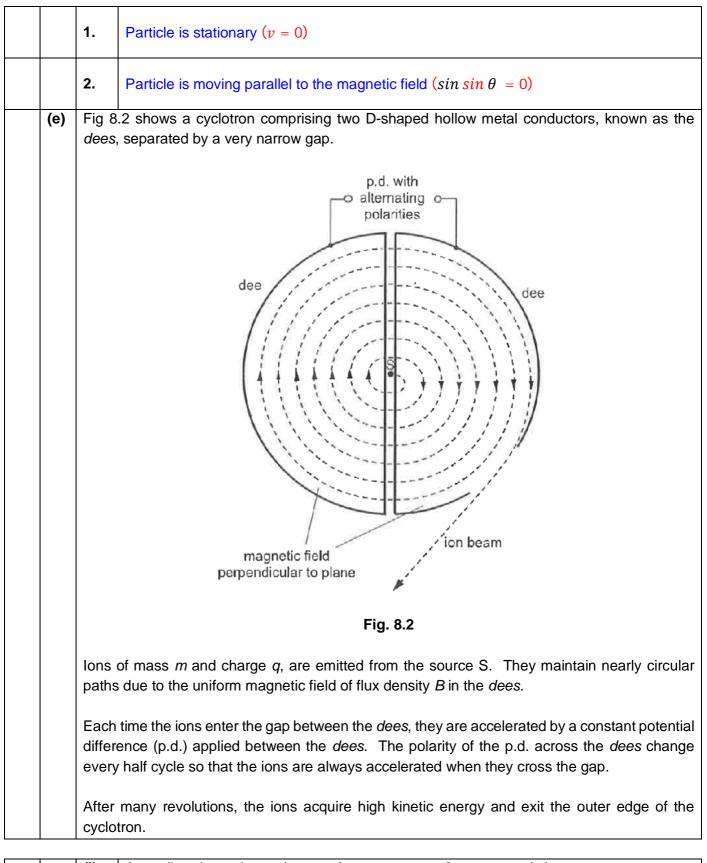


$V_X = 1.0 + (0.20)R = 2.0$) (8) $R = 5.0 \wedge$	
-----------------------------	------------------------	--


7	(a)	A stu	dent performs a	udent performs an experiment to determine the half-life of a radioactive isotope.			
		(i)	Define <i>half-life</i> . It is the time taken for half the number of nuclide/isotope present in a sample to decay. * nuclide refers to a particular species of nuclei.				
		(ii)	radiation coun 2400 counts. Determine the	t in 10.0 minutes background coun	with no radioactiv	packground radiation ve source present is round count is const	s found to be
				ba	ackground count r	ate =	s ⁻¹ [1]
		(iii)	count rate is de	etermined once ev	very hour.	se to the radiation d ion, is recorded in Ta	
				t / hours	A / s ⁻¹	In (A / s ⁻¹)	
				0.00	296	5.690	
				1.00	279	5.631	
				<mark>2.00</mark>	<mark>264</mark>	5.576	
				3.00	249	5.517	
				4.00	235	5.460	
				uncorrected coun	4 = 268 s ⁻¹ .	hours. nt rate =	s ⁻¹ [1]

	Gradient = $\frac{5.65-5.43}{0.7-4.5} = -\frac{0.693}{\tau}$ possible	Gradient coordinates must be as far apart as		
	$\tau = 11.97 \approx 12.0$ hours coordinate.	Do not use a plotted point as a gradient		
		half-life = hours [3]		
[Total: 7] Section B				

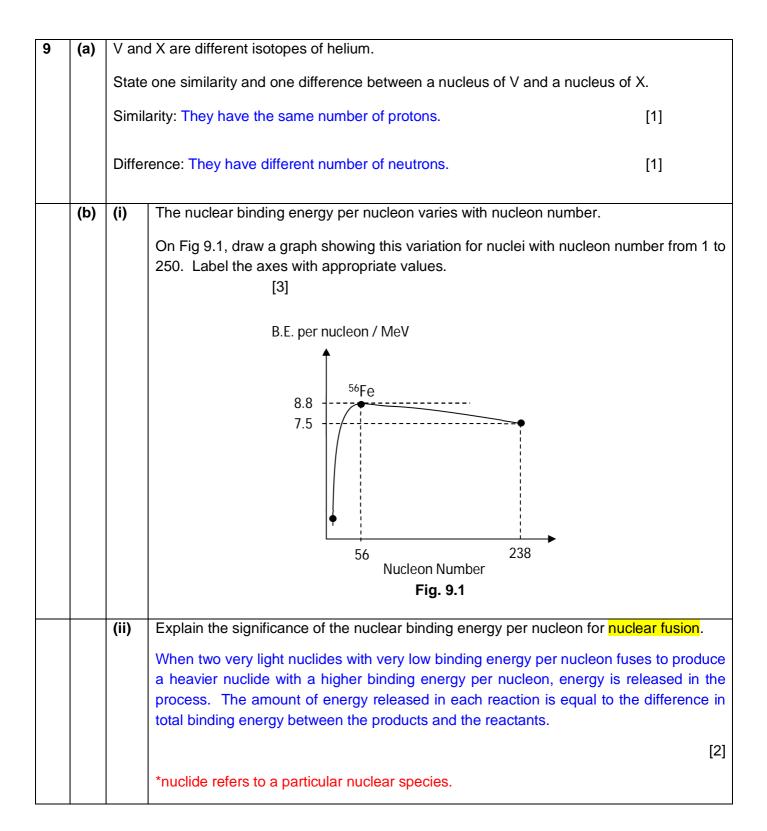
Answer **one** question from this section.


8	(a)	Sketch three magnetic field lines due to a long straight current carrying wire. Indicate clea	arly
		the direction of the magnetic field.	
		Top view (Current flowing into the paper)	[2]
		Circular (use compass to draw) with increasing separation. Arrow points clockwise (according to Right Hand Grip rule)	
	(b)	Two long straight parallel wires are separated by a distance <i>d</i> . Each carries current <i>l</i> in opposite directions. Explain the origin of the forces which exist between the two wires a	
		predict the directions of the forces.	

(c)	In an experiment to determine the magnetic flux density due to a magnet, a wire frame ABCD
	supported on two knife edges P and Q is placed horizontally next to the magnet as shown in
	Fig. 8.1. Sides BC and AD are 5.0 cm and sides AB and DC are 8.0 cm. P and Q are at the
	midpoints of AB and DC respectively. When there is no current in the circuit, the frame is
	balanced horizontally.
	A
	D

В					
С					
Q					
P					
	hotton				
	battery	•			
to	battery				
Ι					
Ι					
S					
N					
S					
N					
D					
С					
-	de view	,			
	g. 8.1				
	y. o. i				
Q					
Ι					
(i)	Wh	en there is a current flowing as shown in Fig 8.1, state the directions of the mag	netic		
		ce, if any, on			
	1.	side QC,			
		No force (because the current is parallel to the field ie. $F = BILsin0^\circ = 0$)	[1]		
	2.	side BC.			
	۷.				
			543		
		Downwards (from Fleming's Left Hand rule)	[1]		
(ii) An	nass of 21.0 g has to be placed on side AD to balance the wire frame when the			
	-	rent is 2.0 A. Determine the magnetic flux density experienced by side BC.			
	Cui	Tent is 2.0 A. Determine the magnetic hux density experienced by side DC.			
	Sur	m moments about the pivot QP:			
		(4.0) (4.0)			
		$mg \times \left(\frac{4.0}{100}\right) = (BIL)\left(\frac{4.0}{100}\right)$			
		$ma = 21.0 \times 10^{-3} \times 9.81$			
	<i>B</i> =	$=\frac{mg}{lL}=\frac{21.0\times10^{-3}\times9.81}{2.0\times0.05}=2.06 \text{ T}$			
		1L 2.U×U.U5			
		and a second for the first second	[0]		
		magnetic flux density =	[3]		

(d) There are two situations in which a charged particle in a magnetic field does not experience a magnetic force. State these two situations. Recall: Magnetic force on a charged particle in a B field: F = Bqvsin sin θ



	(i)	A small cyclotron is used to accelerate a proton of mass m and charge q .

	1.	By considering the magnetic force acting on the proton moving within the <i>dees</i> , show that the time T taken by the proton to complete one revolution is given by the expression
		$T = \frac{2\pi m}{qB}$
		where <i>B</i> is the magnitude of the magnetic flux density in the <i>dees</i> . You may use
		the expression $a = v\omega$ for the centripetal acceleration where v is the linear speed and ω is the angular speed of the proton.
		Resultant force on the proton is just the magnetic force (weight = mg of the proton is negligible compared to the magnetic force).
		From Newton's 2 nd law, resultant force = ma where a = centripetal acceleration
		$Bqv = m(v\omega)$ $Bq = m(\omega) = m\left(\frac{2\pi}{T}\right)$ since angular speed, $\omega = \frac{2\pi}{T}$
		Period, $T = \frac{2\pi m}{qB}$ (shown)
		[2]
	2.	The magnetic flux density in the <i>dees</i> is 1.7 T.
		Determine the frequency for the changing polarity of the p.d.
		Frequency, $f = \frac{1}{T} = \frac{qB}{2\pi m} = \frac{1.6 \times 10^{-19} \times 1.7}{2\pi \times 1.67 \times 10^{-27}} = 2.6 \times 10^7 \text{ Hz}$
		frequency = Hz [1]
(ii)		proton exiting the cyclotron is moving in a circular path of radius 0.25 m.
	Shov	v that the kinetic energy of the proton is 1.4 x 10 ⁻¹² J. k.e. = $\frac{1}{2}mv^2 = \frac{p^2}{2m}$
	From	Newton's 2 nd law, resultant force on proton = ma
	Bqv	$= m\left(\frac{v^2}{r}\right)$ (B) $mv = Bqr = (1.7)(1.6 \times 10^{-19})(0.25) = 6.8 \times 10^{-20}$
	Kinet (shov	tic energy $=\frac{1}{2}mv^2 = \left(\frac{mv^2}{2}\right)\left(\frac{m}{m}\right) = \frac{(mv)^2}{2m} = \frac{(6.8 \times 10^{-20})^2}{2 \times 1.67 \times 10^{-27}} = 1.38 \times 10^{-12} \approx 1.4 \times 10^{-12}$ wn)
	(0.10)	[2]

	(iii)	The proton starts from rest at the centre of the cyclotron and complete 100 revolutions]
		before it exits from the cyclotron.	

	1.	Calculate the kinetic energy gained for each revolution.
		Kinetic energy gained per revolution = $\frac{1.4 \times 10^{-12}}{100}$ = 1.4 × 10 ⁻¹⁴ J
		Kinetic energy gained for each revolution = J [1]
	2.	For each revolution, the proton crosses the gap between the <i>dees</i> twice and hence it is accelerated twice by the p.d. <i>V</i> across the gap. The kinetic energy gained each time it crosses the gap is given by <i>qV</i> where <i>q</i> is the charge on the proton. Determine the p.d. applied across the <i>dees</i> as the proton crosses the gap between them. Proton crosses a gap twice in each revolution. Hence, $2qV = 1.4 \times 10^{-14}$ $V = \frac{1.4 \times 10^{-14}}{2 \times 1.6 \times 10^{-19}} = 43,750 \approx 44,000 \text{ V}$
		V =
		[Total: 20]

(c)	A 24	He nucleus is formed in this nuclear reaction:					
		12H + 23He □ 24He + Y					
	(i) State three quantities that are conserved in all nuclear reactions.						
		1. Proton Number (or electric charge)					
		2. Nucleon Number					
		3. Total relativistic energy					
		4. Total momentum					
	(ii)	Identify particle Y.					
		Y is a proton. [1]					
	(iii)	Explain, in terms of mass, why this nuclear reaction occurs.					
		The total rest mass of the reactants $(12H + 23He)$ is larger than the total rest mass of the products $(24He + Y)$. This reaction will result in a release of energy and hence it occurs.					
		[1]					
	(iv)	Calculate the amount of energy released in the nuclear reaction.					
		mass of 12H is 2.0141 u					
		mass of 23He is 3.0160 u					
		mass of 24He is 4.0026 u					
		mass of Y is 1.0078 u					
		Total rest mass of reactants = $2.0141u + 3.0160u = 5.0301u$					
		Total rest mass of products = $4.0026u + 1.0078u = 5.0104u$					
		Difference in mass = $5.0301u - 5.0104u = 0.0197u$					
		Energy released = $0.0197uc^2 = (0.0197)(1.66 \times 10^{-27})(3 \times 10^8)^2$ = 2.94 x 10 ⁻¹² J					
		energy released = J [3]					

	(v)	Calci	ulate the number of 23He nuclei which must each fuse with a 12H nucleus per		
	(•)		nd in order to emit energy at a rate of 20.0 W.		
		In on	e second, we need 20.0 J of energy.		
		Number of reactions needed in one second = $\frac{20.0}{2.94 \times 10^{-12}}$ = 6.80 × 10 ¹²			
		Henc	e, number of 23He nuclei needed = 6.80×10^{12} s ⁻¹		
			Number = s ⁻¹ [2]		
	(vi)	In a h	nouse, there are fifteen lamps which consume electrical energy at a rate of 20.0 W		
			. The lamps are only switched on in the evenings.		
		Fstim	nate the mass of 23He that is required in order for this reaction to release the same		
			and the mass of 2011 that is required in order for this reaction to release the same ant of energy as the lamps in the house consume in one year.		
		State	any assumption made.		
		Assumption: Lamps are switched on for <u>5 hours</u> every evening.			
		Total energy consumed by 15 lamps in one year = $15 \times 20 \times 365 \times \frac{5}{5} \times 60 \times 60$			
			$71 \times 10^9 \mathrm{J}$		
		Number of 23He nuclei required = $\frac{1.971 \times 10^9}{2.94 \times 10^{-12}} = 6.70 \times 10^{20}$			
		Mass of 23 <i>He</i> required = $6.70 \times 10^{20} \times 3 \times 1.66 \times 10^{-27} = 3.34 \times 10^{-6}$ kg			
			mass = kg [3]		
			[Total: 20]		