Qn	Ans	Discussion
1	B	mass of car ≈ 2000 kg
		speed $\approx 100 \text{ km h}^{-1} \approx 28 \text{ m s}^{-1}$
		$K = -\frac{1}{mv^2} = 0.784 \text{ M}$
		$RE = -7770^{\circ} = 0.764 \text{ [VI]}$
		80 gsm (grams per square metre) of A4 paper
		A4 area 210 mm x 297 mm = 0.062 m ²
		Mass of A4 paper = 5.0 g
2	С	$KE_{i} = \frac{1}{2}m(u\cos\theta)^{2}$
		$\frac{1}{KE_{initial}} = \frac{2}{1} = \cos^2 \theta$
		$\frac{-mu^2}{2}$
3	Α	At steady speed of 1.4 m s ⁻¹ ,
		air resistance = weight component along slope
		$1.4 \ k = (80.0)(9.81) \sin 5^{\circ}$
		K = 40.057
		At steady speed of 5.5 m s ⁻¹ ,
		air resistance = (5.5)(48.857) = 268.71 N
		Additional force required = 268.71 – (80.0)(9.81)sin5°= 200 N (2 s.f.)
4	В	$x_1 = 10.0 - 7.5 = 2.5 \text{ cm}$
		At constant speed:
		$mg = kx_1$
		$mg = kx_1 - (1)$
		When slowing down:
		$mg - kx_2 = ma - (2)$
		Sub(1) into (2)
		$kx_1 - kx_2 = ma - (3)$
		$\frac{(3)}{(4)} \rightarrow \frac{a}{r} = \frac{X_1 - X_2}{r}$
		(1) $g = x_1$
		$X_2 = 1.99 \approx 2.0$ CIII
5	B	Applying $\cos i p r r r r = 0.0 - 0.0 cm$
5		$(4u)^2 - (20)^2 + (15)^2 - 2(20)(15) \cos 45^\circ$
		$(2V) = (20) + (13) - 2(20)(13)\cos 43$
		$\Delta V = 14.2 \text{ ms}^{-1}$
		$\Delta p = m \Delta v$
		= 0.140(14.2) - 20 Ns (2 s f)
6	<u>^</u>	-2.0 IN S (2 S.I.)
σ		F = 6 ma
		Considering X as a system,
		$F - F_{YX} = ma$
		$F_{YX} = 5 ma = 5/6 F$

7	Δ	Taking moments about the contact of the beam with the wall
· ·	~	Sum of clockwise moments = sum of anti-clockwise moments
		$(T\cos 30^{\circ})(L\sin 60^{\circ}) = (T\sin 30^{\circ})(L\cos 60^{\circ}) + (1/2W)(L\sin 60^{\circ})$
		T = 85 N (2 s.f.)
8	В	$E_{p} = E_{T}$
		$mgr = \frac{1}{2} m (4^2)$
		gr = 8
		If the mass persons as 75% of E it means E has decreased by 25%
		Let x be the point where GPE has decreased by $E/4$
		$E_p = E_x$
		$mgr = mg(3r/4) + \frac{1}{2} m v^2$
		$v^2 = \frac{1}{2} gr$
		$v = 2.0 \text{ m s}^{-1}$ $3r/4$
9	С	As $y = r \omega$.
•		Since ω is constant and r is decreasing at a steady rate with time, $v \propto r \propto t$
		Graph is a straight line, negative gradient but with a non-zero speed (as $r \neq 0$)
10	D	All geostationary actallities must have the same radius, and angular value the 2π
		All geostationary satellites must have the same radius, and angular velocity $\omega = \frac{1}{T}$.
		Hence, they will have the same linear speed.
		Why C is incorrect
		$mr\omega^2 = \frac{GMm}{r^2}$ where r - radius of orbit
		$4 \pi^2$
		$T^2 = \frac{4\pi}{GM} r^3$
		$(24 \times 60 \times 60)^2 = \frac{4\pi}{(2.27 + 40^{-11})(2.2 + 40^{-24})} r^3$
		$(6.67 \times 10^{-})(6.0 \times 10^{-})$
		$r = 4.231 \times 10^7 \mathrm{m}$
		height from surface, $h = 4.231 \times 10^7 - R$
11	Α	$Md\omega^2 = \frac{GM(3M)}{Md\omega^2}$ (1)
		$ (d+D)^2 $
		$3MD\omega^2 = \frac{GM(3M)}{2}$ (2)
		$(d+D)^2$
		Compare (1) & (2), $d = 3D$ (3)
		From (2) $\omega^2 = \frac{GM(3M)}{(3M)^2} \left(\frac{1}{1+1}\right)$
		$(3D+D)^2 (3MD)$
		$\omega^2 = \frac{GM}{16D^3} \qquad \dots \dots (4)$

		$KE \text{ of } 2 \text{ stars} = \frac{1}{2} M (d \omega)^2 + \frac{1}{2} 3M (D \omega)^2$
		$= \frac{1}{2}M(3D)^2\omega^2 + \frac{1}{2}3M(D\omega)^2$
		$= \frac{9}{2}MD^2\omega^2 + \frac{3}{2}MD^2\omega^2$
		$= 6 M D^2 \omega^2$
		$= 6 M D^2 \left(\frac{G M}{16 D^3} \right)$
		$= \frac{3GM^2}{8D}$
		Wrong answers:
		(B) Total $KE = \frac{GM(3M)}{2(3D)} = \frac{GM^2}{2D}$
		(C) Total $KE = \frac{GM(3M)}{2D} = \frac{3GM^2}{2D}$
		(D) Total $KE = \frac{GM(3M)}{2(3D)} + \frac{GM(3M)}{2D} = \frac{2GM^2}{D}$
12	D	Same temperature implies thermal equilibrium. Hence all 3 objects are in thermal equilibrium and have the same temperature. However the heat capacity of each material
		is different, so the amount of internal energy is different.
		Objects in thermal equilibrium can exchange thermal energy, but there will be no net
13	В	As <i>n</i> and <i>T</i> are constant,
		pV = nRT
		$p_1V_1 = p_2V_2$
		$30V_1 = 10V_2$
14	<u> </u>	$V_2 = 3V_1$
14	C	$\sqrt{\frac{250^2 + 300^2 + 400^2 + 100^2 + 500^2}{5}} = 340 \text{ m s}^{-1} \text{ (2 s.f.)}$
15	С	ma = mg - N
		ma = mg if $N = 0$
		$m\omega^2 x_0 = mg$
		$x = \frac{g}{1000} = \frac{9.81}{100000000000000000000000000000000000$
		$\omega^2 \qquad (2\pi f)^2 \qquad 4\pi^2 (2.0)^2 \qquad 0.12011 (2.011)^2$
16	Α	Graph shows U vs r of object undergoing simple harmonic motion. Hence $F = -kr$.
		Alternatively
		Γ dU magnitude and direction of Γ can be obtained from respective gradient of the
		$r = -\frac{1}{dr}$, magnitude and direction of r can be obtained from negative gradient of the
		graph.

17	П	A gin () where A gmplitude of weye at transmitter
17	U	$A = A_0 \sin \theta$ where $A_0 - \text{amplitude of wave at transmitter}$
		$A^2 = A_0^2 \sin^2 \theta$
		$P \propto I \propto A^2 = A^2 \sin^2 \theta$
		$r_R \sim r_R \sim A - A_0 \sin \theta$
		$P_{\rm T} \propto I_{\rm T} \propto A_{\rm c}^2 = \frac{A^2}{1-A^2}$
		$\sin^2 \theta$
18	В	λ 0.40 0.45
		$\frac{-}{2} = 0.49 - 0.15$
		$\lambda = 0.68 m$
		$V = T \lambda$
		330 = f(0.68)
		f = 490 Hz (2 s.f.)
19	D	The glass block has higher refractive index. Hence the speed of wave and the
		wavelength is smaller
		The number of wavelengths within the thickness of the glass block is more than the same
		thickness in air. Hence, central maximum position where the 2 wayes have no path
		difference is above the original position
20	P	Let whe the distance from Ω and whe the distance from 4Ω
20	D	
		$\frac{Q}{1-\frac{2}{2}} = \frac{4Q}{1-\frac{2}{2}}$
		$4\pi \varepsilon_0 y^2 \qquad 4\pi \varepsilon_0 (x+y)^2$
		$\left(x + u \right)^2$
		$\left \frac{x+y}{x}\right = 4$
		x + y = 2y
		y = x
21	Α	The particle can be either positively or negatively charged.
		The particle will be deflected at the point of entry.
		Electric field lines (and the equipotential lines) are closer together, hence has a stronger
		electric field strength.
22	С	$d - m \rightarrow A - m$
		$d = \frac{1}{AL} \rightarrow A = \frac{1}{dL}$
		$\rho L \rho L \rho L^2 d \rho L^2 d$
		$R = \frac{r}{A} = \frac{r}{m} = \frac{r}{m} \rightarrow m = \frac{r}{R}$
		$\frac{dL}{dL}$
		Since L and R are the same.
		$m \circ d \circ 1$
		$\frac{m_a}{m_a} = \frac{\mu_a}{2} \times \frac{\mu_a}{4} = \frac{2}{4} \times \frac{1}{2} = 0.67 \text{ (2 s.f.)}$
		$m_c \rho_c \alpha_c 1 3$

23	Α	Option A is correct since resistance of A is 15 Ω while resistance of B is 10 Ω .
		Option B is incorrect since power of $A = 0.40$ W while power of $B = 0.60$ W. So power dissipated in B is only 1.5 times of that in A.
		Option C is incorrect since total current = 0.30 + 0.20 = 0.50 A
		Option D is incorrect since at 0.20 A. A will have 2.0 V across it while B will have 3.0 V
		across it.
24	С	Assuming <i>B</i> _{solenoid} is to the right,
		Bsoleniod
		B_{Earth} 680
		Bataatt
		$\tan\theta = \frac{-\sin\theta}{B_{rank}}$
		$B = H_{\rm e} = B_{\rm e}$ at $\tan \theta$
		$-2.0 \times 10^{-5} \tan 68^{\circ} - 4.95 \times 10^{-5}$
		$B_{\text{solenoid}} = \mu nI$
		$4.95 \times 10^{-5} - (4\pi \times 10^{-7})(-20)/$
		$4.55 \times 10^{-2} / (15 \times 10^{-2})^{11}$
	_	I = 0.30 A (2 s.t.)
25	В	Sliding the rod right or left will induce an e.m.f. across the rod. Since the rod is in the
		right sections of the frame
		When the magnitude of the magnetic flux density increases, the frame experiences an
		increase in magnetic flux linkage out of the plane of the paper. By Lenz's law, an induced
		current will flow in the frame to create a magnetic field into the plane of the paper to
26	6	oppose this change. Hence, this leads to a clockwise current flowing through the frame.
20	U	$T = \frac{1}{f} = \frac{1}{50} = 0.02 \text{ s} = 2 \text{ div}$
		time-base = $\frac{0.02}{2}$ = 10 ms div ⁻¹
		V = 2.8 V = 1.4 div
		$X_{acin} = \frac{2.8}{2.0} \times div^{1}$
		$r-gain = \frac{1}{1.4} = 2.0 \text{ V div}$
27	Α	The cut-off wavelength corresponds to the most energetic photon released.
28	D	The uncertainty principle is independent of the experiment equipment. These
20	~	uncertainties would remain because they originate in the wave like nature of matter.
29	U	$\Delta m = [(235.04393 + 1.00866) - (140.91440 + 91.92617 + 3 \times 1.00866)]u$
		$\Delta m = 3.088 \times 10^{-20} \text{ kg}$
		$E = (\Delta m)c^2$
		$= 2.78 \times 10^{-11} \text{ J} (3 \text{ s.f.})$

30	В	$\ln C = mt + c$
		$\text{grad} = \frac{0-5.20}{20.2} = -0.2 = \lambda$
		26.0-0
		$t_{\rm res} = \frac{\ln 2}{2}$
		$\frac{1}{2}$ λ
		In2
		$=\frac{1}{0.2}$
		= 3.5 s (2 s.f.)