EXAM ANSWERS

Year:	2024
Exam:	Prelim
Level/Stream:	4E
Subject:	Chemistry 6092

P2

Qn	Answer	Marks	Comments
1a		5	1m each
i	chlorine and oxygen		
ii	iron(II) chloride		
iii	argon		
iv	carbon and chlorine		
V	iron and iron(II) chloride		
A1 b	Addition reaction with hydrogen ACCEPT: Hydrogenation / Addition with Hydrogen / addition of H ₂	3	1m each
	Esterification		
	Neutralisation ACCEPT: neutralization REJECT: acid-alkali reaction		

Qn	Answer	Marks	Comments
2a	The <u>mass</u> of the mothballs <u>decrease / becomes</u> <u>smaller</u> over time. REJECTED: Mothballs become smaller / reduce in size / shrink.	2	1 - trend
	This indicates that the mothball is gradually disappearing, which can be explained by <u>sublimation</u> , where the mothball <u>turns from a solid</u> into a gas without going though the liquid state. ACCEPT: sublimation / solid sublimes to form gas / solid particles gain sufficient energy to overcome forces of attraction and become gas/gaseous particles. REJECT: decomposition		1 - reason

2b	Diffusion is the movement of gas molecules from a region of higher concentration near the mothballs to a region of lower concentration throughout the cupboard.	1	1m – diffusion definition on solute movement
	As the molecules are spread out and mixed with the air molecules, the pungent smell can be observed. / Gas molecules (of mothball) <u>collide/</u> <u>mix with molecules in the air</u> and spread across the room/space. REJECTED: travel / move	1	1m- mixing with air molecules

Qn	Answer	Marks	Comments
3a i	Fractional distillation REJECTED: distillation, fractionating distillation	1	
3a ii	In the furnace, the crude oil is <u>heated into a vapour</u> / <u>heated and vapourise</u> before it enters the fractionating column. The vapour contains a mixture of hydrocarbons with different boiling points.	1	
	As the vapour rises up the column, <u>the fractions</u> with lower boiling points rise further up the column and <u>condense at a lower temperature</u> while the fractions with higher boiling points condense at a higher temperatures and collect <u>at the lower part of</u> <u>the column</u> . / As the vapour rises up the column, the <u>fractions with higher boiling points condense</u> and are collected at lower down the column while the <u>fractions with lower boiling points rise further up</u> <u>the column</u> to be collected. Jet fuel is collected as one of the fractions.	1	
3b	Used cooking oil contains impurities such as water. As the used cooking oil is placed in the separating funnel, the mixture separates into <u>different layers</u> based on <u>density differences</u> .	1	Qn stated water as impurities; water is denser than cooking oil
	When allowed to settle, the liquid that is denser can be tapped off from the bottom, <u>the remaining</u> <u>layer will be the processed oil</u> . (OWTTE)	1	and settles at the bottom layer.

3с	Carbon dioxide is released/produced/given out during the burning/combustion of bioethanol, while bioethanol produced by the <u>sugarcane plants</u> which absorb/take in carbon dioxide during photosynthesis.	1	Key processes AND CO ₂ produced/abs orbed.
	This <u>does not increase the net amount of CO₂ in</u> the surroundings.	1	Carbon neutral
	OR The amount of carbon dioxide <u>released/produced/</u> <u>given out from the burning/combustion of</u> <u>bioethanol</u> is <u>offset</u> by the amount of carbon dioxide <u>absorb/take in carbon dioxide during</u> <u>photosynthesis of the sugar cane plant.</u>	OR 2	
	However, other processes such clearing of land for sugarcane crops and burning of fossil fuels during farming or transporting of sugarcane would <u>releases even more carbon dioxide, making the</u> <u>use of bioethanol less sustainable</u> .	1	Other processes (related to making of bioethanol) that release CO ₂
3c	 Overall enthalpy change Total energy absorbed during bond- breaking in reactants Total energy released during bond-forming in products 	2	1m – for suitable working, correct number of bonds
	$= [350 + 5(410) + 358 + 460 + 3(496)] - [2 \times 2(799) + 3 \times 2(460)]$		1m – for correct answer
	= 4706 – 5956 = -1250 kJ		
	CAP 1 mark for "1250 kJ"		
3d		3	1m – correct shape (exothermic) with reactants and products labelled with (state

Qn	Answer					Marks	Comments
4 a	Assume 100g of compound. IGNORE if missing.						
		С	Н	Ν	0		
	Mass	40.8	6.1	9.5	43.6		
	Ar	12	1	14	16		
	Mole	40.8	6.1	9.5	43.6		Working for
		12	1	14	16	1	calculation
		3.4	6.1	0.6786	2.725		of moles
	Divide by smallest no	3.4/0.678 6 = 5.0106	6.1/0.678 6 = 8.9895	0.6786/0.678 6 =1	2.725/0.678 6 = 4.0158		
	Simplest ratio	5	9	1	4		
	C₅H9NO₄ ACCEPTE	D any ord	er of elem	ents.		1	correct empirical formula
4b	_ / - / / 1	- / minus 1	/ negative	e 1		1	

4c i	Amide linkage	1	
4 c ii	H = 0 = $\begin{pmatrix} 0 & H & 0 & H & 0 \\ I & I & I & H & N - C - N - H \\ I & C - C - 0 - H & I & I \\ H & H & X \\ H & I \\ H & I \\ H & I \\ H & I \\ H \\ Monomer 1 & Monomer 2 \\ IGNORE unshaded box (marker will annotate for student, teacher please remind) \\ \end{pmatrix}$	2	
4 c iii	Sulfur REJECT: oxygen (question stated five different elements)	1	
4 d	C=C bond / carbon-carbon double bond REJECTED: double C=C bond, double carbon bond.	1	

Qn	Answer	Marks	Comments
5 a i	Reducing agent, hydrogen has removed oxygen atoms from PbO to form Pb.	1	
	ACCEPTED: Hydrogen takes/took away oxygen; PbO lost oxygen to hydrogen to form Pb; Hydrogen caused PbO to lose oxygen and formed Pb and itself is oxidized.		
	REJECTED: Lead/Pb lost its oxygen from PbO to Pb		
5 a ii	No, aluminium is <u>more reactive than hydrogen</u> / aluminium is a reactive metal that is <u>placed above</u> <u>hydrogen</u> in the reactivity series / <u>hydrogen is less</u> <u>reactive than aluminium</u> and cannot displace aluminium form its ore. It can only be extracted by electrolysis of its molten oxide.	1	
	REJECTED: Aluminium is more reactive than iron (note that this does not answer to the context).		

5 a iii	After the heating has stopped, the extracted <u>lead</u> metal is still very <u>hot</u> . With the constant flow of hydrogen gas, it <u>prevent</u> the oxygen from the surrounding air form reacting with hot lead metal to form lead(II) oxide. Propose CAP 1 mark for To ensure complete reduction (of lead(II) oxide) / to ensure all lead(II) oxide fully reduced to lead. REJECTED: to prevent hydrogen from reacting	1	
	with oxygen in the air; to avoid hydrogen from combusting with oxygen/air.		
5 b i	 H₃PO₃ is <u>oxidised</u> because the <u>oxidation state of phosphorus increases</u> from <u>+3 in H₃PO₃ to +5 in H₃PO₄.</u> H₃PO₃ is also <u>reduced</u> because the <u>oxidation state of phosphorus decreases</u> from <u>+3 in H₃PO₃ -3 in PH₃.</u> CAP 1 mark for correct oxidation states of phosphorus in all compounds but did not specify oxidized / reduced with respect to increase / 	1	
	decrease of oxidation states.		
5b ii	Comproposition reaction is a reaction in which the same element in two different reactants is both oxidised and reduced, forming one/a (single) product containing the element. Or OWTTE e.g. Comproposition reaction involves two different reactant containing the same element undergoing redox reaction / reduction and oxidation to form a/one product containing that element.	1	

Qn	Answer	Marks	Comments
6 a i	By providing an alternative pathway of lower activation energy to speed up / increase / fasten the rate of reaction.	1	
6 a ii	Comparing experiments 2, 3 and 4. When copper catalyst is used, reaction time <u>decreased by 7</u> <u>seconds</u> , hence faster rate of reaction. Copper is an	1	use data to compare time

		Explain effect
 In experiment <u>1</u> and <u>2</u>, doubling the <u>concentration</u> of aqueous potassium iodide solution, increases the number of reacting particles per unit volume, hence increasing the total number of collisions between particles 	1	of ↑ conc on no. of reacting particles
 Temperature In experiment <u>2</u> and <u>5</u>, increasing the temperature increases the kinetic energy of the reacting particles and hence, more particles possess energy equal to or greater than the activation energy for reaction. 	1	Explain effect of ↑ temp on energy of reacting particles Link both to increased
 In both cases, the <u>frequency of effective collisions</u> <u>between reacting particles increases</u> and hence, rate of reaction (rate of formation of iodine) increases. 	1	frequency of effective collision
 Therefore, the <u>time taken</u> for the blue black colour to appear <u>decreases</u>. CAP 2 marks if data from question, experiment numbers and time/decrease in time are not quoted. 	1	Relate to time taken to ↓
 6 b ii The iodine produced dissolves in the solution to produce a brown solution. The experiment involves iron(III) solutions, which is <u>brown</u>. The end point cannot be determined as I₂ in solution is <u>also brown</u> hence the reaction between iodine and starch to turn the solution blue black will help <u>determine the end point of the reaction.</u> CAP 1m for students who can link to starch being on indicate the solution of the solution. 	1	

Qn	Answer					Marks	Comments
7ai	Volcano / volcanic eruptions/activities.					1	
7aii	Sulfur dioxide emissions from vehicles and power stations decreased while emissions from refineries remained constant.						
7bi	SO ₂ (g) + MgCO ₃ (s) → MgSO ₃ (s) + CO ₂ (g) IGNORE: water (in whichever state) SO ₂ (g) + MgCO ₃ (s) + H ₂ O(<i>l</i>) → MgSO ₃ (s) + CO ₂ (g)+ H ₂ O(<i>l</i>) Exception of water on reactant but not products (equation is not balanced) i.e.					2	1m formula 1m state symbol
7b ii	The beads in the packed bed allows <u>a larger / greater</u> / more / bigger surface area for the reaction/scrubbing to take place. Hence, more SO_2 can be removed.					1	
7b iii	The system is too big / bulky / costly to be fitted on cars. ACCEPT: not portable, not practical to replace					1	Mentioned in TB
7c	Mole of S Mole ratio CaCO ₃ MgCO ₃ Using cal ACCEPT Comparis fixed cost	Mole of SO ₂ = $\frac{1280\ 000}{64}$ = 20 000mol Mole ratio 1: 1 Moles Mr Mass/g Cost CaCO ₃ 20 000 100 2 000 000 $\frac{2\ 000\ 000}{1000} \times 0.1^{\circ}$ mol 100 2 000 000 $\frac{2\ 000\ 000}{1000} \times 0.1^{\circ}$ MgCO ₃ 20 000 84 1 680 000 $\frac{1\ 680\ 000}{1000} \times 0.1^{\circ}$ MgCO ₃ 20 000 84 1 680 000 $\frac{1\ 680\ 000}{1000} \times 0.1^{\circ}$ Using calcium carbonate is cheaper. ACCEPT alternative methods: Comparison by cost per mole of substance Comparison by amount of substance (mole) for fixed cost. REJECT: method that compares mass (in kg or g				1	 1m – relating mole of SO₂ to mole of carbonate required. 1m evaluating cost for mass of respective carbonates and making conclusion. 1m – Presentation "showing clear calculations"
	for fixed of	<u>cost o</u> r vid	<u>ce vers</u>	sa			

Qn	Answer		Marks	Comments				
8a i		type of covalent bond(s)				3	3m – 6 correct	
	name of chemical present			nt		2m – 4 or 5		
	substance	formula	polar	non- polar	not applicable		1m – 2 or 3 correct.	
	hydrogen chloride	HCl	\checkmark					
	sodium fluoride	NaF			\checkmark			
	methane	CH_4		\checkmark				
	ozone	O ₃		√				
8a ii	Across perio	od 2, from <u>c</u>	arbon t	o fluorine	e the	1		
	electronegat	ivity increa	ses troi	m <u>2.55 –</u>	<u>3.98</u> .	1		
	electronegat	ivity decrea	ases fro	o bromir m <u>3.98 -</u>	<u>ne,</u> the <u>- 2.96</u> .			
	IGNORE: M undermine t	ISSING val	ues in a s.	answer i.	e. don't			
	IGNORE: mi period 2.	issed out fl	uorine v	when des	scribing			
8bi	pH of acid <u>ir</u> <u>hydrogen ior</u>	ncreases a ns per unit	s <u>conce</u> volume	entration/ decreas	<u>′amount of</u> <u>es</u>	1	Just stating pH increase/decrea	
	due to the p	oresence a	f electr	on-dona	ting group		awarded	
	which caus	ses <u>forma</u>	tion/ref	ormation	of acid	1	(probability 0.5)	
	molecules (extent) of io	and hence onisations/d	<u>reduc</u> lissocia	ced/decre tion (of a	<u>eased the</u> 			
8bii				-		2	1m – correct conversion of structural formula to electrons (including the negative charge) 1m – duplet/octet (including extra	
8ci	ΗΟ					1	electron on O)	
		0—Н						
	Ċ/							

8cii	*Chloroethanoic acid / bromoethanoic acid / fluoroethanoic acid has a <u>higher</u> dissociation constant (of <i>value from the table</i>) than ethanoic acid.	1	
	This shows that the presence of halogen / an electronegative atom in the R group which is electron-withdrawing.	1	
	*comparison of dissociation constant of any two organic acid		

Section B

Qn	Answer	Marks	Comments
9a	<u>Concentrated</u> sodium chloride solution ACCEPTED: <u>concentrated</u> aqueous sodium chloride REJECTED: saturated	1	
9b	Cathode : $2H^+(aq) + 2e^- \rightarrow H_2(g)$ Anode: $2Cl^-(aq) \rightarrow Cl_2(g) + 2e^-$ Max 1m if student mixed up cathode and anode half equation. (No ecf for test for chlorine gas) Allow ECF for anode if candidate answered aqueous/dilute NaCl in (a) , i.e. $4OH^-(aq) \rightarrow O_2(g) + 2H_2O(1) + 4e^-$	1	
9c	Insert a lighted splint into the gas. Gas extinguishes lighted splint with a 'pop' sound. ACCEPT pop, "pop", 'pop', gas gives "pop" sound with lighted splint. Allow ECF for correct test for wrong gas identified in (b)	1	
9d i	electrical conductivity S/m 0 x time/min	1	Decreasing line or curve Does not touch 0 (imply that ions are still present)

9d ii	As electrolysis proceeds, <u>ions are discharged</u> at the electrodes, this <u>decreases the number of ions</u> <u>per unit</u> <u>volume/concentration of ions.</u> Hence, electrical conductivity decreases.	1	discharge of ions idea of concentration
9 e i	Platinum, like graphite, is <u>an inert electrode</u> .	1	
9 e ii	Thesilverelectrode/anodebecomessmaller/reduced in size/ shrinkover time.Reactivesilverelectrodeloseselectrons/isovidise/undergoesovidationand forms silver ions in	1	Observation
	the electrolyte.	1	
	OR <u>White precipitate</u> is formed in the electrolyte over time	OR 1	
	The <u>silver electrode/anode loses electrons/is</u> <u>oxidise/undergoes oxidation to form silver ions</u> which react/combined with chloride ions in the electrolyte to produce <u>insoluble silver chloride</u> .	1	
	REJ: silver is lower than hydrogen in the reactivity series. The focus of this question is on silver being a reactive electrode.		
	Silver is not an inert electrode (do not use reverse argument), just say that silver is a reactive electrode.		

Qn	Answer	Marks	Comments
10 a	In graphite, each carbon atom is bonded to only	1	Explain 1
	three other carbon atoms, thus each carbon atom		electron per
	has a valence electron that is not bonded and		carbon atom
	delocalised.		
			Mobile charge
	These electrons can <u>act as mobile charge carrier</u> to	1	carrier
	conduct electricity, hence the circuit is closed.		
	CAP 1m for		
	- presence of delocalised / free-moving / mobile		
	electrons if student did not or poorly elaborate		
401	on the structure of graphite.	4	
10 b	Copper	1	
	Oxygen	1	
10 c	Insert a glowing splint into the gas.	1	
	The gas relights a glowing splint.		

	Allow ECF for correct test for wrong gas identified in (b)		
10 d i	When two different metals are put together, the difference in their reactivity causes the movement of electrons, which enables the bulb to be lighted up. In experiment I, graphite is inert and does not take part in any reaction.	1	1m Understanding simple cell, chemical reactions, electron movement
	In experiment II, both electrodes are <u>made of the</u> <u>same metal</u> / has <u>no difference in the reactivity</u> . There is no movement of electrons, hence bulb did not light up.	1	caused by different reactivities. 1m Inert, and same
	OR	OR	metal
	In experiment 1, graphite is an <u>inert</u> electrode / is not a metal.	1	
	In experiment 2, the two metal electrodes are the same and hence there is <u>no potential difference / no difference in the reactivity.</u>	1	
	REJECT: There is no difference in reactivity between graphite and W. Should not use reverse argument i.e. The two electrodes are not different.		
10 d ii	X, Y, Z, W	1	
10 d iii	Lead reacts with dilute sulfuric acid to form a <u>layer of</u> <u>insoluble lead(II) sulfate</u> around the surface of the lead electrode.	1	
	As the electrode is <u>no longer a conductor of</u> <u>electricity</u> , the (discharging of ions is unable to take place), the <u>circuit breaks</u> and the bulb does not light up anymore.	1	
	REJECT: prevent further reaction \rightarrow Need to elaborate on what is prevented.		