

2012 Year 6 Preliminary Examination P2 Mark Scheme

Section A

	tion A	
Qn	Suggested Solution	Marking Scheme
1	By Pythagoras' Theorem, 15 15	
	$r^{2} = 15^{2} - (15 - h)^{2}$	
	$r = \sqrt{30h - h^2}$ (shown)	AG1 – Correct
	$r = \sqrt{30n - h}$ (shown) \underline{h}	formulation leading to
	V	AG
1(i)	π (2 2	
-(-)	$V = \frac{\pi}{3} \left(45h^2 - h^3 \right)$	
	dV (mass dh	
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \left(30\pi h - \pi h^2\right) \frac{\mathrm{d}h}{\mathrm{d}t}$	M1 – Correct
		differentiation
	$-20 = \left(30\pi \left(5\right) - \pi \left(5\right)^2\right) \frac{\mathrm{d}h}{\mathrm{d}t}$	
	dh 0.050020 0.0500 ($$ (2.10)	
	$\frac{dh}{dt} = -0.050929 = -0.0509 \text{ cm/min (3.s.f)}$	A1
	Alternative	
	$\frac{dV}{dh} = \frac{\pi}{3} (90h - 3h^2) = 30\pi h - \pi h^2$	<u>Alternative</u>
	dh = 3 (500 - 500) = 5000 - 500	
	dh dh dV	M1 – Differentiation
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t}$	& chain rule
	dh 1 (20)	
	$\frac{dh}{dt} = \frac{1}{\left(30\pi(5) - \pi(5)^2\right)} (-20)$	
	$\frac{dh}{dt} = -0.050929 = -0.0509 \text{ cm/min} (3.s.f)$	A1
1(ii)	$\frac{dt}{r = \sqrt{30h - h^2}}$	M1 - Evaluate r
-()		
	$\frac{dr}{dt} = \frac{1}{2} \left(30h - h^2 \right)^{-\frac{1}{2}} \left(30 - 2h \right)$	M1–Correct
	dt = 2	differentiation
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t}$	
	When $h = 5$ dr $\frac{15-(5)}{(0.050020)}$	
	When $h = 5$, $\frac{dr}{dt} = \frac{15 - (5)}{\sqrt{30(5) - (5)^2}} (-0.050929)$	
	$\frac{\mathrm{d}r}{\mathrm{d}t} = -0.045552 = -0.0456 \text{ cm/min (3.s.f)}$	A1 - Rate of decrease
		= 0.0456 cm/min \underline{or}
		$\frac{\mathrm{d}r}{\mathrm{d}t} = -0.0456 \text{ cm/min}$
		d <i>t</i>
		Total: 6 marks

$P = 5e^{i\frac{3\pi}{4}} = 5\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = \frac{5}{\sqrt{2}}(-1+i)$	M1 – Use polar forms with correct radius and angle for p and q A1
$q = 5e^{-i\frac{\pi}{4}} = 5\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right) = \frac{5}{\sqrt{2}}(1-i)$ $\frac{\text{Alternative}}{\arg\left(\frac{p}{q}\right) > 0 \Rightarrow \arg(p) - \arg(q) > 0 \Rightarrow \arg(p) > \arg(q)$ Equation of circle: $x^{2} + y^{2} = 5^{2} - \cdots + (i)$ Equation of perpendicular bisector:	A1 M1 – Solve simultaneous eqns (must see correct equations for both)
$y = -x \qquad $	A1 A1
$\arg(5-q) = \alpha > 0$ $\arg(5-p) = - \beta $ $\therefore \arg\frac{(5-p)}{(5-q)}$ $= \arg(5-p) - \arg(5-q)$ $= -(\beta + \alpha) \ (= \angle PRQ \ ; \text{using corresponding angles})$ $= -\frac{\pi}{2} \ (\angle \text{ at circumference, semi-circle})$	B1 : $-\frac{\pi}{2}$ Total: 6 marks

Qn	Suggested Solution	Mark Scheme
4	$a_{50} = 99a_1$	M1 – Correct expression for
(i)	$a_1 + 49d = 99a_1$	a_{50} in terms of a_1
	$a_1 = \frac{1}{2} (0.15) = 0.075$ (Shown)	AG1
4 (ii)	$\sum_{n=1}^{50} a_n = \frac{50}{2} (0.075 + 99 \times 0.075) = 187.5$	M1 – Correct formula A1
4 (iii)	$b_k < a_{25}$ $(99 \times 0.075) (0.98)^{k-1} < (0.075) + 24 (0.15)$ $k > 35.8$	M1 – For b_k
	least $k = 36$	A1
4	Consider	
(iv)	$\frac{b_1 \left(1 - 0.98^h\right)}{1 - 0.98} > 0.99 \frac{b_1}{1 - 0.98}$	M1 – Correct inequality (must see inequality)
	$0.98^h < 0.01$ h > 227.9	
	least $h = 228$	A1
4 (v)	$\sum_{m=0}^{\infty} b_{1+3m}$	
	$= b_1 + b_4 + b_7 + \dots$	
	99×0.075	
	$=\frac{99\times0.075}{1-(-0.98)^3}$	M1 – Correct formula
	= 3.82 (3s.f.)	A1
		Total: 10 marks

Qn	Suggested Solution	Marking Scheme
5 (i)	Subst. $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ into LHS of equation of p_1 , we have	
	LHS = $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ 7 \\ 2 \end{pmatrix} = \alpha + 20 = \text{RHS.} \therefore A \text{ lies in } p_1 \text{ (Shown)}$	B1
	Subst. $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ into LHS of equation of p_2 , we have	

	LHS = $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 5 \\ \beta \end{pmatrix} = 7 \implies \beta = -2$	B1
5 (ii)	Consider $\begin{pmatrix} \alpha \\ 7 \\ 2 \end{pmatrix} \times \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} = \begin{pmatrix} -24 \\ 2\alpha + 6 \\ 5\alpha - 21 \end{pmatrix}$	M1 – Consider cross product of the normals
	$\therefore l: \mathbf{r} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} + m \begin{pmatrix} -24\\2\alpha + 6\\5\alpha - 21 \end{pmatrix}, \ m \in \mathbb{R}$	A1 – Correct equation formed
	Here, $\begin{pmatrix} -24\\ 2\alpha + 6\\ 5\alpha - 21 \end{pmatrix} = k \begin{pmatrix} 4\\ -2\\ 1 \end{pmatrix}$ $\Rightarrow k = -6, \ \alpha = 3$	AG1 – Correct method leading to AG
5 (iii)	Acute angle = $\cos^{-1} \frac{\begin{vmatrix} 3 \\ 7 \\ 2 \end{vmatrix} \begin{pmatrix} 3 \\ 5 \\ -2 \end{vmatrix}}{\sqrt{62}\sqrt{38}} = 34.5^{\circ}$	M1 – Correct formula used (condone w/o modulus)
	Acute angle = $\cos^{-1} \frac{ (-7) (-7) }{\sqrt{62}\sqrt{38}} = 34.5^{\circ}$	A1
5 (iv)	Let foot of perpendicular be <i>F</i> . $\overrightarrow{OF} = \begin{pmatrix} 1+4k\\ 2-2k\\ 3+k \end{pmatrix} \implies \overrightarrow{BF} = \begin{pmatrix} -1+4k\\ 6-2k\\ -5+k \end{pmatrix}$	M1 – Find either \overrightarrow{OF} or \overrightarrow{BF}
	$\begin{pmatrix} -1+4k \\ 6-2k \\ -5+k \end{pmatrix} \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} = 0$ $\Rightarrow k(16+4+1) = 4+12+5$	M1 – Use dot product for appropriate pair of vectors and set to zero
	$\Rightarrow k(10+4+1) = 4+12+3$ $\therefore k = 1$	
	Hence $\overrightarrow{OF} = \begin{pmatrix} 5\\0\\4 \end{pmatrix}$.	A1
	<u>Alternatively</u> ,	
	$\overrightarrow{AF} = \overrightarrow{AB} \cdot \begin{pmatrix} 4 \\ -2 \\ 1 \\ \sqrt{21} \end{pmatrix} \begin{pmatrix} 4 \\ -2 \\ 1 \\ \sqrt{21} \end{pmatrix} = \frac{\begin{bmatrix} 2 \\ -4 \\ 8 \end{bmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{pmatrix} 4 \\ -2 \\ 1 \\ 2 \end{bmatrix} \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$	M1 – Correct projection used
	$= \begin{pmatrix} 4\\-2\\1 \end{pmatrix}$	

$\therefore \overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF} = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} + \begin{pmatrix} 4\\ -2\\ 1 \end{pmatrix} = \begin{pmatrix} 5\\ 0\\ 4 \end{pmatrix}$	$\mathbf{M1} - \text{Correct method to find}$ $\overrightarrow{OF} \text{ from } \overrightarrow{AF}$
	A1
Consider $\overrightarrow{AB'} = \overrightarrow{AB} + 2\overrightarrow{BF}$ where <i>B</i> ' is reflection of <i>B</i> in <i>l</i> . $\overrightarrow{AB'} = \begin{pmatrix} 1 \\ -6 \\ 5 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ 4 \\ -4 \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \\ -3 \end{pmatrix}$	M1 – Correct vector equation formed using previous part
Hence required line is $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + m \begin{pmatrix} 7 \\ 2 \\ -3 \end{pmatrix}, m \in \mathbb{R}.$	A1 Total: 12 marks

Section B

Qn	Solution	Mark Scheme
6 (i)	$k = \frac{810}{30} = 27$ <u>List the applications in some order e.g. by applicants'</u> <u>names or loan amount</u> , and <u>randomly select the first</u> <u>application</u> to process. Subsequently, <u>select every 27th</u> <u>application</u> until a sample of 30 applications is selected, <u>going back to the front of the list if</u> <u>necessary</u> . <u>Alternatively (only applicable if <i>k</i> is an integer)</u> , List the applications in some order and divide the applications into 30 groups of 27 each. Randomly select a number from 1 to 27, e.g. 5, and pick the 5 th application in each of the 30 groups.	 B1 for every 2 points: List applications in a certain order Randomly select first application Select every 27th application thereafter Go back to the front of the list if necessary
6 (ii)	A systematic random sample may not ensure that all categories of loan applications were processed within that day if the <u>sampling interval coincides with a cyclic pattern</u> in the list of applications.	B1 – Disadvantage of a systematic random sample
6 (iii)	Stratified random sampling ensures that each category of loan is <u>proportionately represented</u> in the sample.	B1 – Advantage of stratified random sample (answer in context) Total : 4 marks

Qn	Suggested Solution	Mark Scheme
7(i)	Let G and E be the number of Green Top taxis and EZCab taxis arriving in a randomly chosen 10-minute period respectively. $G \sim P_0(3)$, $E \sim P_0(5)$ $G + E \sim P_0(3+5)$	B1 - $G + E \sim P_0(3+5)$
	$P(G+E \ge 7) = 1 - P(G+E \le 6)$	
	=1-0.31337 = 0.68663 = 0.687 (shown) (3 s.f.)	AG1
7(ii)	Required probability =P(all taxis arrived were EZCab at least 7 taxis arrived) $= \frac{P(all taxis arrived were EZCab and at least 7 taxis arrived)}{P(at least 7 taxis arrived)}$ $= \frac{P(E \ge 7) \cdot P(G = 0)}{P(G + E \ge 7)}$ $= \frac{[1 - P(E \le 6)] \cdot P(G = 0)}{P(G + E \ge 7)}$ $= \frac{(1 - 0.76218) \cdot (0.049787)}{0.68663}$ $= 0.0172 (3 \text{ s.f.})$	M1 – $\frac{P(E \ge 7) \cdot P(G=0)}{P(G+E \ge 7)}$ <u>Note</u> : Accept 0.687 for denominator (given) A1 Total : 4 marks

Qn	Suggested Solution	Marking Scheme
8	Number of six-figure number that can be formed	B1 –
(i)	$= {}^{7}P_{6} = 5040$	accept w/o working
8	Number of six-figure number that can be formed	B1 –
(ii)	$=7^{6}=117649$	accept w/o working
8	Case 1: xx yy zz	For either case 1, 2 or 3
(iii)	Choose 3 digits out of 7 digits = ${}^{7}C_{3}$	M1 – Choose required
	Arrange 6 digits with 3 pairs of identical digits = $\frac{6!}{2!2!2!}$	number of digits M1 – Arrange digits taking into
	Number of six-figure number = ${}^{7}C_{3} \times \frac{6!}{2!2!2!} = 3150$	consideration identical digits
	Case 2: xxx yyy	C
	Number of six-figure number = ${}^{7}C_{2} \times \frac{6!}{3!3!} = 420$	M1 - 3 out of 4 cases correctly worked out (but condena wrong
	Case 3: xxxx yy	(but condone wrong <u>answer</u> computed)
	Choose 3 digits out of 7 digits = ${}^{7}C_{3}$	
	There are 2 possible cases: xxxx yy or yyyy xx	
	Number of six-figure number = ${}^{7}C_{2} \times 2 \times \frac{6!}{4!2!} = 630$	
	Case 4: xxxxxx	
	Number of six-figure number = 7	
	Number of six-figure number such that every digit in the number appears at least twice = $3150 + 420 + 630 + 7 = 4207$	A1 Total: 6 marks

Qn	Suggested Solution	Mark Scheme
9 (i)	y y 80 60 40 12 24 36 x	G1 – Correct horz/vert axes & labelled; 7 points with correct relative positions; create equally- spaced intervals for both axes (Note: Check 2 nd last point must not be lower than the previous)
	r = 0.729 (3sf) The diagram shows a non-linear relationship between x and y . Also, the value of $ r $ is not very close to 1. Hence a linear model is not appropriate.	B1 – r value B1 – Comment based on scatter plot (comment based on r is optional) (Note: Do not reward for commenting on <u>r value alone</u> .)

9 (ii)	Model A	LinearReg a =-50.570387 b =87.1020926 r =-0.9072847 r2=0.82316558 MSe=87.4976701 y=ax+b	M1 – Either one of $ r_B $ or $ r_A $ correct or draw either line of best fit correctly
	Model B	LinearRe9 a =-66.682173 b =108.932866 r =-0.9919638 r ² =0.98399228 MSe=7.92061516 y=ax+b	
	Since $ r_B > r_A $ and is <u>closer to 1</u> (or the scatter plot shows a more linear relationship between the variables), Model B is better.		A1 – Choose model B with correct explanation using r or scatter diagram
9 (iii)	Regression line for Model B: $y = -\frac{66.682}{\sqrt{x}} + 108.93$		$\sqrt{M1}$ – (ecf) Use equation for substitution
	When $x = 65$ $y = -\frac{66.682}{\sqrt{65}} + 108.93 = 100.66$		A1 – Correct y value
	The estimated exam score is not valid as the value of $x = 65$ is beyond the data range of 36 hours		B1 – x beyond data range [Note: Do not award if comment given as "score cannot be more than 100"]
			Total: 8 marks

Qn	Solution	Mark Scheme
10	Unbiased estimate of population mean,	
(i)	$\overline{t} = \frac{\sum (t-15)}{15} + 15$	
	$t = \frac{1}{120} + 15$	
	$=\frac{123}{120}+15$	
	120	
	= 16.025 (exact) = 16.0 (3 s.f.)	B1 – Accept 3 s.f.
	Unbiased estimate of population variance	

		1
	$s^{2} = \frac{1}{n-1} \left(\sum (t-15)^{2} - \frac{\left(\sum (t-15)\right)^{2}}{n} \right)$ $\frac{1}{n} \left(\sum (t-12)^{2} - \frac{\left(\sum (t-15)\right)^{2}}{n} \right)$	AG1 – Must see
	$=\frac{1}{119}\left(2504 - \frac{123^2}{120}\right) = 19.98256 = 19.983 \text{ (shown)}$	values substituted
10 (ii)	Test $H_0: \mu = 15$ Against $H_1: \mu \neq 15$	$\mathbf{B1} - H_0$ and H_1 correctly stated
	Conduct a 2-tailed test at 5% significance level.	
	Since $n = 120$ is large, by Central Limit Theorem and under H_0 , $\overline{T} \sim N\left(15, \frac{19.983}{120}\right)$ approximately	B1 – Correct distribution for \overline{T} with statement of CLT
	Using z-test, since $\overline{t} = 16.025$, p-value = 0.0120 (3 s.f)	
	Since p -value = 0.0120 < 0.05, we reject H_0 and conclude	B1 – Correct p value,
	that there is sufficient evidence at 5% significance level to show that the mean waiting time differed from 15 minutes.	comparison and conclusion
10	Test $H_0: \mu = 15$	
(iii)	Against $H_1: \mu > 15$	
	Since <i>n</i> is large, by Central Limit Theorem,	
	$\overline{T} \sim N\left(15, \frac{19.983}{n}\right)$ approximately	
	Since H_0 is not rejected,	
	$P(\overline{T} > 15.5) > 0.06$ [or : p value > 0.06]	B1 – Correct
		statement or equivalent
	$P\left(Z > \frac{15.5 - 15}{\sqrt{\frac{19.983}{n}}}\right) > 0.06$	equivalent
	$0.5\sqrt{\frac{n}{19.983}} < 1.5547$	M1 –Inequality with z_c
	<i>n</i> < 193.20	A1 – Correct answer in terms of integer (condone without
	$\therefore 50 \le n \le 193$, where $n \in \mathbb{Z}^+$.	lower limit " $50 \le n$ " or " $n \in \mathbb{Z}^+$ ")
		Total: 8 marks

Qn	Suggested Solution	Mark Scheme		
11	P(Abbey is first and Betty is sixth in the queue) = $\frac{1}{8} \left(\frac{1}{7}\right) = \frac{1}{56}$			
(a)		B1 – Accept w/o		
(i)	Or $\frac{6!}{8!} = \frac{1}{56}$	working		
	0. 00			
	$\operatorname{Or}\left(\frac{1}{8}\right)\left(\frac{6}{7}\right)\left(\frac{5}{6}\right)\left(\frac{4}{5}\right)\left(\frac{3}{4}\right)\left(\frac{1}{3}\right) = \frac{1}{56}$			
11	Required probability			
(a)	= $P(Abbey is first) + P(Betty is second) - P(Abbey is first and Petty second)$	M1 – Make use of		
(ii)	Betty second) 1 7(1) 1(1) 7! 7! 6!	formula & obtain 2 out of		
	$= \frac{1}{8} + \frac{7}{8} \left(\frac{1}{7}\right) - \frac{1}{8} \left(\frac{1}{7}\right) \text{or} \frac{7!}{8!} + \frac{7!}{8!} - \frac{6!}{8!}$	3 terms correct		
	_ 13	A 1		
	$=\frac{13}{56}$	A1		
	Alternatively,			
	Required probability			
	= $P(Abbey is first but Betty is not second) + P(Abbey is not$			
	first but Betty is second) + P(Abbey is first and Betty second) 6×61 6×61 61 13			
	$=\frac{6\times6!}{8!}+\frac{6\times6!}{8!}+\frac{6!}{8!}=\frac{13}{56}$			
11	Let A, B & C be the events a drawer containing:			
(b)	2 gold coins; 1 gold coin and 1 silver coin; and			
	2 silver coins is selected, respectively.			
	Let $G \& S$ be the events:			
	a gold coin is selected; and a silver coin is selected, respectively.			
(i)				
	$P(A) = P(B) = P(C) = \frac{1}{3}$			
	$P(G) = \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{2}$ and $P(S) = 1 - P(G) = 1 - \frac{1}{2} = \frac{1}{2}$	B1 – Awarded to value (\mathbf{D})		
		of $P(G)$ presented in any		
	P(Drawer containing 2 gold coins is selected given that the	part of the working		
	coin selected is gold) = $P(A G)$	M1 – Recognise & write		
		down conditional		
	$=\frac{\mathrm{P}(A\cap G)}{\mathrm{P}(G)}$	probability $\frac{P(A \cap G)}{P(G)}$		
	$=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3}$	1(0)		
	$=\frac{1}{1/2}=\frac{1}{3}$	with values substituted		
	/ 2	A1		

11	P(a gold coin is selected, followed by a silver coin)	
(b) (ii)	$=P(A \cap G).P(S \mid \{A \cap G\}) + P(B \cap G).P(S \mid \{B \cap G\})$ $= \left(\frac{1}{3} \cdot \frac{2}{2}\right) \left(\frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{2}{2}\right) + \left(\frac{1}{3} \cdot \frac{1}{2}\right) \left(\frac{1}{3} \cdot \frac{1}{1} + \frac{1}{3} \cdot \frac{2}{2}\right)$ $= \frac{1}{3} \left(\frac{1}{2}\right) + \frac{1}{6} \left(\frac{2}{3}\right)$ $= \frac{5}{18}$	M1 – Consider 2 <u>main</u> cases correctly M1 – Probability of any 2 <u>sub-cases</u> correct M1 – Probability of other 2 <u>sub-cases</u> correct A1 Total: 10 marks

Qn	Suggested Solution			Mark Scheme
12(i)	P(X = 0) + P(X = 19) = 0.1			
	(1 – <i>p</i>	$(p)^{20} + {20 \choose 19} p^{19} (1-p) = 0.1$	M1 – Condone error in coefficient	
	By G	C, $p = 0.10874 = 0.109$ (3 s.f.)	A1	
12(ii)	1: Th outco	ons should address either one o e probability of "success" p is t me. e responses are independent of		
		Behaviour of X	Behaviour of Y	
	1.	Probability of responding positively to the email ("success") is unlikely to be the same for each student since - not everyone is a fan of action thrillers, or - not everyone reads email.	Probability of picking a girl ("success") is the same for each of the 5 weekdays since all names are in the bag.	B1 – Describe one characteristic of Y in context
	OR 2.	Responses may not be independent since decision of a student is likely to influence or be influenced by other students in his/her clique.	The trials of picking a student on each of the five day are independent since the names are drawn from a bag at random.	B1 – Compare to characteristic of X in context
12	<i>Y</i> ~B(5, $\frac{12}{21}$) i.e. $Y \sim B(5, \frac{4}{7})$		B1 – Correct distribution
(iii)	$P(Y \ge 3) = 1 - P(Y \le 2)$ = 1 - 0.36788 = 0.63212 = 0.632 (3 s.f.)			M1 – Use complement A1
12 (iv)	Let <i>W</i> be the number of weeks in which a girl is on duty more often than a boy, out of 20.			
	Since	B(20, 0.63212) n=20 is sufficiently large such 7.3576 > 5,	M1 – Check conditions based on original binomial distribution	
	$W \sim N(12.642, 4.6508)$ approximately.			B1 - Define approx. distribution
	P(Y < 11) = P(Y < 10.5) after continuity correction = 0.16029 = 0.160 (3 s.f.)			A1
				Total: 10 marks

Qn	Suggested Solution	Mark Scheme	
13(i)	Let X & Y be random variables tha prospective applicant of Kingdom prospective applicant of Island Un		
	Given $X \sim N(500, 100^2)$ and Y	$\sim N(480,60^2).$	
	$P(X > a) \le 0.3$	$\frac{\text{Alternative}}{P(X < a)} \ge 0.7$	M1 – Either $P(X > a) \le 0.3$ or $P(X < a) \ge 0.7$
	$a \ge 552.44$ The minimum score a randomly ch is 553 (3 sf).	A1 – 553	
13(ii)	$\overline{X} \sim N\left(500, \frac{100^2}{5}\right) \text{ and } \overline{Y} \sim N\left(480, \frac{60^2}{5}\right)$ $\overline{X} - \overline{Y} \sim N\left(500 - 480, \frac{100^2}{5} + \frac{60^2}{5}\right)$ $\overline{X} - \overline{Y} \sim N(20, 2720)$ Required Probability $= P\left(\left \overline{X} - \overline{Y}\right > 50\right)$		B1 – Distribution of $\overline{X} - \overline{Y}$
	$= P\left(\overline{X} - \overline{Y} < -50\right) + P\left(\overline{X} - \overline{Y} > 50\right)$	$\mathbf{M1} - \mathbf{P}\left(\overline{X} - \overline{Y} < -50\right)$	
	= 0.089767 + 0.28256	$+ P(\overline{X} - \overline{Y} > 50)$ or	
	= 0.37232 = 0.372 (3sf)	$1 - P\left(-50 < \overline{X} - \overline{Y} < 50\right)$	
		A1 – 0.372	
13(iii)	Required Probability		
	$= \left[P(X > 500) \right]^{5} \left[P(Y > 500) \right]^{5}$		M1 – Either 0.5 ⁵ or 0.36944 ⁵ correct
	$=(0.5)^5(0.36944)^5$		
	$= 2.15 \times 10^{-4}$ or 0.000215 (3 s.f.	A1	
13(iv)	Let $T = Y_1 + Y_2 + + Y_5 \sim N(5 \times 48)$	$80, \overline{5 \times 60^2} \right)$	M1 – Either distribution of T or $5X$ correct
	$5X \sim N(5 \times 500, 5^2 \times 100^2)$ T - 5X ~ N(-100, 268000)		
			B1 – Distribution of $T - 5X$ correct
	P(T-5X > 0) = 0.42341 = 0.423	A1 – 0.423 Total: 10 marks	