Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2} ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

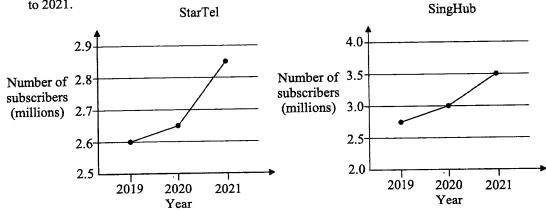
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

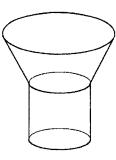
$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

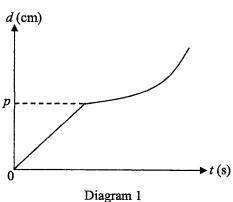

SGSS/AM/4NA/SA1/2014

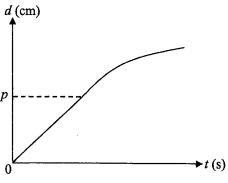
Answer all the questions.

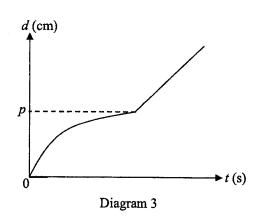
1 Calculate
$$\sqrt{-\frac{35}{27} - \left(\frac{-11^2}{81}\right)}$$
.


,	 Г1 7	
answer	 [,1	

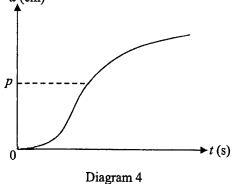
These charts show the number of subscribers for two telcommunication companies from 2019 to 2021.

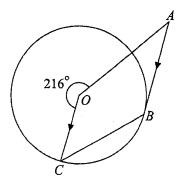

Explain why the charts give the impression that StarTel has a higher increase in the number of subscribers compared with SingHub from 2019 to 2021.


Answer	••••••
	[1]


The diagram shows a container made from a cylinder and a frustum. Water is poured into this container.

Which of these diagrams represents the graph of d, the depth of water in centimetres, against t, the time in seconds?




d(cm)

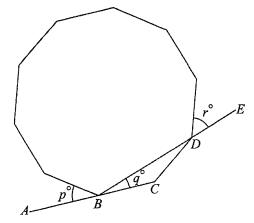
Answer Diagram[1]

What does the value p in the graph represent? (b)

4	(a)	Express $4+7x-x^2$ in the form $-(x-h)^2$	$^{2}+k$.
			Answer[2]
	(b)	Write down the maximum value of 4+7	$x-x^2$.
	(2)		
			Answer[1]
5	A bo	ox contains 6 red cubes, 10 blue cubes and	n yellow cubes.
	(a)	A cube is chosen from the box at random Write down, in terms of n , the probability	n and then replaced. y that it is not a red cube.
			Answer[1]
	(b)	Given that another <i>n</i> red cubes are added	l into the box, the probability of not choosing a
	(6)	red cube is now $\frac{9}{16}$. Find the total numb	
			Answer cubes [3]

In the diagram, AB is a tangent to a circle, centre O. C is a point on the circumference of the circle such that OC is parallel to AB. Reflex angle $AOC = 216^{\circ}$. Find angle AOB.

Answer Angle *AOB* =° [3]


7 Solve the equation $\frac{3-2x}{4} = 6 - \frac{x+5}{7}$.

8	(a)	On the Venn diagram, shade the region which represents $A \cap B'$.
		Answer ξ $A B C C C C C C C C C C C C C C C C C C $
	(b)	$\xi = \{\text{integers } x : 1 \le x \le 100\}$ $A = \{\text{perfect squares}\}$ $B = \{\text{odd numbers}\}$ $C = \{\text{integers ending with 3}\}$
		(i) List the elements in $A \cap B$.
		Answer
		Answer[1]
9		sequence, the same number is added each time to obtain the next term. first five terms of the sequence are $11, x, y, z, 27, \dots$
	(a)	Find the values of x , y , and z .
	(b)	Answer $x = \dots$ $y = \dots$ $z = \dots$ [2] Write down an expression, in terms of n , for the n th term of this sequence.
		Answer[1]

10	(a)	Given that $x^n = 10$, find the value of 2	x^{-3n} .
			Answer[1]
	(b)	Simplify $\left(\frac{8m^3}{n^{-6}}\right)^{\frac{1}{3}} \div \frac{m^{-4}}{n^3}$.	
			Answer[2]

(a) find the value of y when x = -10,

(b) rearrange the formula to make x the subject.

The diagram shows a regular decagon. The side BC is produced to A and BDE is a straight line. Find the values of p, q and r.

Answer	<i>p</i> =	•••	•••	•••	• • •	•••	•••	••	• • •	• • •	• •	• •	••	• •	• •	
	q =	•••		• •	.	•••	• • •		••							 ,
	r =															 [3]

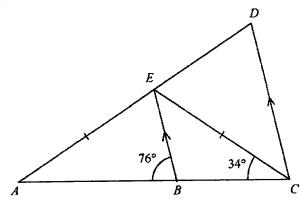
13 The table shows the number of hours spent on social media by 100 people who responded to a survey.

Number of hours	1	2	3	4	5
Number of people	19	x	26	13	у

(a) If the mode is 2 hours, write down the smallest value of x and the corresponding value of y.

Answer	<i>x</i> =
	<i>y</i> =[2]

(b) If the median is 2.5 hours, find the value of y.

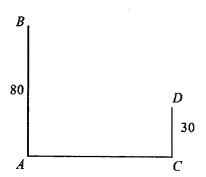

Answer	<i>y</i> =		[1]
--------	------------	--	-----

14	In January 2020, the exchange rate between US dollars and Singapore dollars is US1 = S1.3453 .									
	(a)	Mr Lim invested US\$5000 in an account paying compound interest at 2.5% per year. Calculate the amount of US dollars in the account after two years.								
		Answer US\$ [2]								
		anuary 2022, the exchange rate between Singapore dollars and US dollars is = US\$0.7415.								
	(b)	Mr Lim exchanged all the US dollars in the account to Singapore dollars. Did he make a gain or loss? Show your working clearly.								
		Answer[3]								

15	An a	rea of 36 cm ² on the map represents an actual area of 9 km ² .
	(a)	The scale of the map is in the form $1:n$. Find n .
		Answer $n = \dots [2]$
	(b)	Calculate the length of a road on the map, in centimetres, which has an actual length of 1.64 km.
		[0]
		Answer cm [2]
16	(a)	Simplify $(2a-3)^2 - 4a(a-4)$.
		Answer[2]
	(b)	Factorise completely $14x^2 - 7xy + 3ay - 6ax$.
		Answer[2]

17	(a)	Express 1188 as the product of its prime factors.
		Answer[1]
	(b)	The number 1188m is a perfect cube.
		Find the smallest positive integer value of m .
		Answer[1]
	(c)	Find the greatest integer that will divide both 1188 and 360 exactly.
		Answer[1]

18 In the diagram, AED and ABC are straight lines. AE = EC and BE is parallel to CD.


(a) Complete these statements.

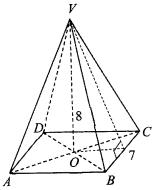
(i)	Angle ECD = because	
	[/	2

(ii)	Angle <i>EDC</i> = ° because	
	[2	2]

(b) Complete the statement.

is the longest side of the triangle EDC because	;
	ſ

In the diagram, CD is a building directly opposite a tower AB, both which are built on horizontal ground, AC.


AB is 80 m high and CD is 30 m high.

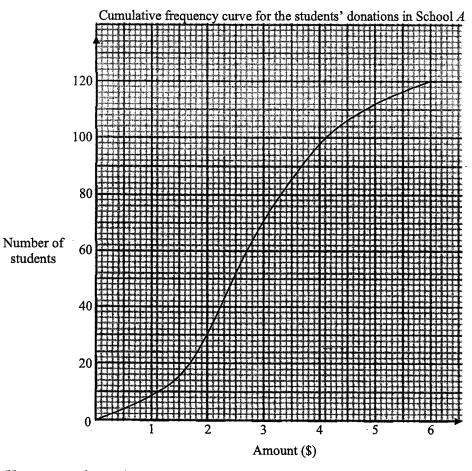
The angle of elevation of B from C is 50.6° .

Calculate the angle of elevation of the top of the tower from the point D.

Answer	0	[4]
--------	---	-----

The figure below shows a square pyramid. VO is vertical to the base ABCD, VO = 8 cm and BC = 7 cm.

(a) Find the total surface area of the pyramid.


Answer cm² [3]

(b) The pyramid is melted and recast into spheres.
The radius of each sphere is 2 mm.
Find the maximum number of spheres that can be recast from the pyramid.

Answer spheres [4]

21 The donations by a group of students in School A for the victims of a recent volcanic eruption were recorded.

The cumulative frequency curve below shows the distribution of the donations.

Use your graph to estimate

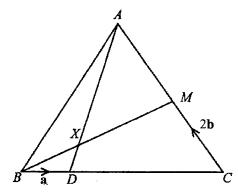
(a) the median of the donations,

Answer	\$ 	٢1	

(b) the interquartile range.

Answer \$[2]

The box-and-whisker plot below shows the distribution of donations collected from


(c)

students in School B.

Answer	 	 	 	
••••••	 •	 	 	
	 	 	 	[2

22 In the diagram, BC = 4BD and DA = 5DX. M is the midpoint of AC.

$$\overrightarrow{BD} = \mathbf{a} \text{ and } \overrightarrow{CM} = 2\mathbf{b}.$$

- (a) Express, as simply as possible, in terms of a and/or b,
 - (i) \overrightarrow{DC} ,

Answer
$$\overrightarrow{DC} = \dots [1]$$

(ii) \overrightarrow{DA} ,

Answer
$$\overrightarrow{DA} = \dots [1]$$

(iii) \overrightarrow{DX} .

Answer
$$\overrightarrow{DX} = \dots [1]$$

		End (of Paper
			Answer[1]
	(iii)	$\frac{\text{area of triangle } ABX}{\text{area of triangle } ABC}.$	
			Answer[1]
	(ii)	$\frac{\text{area of triangle } ABX}{\text{area of triangle } AMX}$	Answer[1]
	(i)	$\frac{BX}{BM}$,	
(d)	Find		
			Answer[1]
(c)	Expre	ess \overrightarrow{BM} in terms of a and b , as s	simply as possible.
			[1]
	Answ	er	
(b)	Show	that $\overline{BX} = \frac{4}{5}(2\mathbf{a} + \mathbf{b}).$	

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1 (a) Express as a single fraction in its simplest form $\frac{9x-2}{x^2-4x+4} + \frac{2}{x-2}$.

Answer[3]

(b) Solve these simultaneous equations.

$$5x - 2y = 18$$

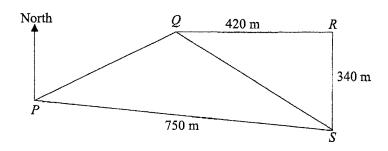
$$8x + 3y = 4$$

(c) Simplify $\frac{9x^2-4}{3x^2-7x-6} \div (2-3x)$.

Answer[3]

BP~581

(d) Given that $8^{1-2x} = 32^{3-x} \times \left(\frac{1}{2}\right)^0$, find the value of x.


(e) (i) Solve the inequalities $1 - (5 - 2x) < \frac{1}{2}(3x + 1) \le \frac{4x + 2}{5}$.

(ii) Hence write down the largest value of x which satisfies the inequalities.

Four points P, Q, R and S lie on level ground.

P is 750 m and on a bearing of 280° from S.

Q is 420 m due west of R and S is 340 m due south of R.

- (a) Find
 - (i) the distance QS,

Answer	 m	[1]

(ii) the distance PQ.

Answer m [4]

	4	۲	
ı	E		
3		·	

(b) Given that angle PQS is obtuse, find the bearing of P from Q.

Answer° [4]

3 Nancy makes T-shirts.

The matrix M shows the number of T-shirts of different sizes she makes in one week.

small medium large

$$\mathbf{M} = \begin{pmatrix} 0 & 3 & 4 \\ 10 & 15 & 1 \end{pmatrix}$$
 Men Women

(a) Nancy sells all of these T-shirts to a shop.

She charges \$6 for each small-sized T-shirt, \$8 for each medium-sized T-shirt and \$10 for each large-sized T-shirt.

Represent these amounts in a 3×1 column matrix N.

Answer
$$N = [1]$$

(b) (i) Evaluate the matrix P = MN.

Answer P = [1]

(ii) State what the elements of P represent.

Answer

.....

......[1]

(c)	The shopkeeper sells all sizes of men's T-shirts at \$10 each.
	He sells all sizes of women's T-shirts at \$11.50 each.

(i) Evaluate
$$(10 \ 11.5)\begin{pmatrix} 0 & 3 & 4 \\ 10 & 15 & 1 \end{pmatrix}$$
.

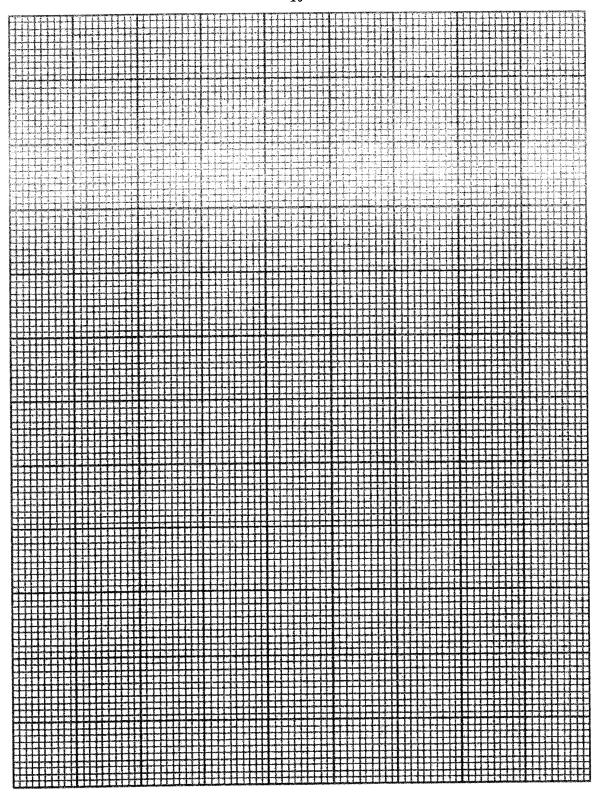
A == 02 +1 024	 T11	
Answer	 [I	

(ii) Using matrix multiplication, find the total amount of money that the shopkeeper receives.

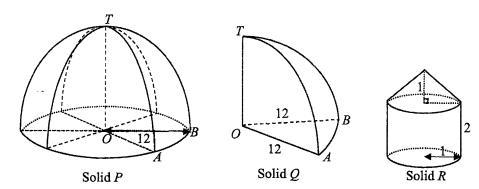
4 (a) The table shows some values for $y = \frac{x^3}{4} - x + 1$.

x	-3	-2	-1	0	1	2	3
у	- 2.75	1	1.75	1	0.25	1	b

Find the value of b.


Answer
$$b = \dots$$
 [1]

- (b) Using a scale of 2 cm to represent 1 unit for both the axes, draw the graph of $y = \frac{x^3}{4} x + 1 \text{ for } -3 \le x \le 3.$ [3]
- (c) On the same grid, draw the graph of $y = \frac{1}{3}x + 1$. [2]
- (d) Use your graph to find the value(s) of x where $y = \frac{1}{3}x + 1$ crosses $y = \frac{x^3}{4} x + 1$.

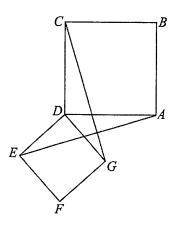

(e) The value(s) of x where $y = \frac{1}{3}x + 1$ crosses $y = \frac{x^3}{4} - x + 1$ are the solutions of the equation $Ax^3 = Bx$. Find the value of A and of B, where A and B are integers.

Answer $A = \dots$

B = [2]

Solid P is a metal hemisphere of radius 12 cm and centre O which stands on a horizontal table. It is sliced into 6 equal pieces by cutting vertically downwards through radius OT, as indicated in the diagram. Solid Q is one of these 6 slices. Solid R is made up of a metal cylinder of base radius 1 cm and height 2 cm, surmounted by a cone of base radius 1 cm and height 1 cm.

Assuming there is no wastage of material, calculate


(a) (i) the volume of solid Q,

(ii)	the total curved surface area of solid R .
------	--

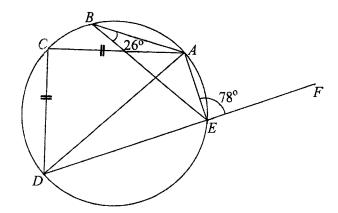
(b)	Soli	d Q is then melted and made into many pieces of solid R .	
	(i)	Calculate the volume of solid R .	
		Answer cm ³	[2]
	(ii)	Hence, calculate the number of complete solid R that can be obtained.	
		Answer solid R	[2]

PartnerInLearning 590

6 (a)

In the diagram, ABCD and DEFG are squares.

(i) Show that angle ADE = angle CDG.


Answer

[1]

(ii) Show that triangle ADE is congruent to triangle CDG. Give a reason for each statement you make.

Answer

(b)

In the diagram, CA = CD, angle $ABE = 26^{\circ}$ and angle $AEF = 78^{\circ}$. DEF is a straight line.

Find, giving reason(s) for each answer,

(i) angle ADE,

(ii) angle CDA,

(iii) angle CAE.

7

The diagram shows a right-angled triangle OPQ. OPR is a sector of a circle with centre O and of radius 6 cm. It is given that angle POQ = 0.84 radian and PQ = 6.7 cm.

(a) Express 0.84 radian in degrees.

Answer		0	[1]
Answei	***************************************		[1]

(b) Find the perimeter of the shaded region.

Answer	***************************************	cm	[4]
Answer	••••••	cm	[4]

Mass (x kg)	Frequency
$1 \le x < 2$	2
$2 \le x < 3$	а
$3 \le x < 4$	8
$4 \le x < 5$	7

The masses of some durians from shop A are recorded in the table above.

(a)	Given that the estimated mean mas	of the durians	is 3.5	kg, find	I the value of a .
-----	-----------------------------------	----------------	--------	----------	----------------------

		Answer $a = \dots$	[2]
b)	(i)	Calculate an estimate of the standard deviation.	

	Answerkg	[1]
(ii)	Explain why your answer to part (b)(i) is only an estimate of the standard deviation.	
	Answer	
		F17

(c) The same number of durians from shop B were weighed and the masses have the following mean and standard deviation.

Mean (kg)	4.4
Standard Deviation (kg)	1.2

Make two comparisons between the masses of durians from shop A and shop B .	
1	
2	
	[2]

ABCD is a parallelogram whose diagonals, AC and BD, intersect at O. E is a point on AB such that AE = 2EB. DE intersects AC at F.

It is given that O is the point (0, 0). D is the point (-4, 5) and A is the point (-7, -5).

(a) (i) Express \overrightarrow{AD} as a column vector.

Answer
$$\overrightarrow{AD} = \left(\right)$$
 [2]

(ii) Find $|\overrightarrow{AD}|$.

9

- (b) Given that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$, express the following vectors in terms of \mathbf{a} and/or \mathbf{b} , giving each of your answers in its simplest form.
 - (i) \overrightarrow{AC}

Answer
$$\overrightarrow{AC} = \dots$$
 [1]

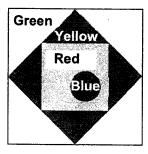
(ii) \overrightarrow{CD}

Answer
$$\overrightarrow{CD} = \dots$$
 [1]

(c) Show that $\overrightarrow{DE} = \frac{1}{3}(5\mathbf{b} + \mathbf{a})$.

Answer

[2]


(d) It is given that $\overrightarrow{FA} = \frac{4}{5}\overrightarrow{OA}$. By finding \overrightarrow{DF} , show that D, E and F lie on the same straight line. Answer

[3]

(e) Find the numerical value of $\frac{\text{area of triangle } AEF}{\text{area of triangle } CDF}$

Answer[1]

10

At a game stall, a target board, 1 metre by 1 metre, has four colours as shown. It is made up of three squares and a circle of radius 0.2 metre. It is assumed that all darts hit the board.

A dart is thrown at the board.

(a) (i) Find the probability of hitting the green area.

Answer		[1]	l
--------	--	-----	---

(ii) Find, in terms of π , the probability of hitting the blue area.

(iii) Given that the probability of the dart hitting the yellow area is $\frac{1}{4}$, show that the probability of a dart hitting the red area is $\frac{25-4\pi}{100}$.

Answer

(b)	If tw	o darts are thrown simultaneously, find the probability	
	(i)	of both darts hitting the green area,	
		Answer	[1]
	(ii)	of both darts separately hitting green and yellow areas,	
		Answer	[2]
	(iii)	that at least one of the darts hit the yellow area.	
		Answer	[2]
		Alwei	[~ <u>]</u>

11 Glen and Jane are on a holiday in Germany.

They are planning a trip from Berlin to Munich.

They need to be in Munich latest by 4 p.m. and can choose to travel by train or bus. They plan to keep their travelling time and cost to the minimum.

Information that Glen and Jane need is shown in the Travel Information table below.

Travel Information

Part of train timetable Berlin (Depart) 09 27 11 22 12 44 14 53							
Derim	(Depart)	09 27	11 22	12 44	14 53		
Train Fare	(Per Pax)	SGD 68	SGD 88	SGD 78	SGD 58		
* Distance from Berlin to Munich is 584.6 km.							
* Average train speed is 94.8 km/h.							

Part of bus timetable			
Depart from Berlin	07 40	07 50	08 15
via	Wunsiedel	Bayreuth	Dresden
Arrive in Munich	16 25	15 30	16 15

Expected average speed of bus on this journey is 45 miles per hour.

For each traveller, the bus fare is charged based on the following:

- SGD 8 online booking surcharge
- SGD 0.05 per kilometre for the journey
- * 1 mile is equivalent to 1.6093 kilometres.
- (a) Find the distance, in miles, between Berlin and Munich.

Answer	miles	[1]
--------	-------	-----

(b) Calculate the time taken, in hours and minutes, for the train journey.

Answer hours minutes [2]

(c) Showing clearly all the calculations for the travelling costs and travelling time, recommend the mode of transport from Berlin to Munich for the couple.

Give one advantage and one disadvantage for your recommended choice of transport.

Answer

I would recommend the couple to travel by	•••••
Advantage:	
Di-Juntana	

End of Paper

25

Answer key

St. Gabriel

	37. GUPTIE
1a	11x-6
	$(x-2)^2$
1b	x=2, y=-4
1c	$\frac{-1}{x-3}$ or $\frac{1}{3-x}$
1d	x = -12
1e	$x \le -\frac{1}{7}$
	7
1f	$x = -\frac{1}{x}$
	7
2ai	540 m
2aii	381 m
2b	236.6°
3a	$\begin{pmatrix} 6 \end{pmatrix}$
	(10)
3bi	(64)
	(190)
3bii	The elements represent the total amount collected from the sales of men's and womens'
	t-shirts respectively.
3ci	(115 202.5 51.5)
3cii	$ (115 \ 202.5 \ 51.5) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = (369) $
4a	b = 4.75
4d	$-2.4 \le x_1 \le -2.2, \ x_2 = 0, \ 2.2 \le x_3 \le 2.4$
4e	A=3, B=16
5ai	603 cm ³
5aii	17.0 cm ²
5bi	7.33 cm ³
5bii	82
6ai	$\angle ADE = 90^{\circ} + \angle ADG$
	$\angle CDG = 90^{\circ} + \angle ADG$
	$\therefore \angle ADE = \angle CDG$
6aii	AD = CD (sides of square $ABCD$)
	$\angle ADE = \angle CDG$ [from 6(a)(i)]
	DE = DG (sides of square $DEFG$)
	$\therefore \Delta ADE \equiv \Delta CDG \text{ (SAS)}$
6bi	$\angle ADE = 26^{\circ}$ (\angle s in same segment)
6bii	51°
6biii	103°

7a	48.1°				
7b	14.7 cm				
8a	a=3				
8bi	0.949 kg				
8bii	The mid-values of the masses are used instead as the exact masses were not known.				
8c	The masses of durians from shop B are heavier (or have higher mass) than shop A				
	because the mean mass of durians from shop B (4.4kg) is greater than shop A (3.5kg).				
	The masses of durians from shop B have a greater spread than shop A because the standard deviation of the masses of durians from shop B (1.2kg) is greater than shop A (0.949kg).				
9ai	$\begin{pmatrix} 3 \\ 10 \end{pmatrix}$				
9aii	10.4 units				
9bi	-2 a				
9bii	a-b				
9d					
	$\overline{DF} = \frac{1}{5}(5\mathbf{b} + \mathbf{a})$ $\overline{DE} = \frac{1}{3}(5\mathbf{b} + \mathbf{a})$				
	1,				
	$DE = \frac{1}{3}(5\mathbf{b} + \mathbf{a})$				
	Since $\overrightarrow{DF} = k\overrightarrow{DE}$, \overrightarrow{DF} is parallel to \overrightarrow{DE} and \overrightarrow{D} is a common point, hence D , E , and F				
	lie on the same straight line.				
9e	4				
	$\left \frac{1}{9}\right $				
10ai	1				
1041	$\frac{1}{2}$				
10aii					
10411	$\frac{\pi}{25}$ or 0.04π				
10bi	1				
1001	$\left \frac{1}{4} \right $				
10bii	1				
TODA	$\left \frac{1}{4} \right $				
10biii	7				
100111	$\frac{7}{16}$				
11a	363 miles				
11b	6 hrs 10 mins				
11c	Recommend Bus				
	Advantage: Lower cost by bus (\$71.52) than train (\$136)				
	Disadvantage: Longer travelling time by bus (7 hours 40 min) than train (6 hours 10 min)				
	OR				
	Recommend Train				
	Advantage: Shorter travelling time by train (6 hours 10 min) than bus (7 hours 40 min)				
	Disadvantage: Higher cost by train (\$136) than bus (\$71.52)				

2022 Sec 4E5N/4NA(OOS) EM PRELIM P1 Marking Scheme with Marker's Report

Solutio		
Januaro		
	$\sqrt{-\frac{35}{27}} - \left(\frac{-11^2}{81}\right) = \frac{4}{9}$	
	V 27 (81) 9	
2	Different scales used for the vertical axes.	
Зa	Diagram 2	
3b	Height of cylindrical part of the container / Depth of	
	water when the cylindrical part of the container is fully	
	filled up	
-la	$4 + 7x - x^2 = -(x^2 - 7x - 4)$	
	$= -\left[x^2 - 7x + \left(\frac{-7}{2}\right)^2 - \left(\frac{-7}{2}\right)^2 - 4\right]$	
	$=-\left[\left(x-\frac{7}{2}\right)^2-\frac{65}{4}\right]$	
	$=-\left(x-\frac{7}{2}\right)^{2}+\frac{65}{4}$	
4b	$Max value = \frac{65}{4}$	
5a	10+n	
	16+n	
5b	10+n y	
	16+2n = 16	
	160 + 16n = 144 + 18n	
	2n=16	
	n = 3	
	Total number of cubes = 32	
6	∠AOC = 360° - 216° (∠ at a proint)	
	= 144°	
	∠BOC = ∠OBA	
	= 90° (tan Lost alt. Zs. OC // AB)	1
	$\angle AOB = 144^{\circ} - 90$	
	= 54°	
7	$\frac{3-2x}{4} = 6 - \frac{x+5}{7}$	
	,	
	$3-2x_42-x-5$	
	4 7	
	21-14x=148-4x	
	10x = -127	
	x = -12.7	
	Property	

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Solution			
8a			
	E A B		
8b	1, 9, 25, 49, 81		
8c	0		
9a	x = 15, y = 19, z = 23		
9b	x = 15, y = 19, z = 23 4n + 7 or $11 + 4(n-1)$		
10a	$2x^{-3n}=2\left(x^n\right)^{-3}$	-	
	$=\frac{2}{1000}$	-	
	1000		
	$=\frac{1}{500}$ or 0.02 o.e		
10b	1		
105	$= \frac{1}{500} \text{or} 0.02 \text{o.e}$ $\left(\frac{8m^3}{n^{-6}}\right)^{\frac{1}{3}} \div \frac{m^{-4}}{n^3} = \frac{2m}{n^{-2}} \times \frac{n^3}{m^{-4}}$		
	$=2m^5n^5$		
11a	7		
11b	$y = \sqrt{9 - 4x}$		
	$y^2 = 9 - 4x$ $4x = 9 - y^2$		
	$x = \frac{9 - y^2}{4}$ or $x = -\frac{y^2 - 9}{4}$ or $x = \frac{(3 + y)(3 - y)}{4}$		
12			
	$p = \frac{10}{10} = 36$		
	$p = \frac{360}{10} = 36$ $q = \frac{36}{2} = 18$		
	r = 36 + 18 = 54	-	
13a	smallest $x = 27$		
13b	corresponding $y = 15$ y = 50 - (26 + 13)		
130	y = 50 - (20 + 15) = 11		
	••		
		 	
14a	Total in US\$ = $5000 \left(1 + \frac{2.5}{100}\right)^2$		
	= 5253.125		
L			

Solutio	ds: 'e a series de la companya de l	To the second se	
	= US\$5253.13		
14b	In Jan 2020, US $$5000 = 1.3453 \times 5000$		
	= \$\$6726.50		
	In Jan 2022, US\$5253.125 = 5253.125 ÷ 0.7415 = S\$7084.46		
	Mr Lim made a gain		
15a	$\sqrt{36}$ cm: $\sqrt{9}$ km		
	6cm:3km	į	
	6cm: 300000cm		
	1:50000		
	70000		
15b	n = 50000 1.64 km = 164000 cm		
130			
	Length of road = $\frac{164000}{50000}$		
	= 3.28 cm		
16a	$(2a-3)^2-4a(a-4)$		
	$=4a^2-12a+9-4a^2+16a$		
	=4a+9		
16b	$14x^2 - 7xy + 3ay - 6ax$		
	=7x(2x-y)+3a(y-2x)		
	=7x(2x-y)-3a(2x-y)		
	= (7x - 3a)(2x - y)		
	or any equivalent form		
17a	$1188 = 2^2 \times 3^3 \times 11$		
	•		
4.51			
17b	$m = 2 \times 11^2$		
	=242		
17c	$360 = 2^3 \times 3^2 \times 5$		
	HCF of 360 and $1188 = 2^2 \times 3^2$		
	=36		
18ai	∠ECD = 76° −34°		
	=42°		
	$\angle EBA = \angle DCA$		
	(Corresponding Angles, BE//CD)		·
	Or $\angle BED = \angle ECD$, Alternate Angles, $BE//CD$		
18aii	$\angle EDC = 180^{\circ} - 34^{\circ} - 76^{\circ}$		

Solution		a Barren en en en en en	A STATE OF THE STA	
SURLEGI	= 70°			
	- 7 0			
	Angle sum of triangle			
18b	EC is the longest side because it is opposite the largest			
	interior angle.			
	$\angle EDC = 70^{\circ}$			
	$\angle CED = 68^{\circ}$			
	∠ <i>ECD</i> = 42°			
	Or FD			
	$\frac{EC}{\sin \angle EDC} = \frac{DC}{\sin \angle DEC} = \frac{ED}{\sin \angle ECD}$			
	FC DC ED			
	$\frac{EC}{\sin 70^\circ} = \frac{DC}{\sin 68^\circ} = \frac{ED}{\sin 42^\circ}$			
	Since			
	$\sin 70^{\circ} > \sin 68^{\circ} > \sin 42^{\circ}$			
	EC > DC > ED			
19	B.			
			,	
	80			
	50.6			
	$a \rightarrow c$			
	AB			
	$\frac{AB}{AC}$ = tan 50.6°		,	
	$AC = \frac{80}{\tan 50.6^{\circ}}$			
	tan 50.6°			
	=65.71274			
	50			
	M 65.71274 D			
	50			
	$\frac{50}{65.71274} = \tan x^{\circ}$			
	$x^{\circ} = \tan^{-1} \frac{50}{65.71274}$			
	65.71274			
	=37.267°			
	$=37.3^{\circ}$ (1d.p)			

Solutio	ns:		Company of the compan
20a	$VX^2 = OX^2 + VO^2$ (Pythagoras' Theorem)		
	$VX = \sqrt{3.5^2 + 8^2}$		
	$VX = \sqrt{76.25}$ or 8.7321 (5 s.f.)		
	Total surface area of the pyramid =		
	$4\left(\frac{1}{2}\times7\times\sqrt{76.25}\right)+7^2$		
	= 171.2497444		
	$= 171 \text{ cm}^2 \text{ (correct to 3 s.f.)}$		
20b	Vol. of the Pyramid = $\frac{1}{3} \times 7^2 \times 8$		
	$= 130\frac{2}{3} \text{ cm}^3$		
	Vol. of 1 sphere = $\frac{4}{3} \times \pi \times (0.2)^3$		
	$= \frac{4}{375} \pi \text{cm}^3 \text{ or } \frac{32}{3} \pi \text{mm}^3$		
	Maximum number of spheres		
	$=130\frac{2}{3} \div \frac{4}{375}\pi$		
	= 3899.29 (5 s.f.) = 3899 (round down)		
011			
21i	\$2.70		
21ii	IQR = \$3.70-\$2.00 \$1.70		
21iii	Acceptable Answers		
2111	School B, since the median of donations of School B		
	(\$3.00) is higher the median of donations of School A (\$2.70).		
	School B has a lower interquartile range of (\$1.30) compared to School A (\$1.70), donations are more		
	consistent/less widespread with the greater donations than School A.		
	School B has a higher upper quartile (\$4) than School A (\$3.60), so 25% of students in School B donated \$4 of		
	more compared to less than 25% of students in School A.	:	

Solution	8: 0.15	
Journa	Y .	
22ai	$\overrightarrow{DC} = 3\mathbf{a}$	
22aii	$\overrightarrow{DA} = \overrightarrow{DC} + \overrightarrow{CA}$	·
	$= 3\mathbf{a} + 2\overline{CM}$ $= 3\mathbf{a} + 4\mathbf{b}$	
22aii	$\overrightarrow{DX} = \frac{1}{5}\overrightarrow{DA}$	
	$=\frac{1}{5}(3\mathbf{a}+4\mathbf{b})$	
22b	$\overrightarrow{BX} = \overrightarrow{BD} + \overrightarrow{DX}$	
	$=\mathbf{a}+\frac{1}{5}(3\mathbf{a}+4\mathbf{b})$	
	$=\mathbf{a}+\frac{3}{5}\mathbf{a}+\frac{4}{5}\mathbf{b}$	
	$=\frac{8}{5}\mathbf{a}+\frac{4}{5}\mathbf{b}$	
	$=\frac{4}{5}(2\mathbf{a}+\mathbf{b})$	
	$\overrightarrow{BX} = \frac{4}{5}(2\mathbf{a} + \mathbf{b})$ (Shown)	
22c	$\overrightarrow{BM} = \overrightarrow{BC} + \overrightarrow{CM}$	
	$= 4\mathbf{a} + 2\mathbf{b}$ $= 2(2\mathbf{a} + \mathbf{b})$	
22di		
	$\frac{BX}{BM} = \frac{ \frac{4}{5}(2\mathbf{a} + \mathbf{b}) }{ 2(2\mathbf{a} + \mathbf{b}) } = \frac{2}{5}$	
22dii	$\frac{\overline{BM}}{BM} = \frac{3}{ 2(2\mathbf{a} + \mathbf{b}) } = \frac{5}{5}$	
22un	$\frac{\text{area of } \triangle ABX}{\text{area of } \triangle ABX} = \frac{\frac{1}{2} \times BX \times \perp h}{1} = \frac{BX}{MY}$	
	$\frac{1}{\text{area of } \Delta AMX} = \frac{1}{2} \times MX \times \perp h \qquad MX$	
	$=\frac{2}{3}$	
2222	$\frac{3}{100000000000000000000000000000000000$	
22iii	$\frac{\text{area of } \Delta ABX}{\text{area of } \Delta ABC} = \frac{\text{area of } \Delta ABX}{\text{area of } \Delta ABM} \times \frac{\text{area of } \Delta ABM}{\text{area of } \Delta ABC} = \frac{2}{5} \times \frac{1}{2}$	
	$=\frac{1}{5}$	
L		

2022 Sec 4E5N/4NA(OOS) EM Prelim P2 Marking Scheme with Marker's Report

Solutio	.	
1a		
	$\frac{9x-2}{x^2-4x+4} + \frac{2}{x-2}$	
	$= \frac{9x-2}{(x-2)^2} + \frac{2}{x-2}$ factorization of denominator	
	$(x-2)^2$ $(x-2)^2$ $(x-2)^2$ $(x-2)^2$	
	$= \frac{9x-2}{(x-2)^2} + \frac{2(x-2)}{(x-2)^2} \text{ correct denom. \& numerator}$	
1	$= \frac{11x - 6}{(x - 2)^2}$	
1b	Any method to solve either substitution or elimination	
	x=2, y=-4 A1 each	
1c	(3x+2)(3x-2) 1	
	$\frac{(3x+2)(3x-2)}{(3x+2)(x-3)} \times \frac{1}{(2-3x)}$	
	(2	
	$= \frac{-(3x+2)(2-3x)}{(3x+2)(x-3)} \times \frac{1}{(2-3x)}$	
	$=\frac{-1}{x-3}$ or $\frac{1}{3-x}$	
	x-3 $3-x$	
1d	$(2^3)^{1-2x} = (2^5)^{3-x}$	
	Comparing indices:-	
	3(1-2x) = 5(3-x)	
	3-6x=15-5x $x=-12$	
1e	$1-5+2x < \frac{3}{2}x + \frac{1}{2}$; $\frac{3}{2}x + \frac{1}{2} \le \frac{4}{5}x + \frac{2}{5}$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\frac{1}{2}x < 4\frac{1}{2} ; \frac{7}{10}x \le -\frac{1}{10}$	
	$x < 9 ; x \le -\frac{1}{7}$ $x \le -\frac{1}{7}$	
	7	_
	$x \le -\frac{1}{7}$	
1f	$x = -\frac{1}{3}$	
	7	

Solution	INC.	Marker's comments
2ai	$QS = \sqrt{420^2 + 340^2} = \sqrt{292000}$	
	= 540.37	
	≈ 540 m	
2aii	$\angle RSQ = \tan^{-1} \frac{420}{340}$	
	340 = 51.009°	
	$= 51.009^{\circ}$ $\angle OSP = 360^{\circ} - 21.009^{\circ} - 280^{\circ} (\angle s \text{ at a point})$	
	= 28.991°	
	$PQ = \sqrt{750^2 + \left(\sqrt{292000}\right)^2 - 2(750)(\sqrt{292000})\cos 28.991}$	
	$ PQ = \sqrt{30 + (\sqrt{292000})} - 2(730)(\sqrt{292000}) \cos 23.551$	
	201.571	
	= 381.571 = 381 m	
2b	$\frac{\sin \angle PQS}{\sin 28.991^{\circ}}$	
	750 381.46	
	or	
	$\angle PQS = 72.35^{\circ} (acute)$ (72.33°) Find using Cosine rule	
	obtuse $\angle PQS = 180^{\circ} - 72.35^{\circ}$	
	=107.65° (107.67°)	
	$\angle RQS = 180^{\circ} - 90^{\circ} - 51.009^{\circ} (\angle sum \ of \Delta)$	
	= 38.991° Bearing required = 128.991° + 107.65°	
	= 236.6° (236.7°)	
3a	(6)	
	$ \langle 10 \rangle $	
3bi	(64)	
	(190)	
3bii	The elements represent the total amount collected from	
	the sales of men's and womens' t-shirts respectively.	·
3ci	(115 202.5 51.5)	
301	(113 202.3 31.3)	
3cii		
	(115 202.5 51.5) = (369)	
	(7)	
	$or (10 \ 11.5) \binom{7}{26} = (369)$	
	Total amount received = \$369	
1	I Utal amount lectived 4307	

Solutio			THE RESERVE OF THE SECOND SECO
4a	b = 4.75		
4b	All points plotted correctly Correct Labelled Axis & Scale		
	Smooth curve drawn with curve ruler passing through all points		
4c	Ruled straight line through (0,1)		
	Must show gradient = $\frac{1}{3}$		
4d	$-2.4 \le x_1 \le -2.2, \ x_2 = 0, \ 2.2 \le x_3 \le 2.4$		
4e	A=3, B=16	_	
	$\frac{1}{3}x + 1 = \frac{x^3}{4} - x + 1$		
	$4x + 12 = 3x^3 - 12x + 12$		
	$3x^3 = 16x$		
5ai	Vol of solid $P = \frac{2}{3} \times \pi \times 12^3$		
	$= 1152 \pi$		
	$= 3619.114737 \text{ cm}^3$		
	Vol of solid $Q = 3619.114737 \div 6$		
<u> </u>	≈ 603 cm ³		
5aii	Slant height of cone = $\sqrt{2}$ cm		
	Total Curved surface area of solid R = $(\pi \times 1 \times \sqrt{2}) + (2 \times \pi \times 1 \times 2)$		
	$= (\pi \times 1 \times \sqrt{2}) + (2 \times \pi \times 1 \times 2)$ $= 17.0 \text{ cm}^2$		
5bi	Vol of solid R		
	$= (\frac{1}{3} \times \pi \times 1^2 \times 1) + (\pi \times 1^2 \times 2)$		
	$=7.33038 \mathrm{cm}^3$		
	$=7.33 \text{ cm}^3$		
5bii	Number of complete solid R that can be obtained		
3011	Transfer of complete solid R mai can be obtained		:
	*		
	= 82 (nearest whole number)		
6ai	$\angle ADE = 90^{\circ} + \angle ADG$		
	$\angle CDG = 90^{\circ} + \angle ADG$		

Solution	
	$\therefore \angle ADE = \angle CDG$
<u> </u>	
6aii	AD = CD (sides of square $ABCD$)
	$\angle ADE = \angle CDG \text{ [from } 6(a)(i)]$
	DE = DG (sides of square $DEFG$)
	$\therefore \Delta ADE \equiv \Delta CDG \text{ (SAS)}$
6bi	$\angle ADE = 26^{\circ} \ (\angle s \text{ in same segment})$
ODI	
6bii	$\angle AED = 180 - 78$ (adj. \angle s on a st. line)
ODD	
	$=102^{\circ}$
	$\angle ACD = 180 - 102$ (\angle s in opp. segments)
	= 78°
	$180^{\circ}-78^{\circ}$
	$\angle CDA = \frac{180^{\circ} - 78^{\circ}}{2}$ (base \angle of isos. triangle)
	=51°
6biii	$\angle CAE = 180 - 26 - 51$ (angles in opp. segments)
ODIII	
	= 103°
7a	48.1°
	1 1 DD ((0.04)
7b	Arc length, $PR = 6(0.84)$
	= 5.04 cm
	Answers may vary slightly due
	$OQ^2 = 6^2 + 6.7^2$ to students using either Trigo
	$OQ = 6^2 + 6.7^2$ Ratios, Pythagoras' Theorem
	= 8.9939 or Cosine Rule to find <i>OQ</i> .
	= 6.9939
	RQ = 8.9939 - 6
	= 2.9939
	Perimeter
	= 5.04 + 2.9939 + 6.7
	=14.7 cm
	0.5 1.0 2.5 1.7 1.4.5
8a	$2 \times 1.5 + a \times 2.5 + 8 \times 3.5 + 7 \times 4.5 = 3.5$
	17+a
1	2.5a + 62.5 = 59.5 + 3.5a
	a=3
8bi	0.949 kg
ODI	V.ZTZ AS

Solution	nt		7-17-17-18-18-18-18-18-18-18-18-18-18-18-18-18-
## 22.2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3			
8bii	The mid-values of the masses are used instead as the exact masses were not known. Masses were given in range. (adjusted answer key)		
8c	The masses of durians from shop B are heavier (or have higher mass) than shop A because the mean mass of durians from shop B (4.4kg) is greater than shop A (3.5kg). The masses of durians from shop B have a greater spread than shop A because the standard deviation of the masses of durians from shop B (1.2kg) is greater than shop A (0.949kg). Or The masses of durians from shop B are less consistent than shop A because the standard deviation of the masses of durians from shop B (1.2kg) is greater than shop A (0.949kg).		
		ļ	(8)
9ai	$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA}$ $= \begin{pmatrix} -4 \\ 5 \end{pmatrix} - \begin{pmatrix} -7 \\ -5 \end{pmatrix}$ $= \begin{pmatrix} 3 \\ 10 \end{pmatrix}$		
9aii	$ \overrightarrow{AD} $ $= \sqrt{3^2 + 10^2}$ $= 10.4 \text{ units}$		
9bi	-2 a		·
07.11			
9bii	a – b		

Solution		The second se
9c	$\overrightarrow{DE} = \overrightarrow{DB} + \overrightarrow{BE}$ Also accepted:	
	$= 2\mathbf{b} + \frac{1}{3}(\mathbf{a} - \mathbf{b}) \qquad \qquad \overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AE}$	
	$=2\mathbf{b} + \frac{1}{3}\mathbf{a} - \frac{1}{3}\mathbf{b}$ or $=\mathbf{b} + \mathbf{a} + \frac{2}{3}(\mathbf{b} - \mathbf{a})$	
	$=\frac{5}{3}\mathbf{b} + \frac{1}{3}\mathbf{a} \qquad \qquad =\frac{1}{3}(5\mathbf{b} + \mathbf{a}) \text{(shown)}$	
	$=\frac{1}{3}(5\mathbf{b}+\mathbf{a}) \text{(shown)}$	
9d	$\overrightarrow{DF} = \overrightarrow{DO} + \overrightarrow{OF}$	
	$=\mathbf{b}+\frac{1}{5}\mathbf{a}$	
	$= \frac{1}{5}(5\mathbf{b} + \mathbf{a})$ Must show same vector as 9c	
	$\overrightarrow{DE} = \frac{1}{3}(5\mathbf{b} + \mathbf{a})$	
	$Or = \frac{5}{3} \left(\mathbf{b} + \frac{1}{5} \mathbf{a} \right)$	
	$=\frac{5}{3}\overrightarrow{DF}$	
	Since $\overrightarrow{DF} = k\overrightarrow{DE}$, \overrightarrow{DF} is parallel to \overrightarrow{DE} and \overrightarrow{D} is a	
	common point , hence D , E , and F lie on the same straight line.	
9e	$\frac{4}{9}$	
10ai	$\frac{1}{2}$	
10aii	$\frac{\pi}{25}$ or 0.04π	

Solution 10aiii	$ \begin{bmatrix} 1 - \frac{1}{2} - \frac{1}{4} - \frac{\pi}{25} & P(\text{Red}) = P(\text{Yellow-Blue}) \\ = \frac{1}{4} - \frac{\pi}{25} & \text{or } = \frac{1}{4} - \frac{\pi}{25} \\ = \frac{25 - 4\pi}{100} \text{ (shown)} & = \frac{25 - 4\pi}{100} \text{ (shown)} $	
10bi	$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$	
10bii	$\left(\frac{1}{2} \times \frac{1}{4}\right) + \left(\frac{1}{4} \times \frac{1}{2}\right)$ $= \frac{1}{4}$	

	P(at least 1 dart hit yellow area) = $1-P(both darts not hitting yellow area)$		
		1	ı
	$\langle a \rangle^2$	ł	
i i	$=1-\left(\frac{3}{4}\right)^2$		
	$=\frac{7}{16}$		
11a	$1.6093 \text{ km} \rightarrow 1 \text{ mile}$		
	$1 \text{ km} \rightarrow \frac{1}{1.6093} \text{ miles}$		
	$584.6 \text{ km} \rightarrow 363 \text{ miles}$		
11b	Time taken for train journey		
	$=\frac{584.6}{94.8}$		
	$=\frac{37}{6}h$		
	= 6 hrs 10 mins		

Salasia	n:		Marker's comments
lle	By Train		
	Both Glen and Jane can depart only at 09 27 from	'	
	Berlin in order to reach Munich latest by 4pm.		
	Cost of train ride		
	=68×2		
	=\$136		
	By Bus		
	Both Glen and Jane have to take the bus via Bayreuth		
	from Berlin in order to reach Munich latest by 4pm.		
	Duration of bus ride = 7 hrs 40 mins		
	Distance covered by bus in miles		
	$=7\frac{2}{3}\times45$		
	=345 miles × 1.6093		
	= 555.2085 km		
	Cost of bus ride		
	$=[8+(555.2085\times0.05)\times2$		
	=\$71.52		
	Recommend Bus		
	Advantage: Lower east by bus (\$71.52) than train		
	(\$136)		
	Disadvantage: Longer travelling time by bus (7 hours		
	40 min) than train (6 hours 10 min)		
:	OR.		
	Recommend Train		
	Advantage: Shorter travelling time by train (6 hours 10		
	min) than bus (7 hours 40 min)		
	Disadvantage: Higher cost by train (\$136) than bus		
s.'	(\$71.52)		
1	1	1s	Ę.