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1 (a)%sinx:—sinx<0forxe(o,n). %Inx:—%<0 for X € (0,00).

(i) Giventhat A, B and C are angles of a triangle, then
0<A<Z 0<B<Zando<c<Z.
2 2 2
Applying Jensen inequality,
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(i) Let f(x)=Inx. Thenllnaﬁ—lna +...+Ina, <In
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Using AM-GM inequality,
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Fn Fn—l
= r? + W§—1 - 4Wan—1 - Wr?—l - Wr?—Z + 4Wn—an—2
= Wr? - Wr?—z - 4Wan—l + 4Wn—1Wn—2

= (Wn —W,, )(Wn +W, ., ) - 4Wn—l (Wn - Wn—2)
= (Wn _Wn—2)(Wn + W, _4Wn—l)

Fn - anl = (Wn —W 72) W, +W,_, _4Wn71) ---------------- (1)
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(@) Let w, beu,. Thenu,+u, ,—4u, ,=0.

So we have F, —F,_, =0 for n>2 by result above.
ie F=F_ forn>2

F =u/ +u; —4uu, =22 +1°—4(2)(1)=-3
Therefore F, =-3 forall n>1.

So we have u’ +u’, =4u.u_, —3 for n>1.
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(b)(i) Let w, be v, .
vy +17 =4(v,)(D) -3
v, —4v,+4=0
(v,-2)" =0
v, =2
F =v2+v’, —4vv  =-3 forn>1.
From (1), we have v, —v, ,=0orv,+v, ,—4v , =0 forn>2..

(i) Since 1,2,1,2,.... satisfies v,—-v,,=0 for n>2., then from (1),

n

F, isconstant. Also since v, =1 and v, =2, then F,=-3. So the sequence
satisfies (*).

(i) Take the sequence 1,2,7,2,1,2,7,2,..... that satisfies v, —v, , =0 for odd
n>2andv, +v, ,—4v, , =0 for even n>2 with period 4.
Then by (1), F, isconstant and F, =-3. So the sequence satisfies (*).

For all real values of t, (tf(x) +g(x))2 >0
Thus we have

[ (tF (0 +9(x))" dx=0
PN thz (F(9) +2tF (x)g(x) + (9(x) ) dx =0
o tz_[:(f(x))z dx + 2tj:f(x)g(x) o|x+j:(g(x))2 dx>0

From above, we have

j (tF(x) +9(x))" dx>0
o (2 [ 0900 dx) ( [C(Fooy )( " (a0 dx)
@(Lbf(x)g(x) dx) s(j (F(0) d )(j:(g(x))2 dx)

Equality holds when j:(tf(x) +g(x))2 dx=0. Since f and g are continuous this

means that we must have tf(x)+g(x) =0 for all real x, i.e. f is a scalar multiple of
g.



0] Setting f(x) =1 and g(x) =e* in(*)
Since f is not a scalar multiple of g, we have

(Jj exdx)2 < I:l de.:ezxdx

(eb —e*’)2 < (b—a)%(e2b —eza)

(eb —e*’)2 < l(b—a)(eb —ea)(eb +ea)
e —e* <= (b a)(eb+ea)

Choosing a_O and b=t gives
e‘—l<%t(et +1)

et—l 1
e+1 2

(i) Setting f(x) =1 and g(x) =+/sinx and a=0 and b:%,

(*) becomes
1 2 1 1
[Izﬁ Jsin xdx] < (J.Zﬂldx](jzﬂsin xdx]
0 0 0
S “ 1 L. o
“02 Jsin xdxj <E7r[—cosx]g =5

1
If” Jsin xdx < \/%
1

Setting f(x)=cosx and g(x) =(sinx)+ and a=0 and b:%,

j cosx(sin x) d j (j cos xdxj[_[ Jsm_xdx]
g{(sin X)t E} < [% ["1+ cos 2x dx]{ [ \/siﬂdxj

*) becomes% < i{x sin ZX} U Jsin xdx]
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du_dy

dy =
» OIX2+g(x)dx+<91(x)y

(u= +g(X)y

3—u+f(x)u h(x)

[32Z+g(x> y+q<x)yj+f(x)u—h(x)

= 3—¥+ 9(X)d—y+9'(x)y+f(X)(d—y+g(x)yj =h(x)
X dx dx
d’y dy . )
= d7+(9(><)+f(><))&+(g () +T()g(x))y =h(x)

@i g(x)+f(x) :2+§:> f(x):2+§—g(x)

9’00 +F()g(x) =§

, 2 4
= 0100+(2+2- 00 Jo9 =
This is the first order differential equation satisfied by g(x).

If f(x)=kx", then g(x) =2 +g —kx" and g'(x) = —%— knx"*
X X
Subst into the above first order de for g(x),

—%—knx”l+(2+g—kx”ka” _4
X X X

—2 —knx""™ 4 2kx"? 4 2kx" —k?x*"*? = 4x

Casel: 2n+2=n+2=n=0. Rejected as there is a constant term -2 that cannot
be eliminated

Case2: 2n+2=n+1=n=-1.
Comparing coefficients of x terms: 2k =4=k =2

Checking constant terms: LHS =—-1+2+4-4=0=RHS

So f(x)—z, g(x) = 2+Z_E:2
X X



Using 3—u+f(x)u =h(x), we have
X

du (2) 6
—+| = |lu=—
dx X X

du 2

= _L%(3-
dx x( u)
—In|3—u|=2In|x|+C
A
3—U:F
u:S—A
X

Using ?+g(x)y=u and we are given y =4 and %z—Sat x=1
X X

-5+2(4)=u=u=3at x=1.
L A=0=u(x)=3.

Using g—y+g(x)y =u, we have
X

dy
—+2y=3
dx y

dy
—=3-2
dx y

—%In|3—2y|: x+D

In[3-2y|=-2x+E

3-2y=Be™*

Whenx =1,y =4 = B = -5¢’
3 5 —2X+2

=—+=-e
y22



2r-1=2(2.3..p)-1
Claim: All prime factors of 2r —1are greater than p.

Suppose there exists a prime factor p, suchthat2<p, < p. Then
p, | (2r-1) and p,|2(2.3.....p) which implies p, |1. (contradiction)

Now 2r —-1=2(2.3...p)—1=-1(mod4) = 3(mod 4)

ie 2r —1 is of the form 4n+3 for some integer n.

Since 2r —1 is odd, the only possible prime factors are of the form 4k +1 or 4k +3
for integers k.

But (4k, +1 )(4k, +1)=4(4kk, +k, +k,)+1 ie of the form 4k +1

Hence there must exists a prime factor of 2r —1 of the form 4k + 3 ie congruent to
3 modulo 4

Therefore there exists a prime factor g of 2r —1 such that q > p and
q=3(mod4).

Suppose there is a finite number of primes of the form 4n+3 and p is the largest
prime of this form.

From result above, 2r —1 has a prime factor g such that q > p and q =3(mod 4) ie

q is of the form 4k +3 for some integer k (contradiction)
Hence there is an infinite number of primes of the form 4n+ 3, where n is an integer.

4n+3=3%" where k is an integer
4n=3(3%* -1)=3(9" -1)
3(9*-1)
4
Since (9" —1) = (9—1)(9k‘1 +94? +...+1) which is divisible by 4, therefore

3(9*-1)

n=

n= is always an integer for all non-negative integer k.

3(9 -1
Therefore n = % where k=0,1,2,... give an infinite sequence of numbers for

which the values of 4n+3 are the odd powers of 3.



(=) If yis asolution of the congruences y = a(mod p“qﬂ)
then y=mp“g” +a for some integer m
y =mp“qg” +a(mod p"):> y= a(mod p“)
y =mp“g” +a(mod qﬁ):> y= a(modqﬂ)

(<) Ifyis asolution of both the congruences of
ysa(mod p“) and ysa(modqﬂ)

then
y=sp“+a and y=tg’+a forsome integerss,t.

sp”+a=tq’ +a
= sp” =tq’

Since p and g are distinct prime numbers and hence coprime,
then

a1 p* =0 s
= s=hqg” for some integer h
We have y=sp“+a=y=hg’p“+a=y= a(mod p"’qﬂ) (shown)

X° +10x+9 = 0(mod 24) = X* +10x+9 = 0(mod 2°.3)

ie it is equivalent to finding the solutions to
x*+10x+9=0(mod3) and x°+10x+9= O(mod 23)

x*+10x+9=0(mod3)

x*+ x=0(mod?3)

x(x2 +1) = 0(mod3)

Since 3 is prime, therefore x=0(mod3) or x*+1=0(mod3)

Consider x=3k,3k +1,3k + 2 where k is an integer

We have x* +1=1(mod 3), x* +1= 2(mod 3), x> + 1= 2(mod 3) respectively.
So there are no solution to x* +1=0(mod?3)

Then x=0(mod3) = x=3n wheren is an integer

x*+10x+9=0(mod8)

x° +2x+1=0(mod8)
For x=23n, consider n=2r,2r+1 where r is an integer
Forn=2r, LHS isodd and RHS is even ie no solution



For n=2r+1, x=6r+3 we have

(6r+3)° +2(6r +3)+1=0(mod8)

(6r)°+3(6r)° 3+3(6r)+3* +12r +6+1=0(mod8)
4r® +6r+2=0(mod8)

2(2r’ +3r+1)=0(mod8)
2(2r+1)(r+1)=0(mod8)
(2r+1)(r+1)=0(mod4)

Since 2r+1 is odd, we haver +1=0(mod4) ie r =4w—1 where w is an integer
So the solution to x° +10x+9 = 0(mod 24) is
x=6(4w—1)+3=24w-3 weZ

(1) For 2 boxes each contains exactly 2 objects, all the other remaining (r —4) identical
boxes must each contains 1 object.

r
Out of r distinct objects, choose 4 of them to be in the 2 boxes. This gives [4} choices.

These 4 objects (eg, A, B, C and D) are to be among 2 identical boxes equally and this
gives only 3 ways of doing so, namely {{A, B},{C, D}},{{A C}{B,D}} and

{{A,D},{C,B}.
Note that there is only 1 way to distribute the remaining (r —4) objects into the
remaining identical boxes.

r
Hence, we have 3(4) ways.

(ii) To distribute r distinct objects, where r >3, into (r —2) identical boxes, we can do
via (i) or do so by distributing it such that exactly one of the boxes contains 3 objects.

r
This gives (3) ways to do so. Adding it with part (i), we get

r r
S(r,r-2) :(3j+3(4]

_r(r=0(r-2) 3r(r-1)(r-2)(r-3)

- 3! " 4

_ 4r(r=)(r—2)+3r(r-1(r-2)(r-3)
4!




_ r(r-1)(r—2)(4+3(r-3))
41

_r(r=1)(r-2)@r-5)
- 24

(iii) Distributing 10 distinct cookies among 8 (identical) boxes
=5(10,8) = 10(9)(82)(30 =9 _ 750

Distributing 10 distinct cookies among 8 (identical) boxes such that exactly 2 boxes

10
each contains exactly 2 cookies= 3( A j =630

Required probability :%x§:% or0.21

i@ (m;—fl—lj or (m+nlq<—lj

b m+k-1 i (Mmk-1)!
m (k-1

(ii) There is only 1 way to put m identical flags in 1 box
T(m1=1

To arrange m identical flags in m boxes such that no box is empty,

T(m,m)=m!

(iii) To arrange m identical flags in n distinct boxes such that no box is empty,

Suppose the 1% flag is alone in a box:

There are n ways to choose which box this flag is in.

We arrange the remaining (m—21) flags in the remaining (n—1) boxes, giving us
T(m-1n-1) ways.

So, total nxT(m-1,n-1) ways

10




Suppose the 1% flag is not alone:

We isolate this particular flag.
We arrange the remaining (m—21) flags in n boxes, giving us T(m—-1,n—1) ways.
There are n choices where this 1 flag can be put in any of the already filled n boxes.

So, total nxT(m-1,n) ways

Adding the above cases up, we obtain

T(m,n)=nx(T(m-1,n-1)+T(m-1n))

(iv) Let A denote the set of distinct arrangements by distributing m distinct flags into n
distinct boxes, such that at least i box(es) being empty.
Where there is no restriction on the number of boxes, |Aj|=n"

n
When at least 1 box is empty, |A|= [J(n -n"
n
When at least 2 boxes are empty, |A,|= {zj(n -2)"
n
When at least r boxes are empty, |A | :[rj(n —r)"

By principle of inclusion and exclusion,

T(m,n)=i(—1)“|A,|=i(—1)f(:j(n—r)m
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