2024 ASRJC H3 Math Prelim Solutions

1 (a)
$$\frac{d^2}{dx}\sin x = -\sin x < 0$$
 for $x \in (0,\pi)$. $\frac{d^2}{dx}\ln x = -\frac{1}{x^2} < 0$ for $x \in (0,\infty)$.

(i) Given that A, B and C are angles of a triangle, then

$$0 < A < \frac{\pi}{2}, \ 0 < B < \frac{\pi}{2} \ \text{and} \ 0 < C < \frac{\pi}{2}.$$

Applying Jensen inequality,

$$\frac{1}{3} \sum_{k=1}^{3} \sin(x_k) \le \sin\left(\frac{1}{3} \sum_{k=1}^{n} x_k\right)$$

$$\frac{1}{3} \left[\sin A + \sin B + \sin C \right] \le \sin \left(\frac{1}{3} \left(A + B + C \right) \right)$$

$$\frac{1}{3} \left[\sin A + \sin B + \sin C \right] \le \sin \left(\frac{1}{3} (\pi) \right)$$

$$\frac{1}{3} \left[\sin A + \sin B + \sin C \right] \le \sin \left(\frac{\pi}{3} \right) = \frac{\sqrt{3}}{2}$$

$$\sin A + \sin B + \sin C \le \frac{3\sqrt{3}}{2}$$
 (Shown)

(ii) Let
$$f(x) = \ln x$$
. Then $\frac{1}{n} \ln a_1 + \ln a_2 + ... + \ln a_n \le \ln \left[\frac{1}{n} a_1 + a_2 + ... + a_n \right]$

$$\ln(a_1 a_2 \cdots a_n)^{\frac{1}{n}} \le \ln \left[\frac{a_1 + a_2 + ... + a_n}{n} \right]$$

$$\therefore \frac{a_1 + a_2 + ... + a_n}{n} \ge (a_1 a_2 \cdots a_n)^{\frac{1}{n}}$$

(b) (i)
$$P(n) = \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{5}{4} \cdot \frac{9}{8} \cdot \dots \cdot \frac{2^{n-1} + 1}{2^{n-1}}$$
.

Using AM-GM inequality,

$$\left(\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{5}{4} \cdot \frac{9}{8} \cdot \dots \cdot \frac{2^{n-1}+1}{2^{n-1}}\right)^{\frac{1}{n}} \le \frac{\frac{2}{1} + \frac{3}{2} + \frac{5}{4} + \frac{9}{8} + \dots + \frac{2^{n-1}+1}{2^{n-1}}}{n}$$

$$(P(n))^{\frac{1}{n}} \leq \frac{\left(1+\frac{1}{1}\right) + \left(1+\frac{1}{2}\right) + \left(1+\frac{1}{4}\right) + \left(1+\frac{1}{8}\right) + \dots + \left(1+\frac{1}{2^{n-1}}\right)}{2^{n-1}}$$

$$(P(n))^{\frac{1}{n}} \le \frac{n + (1) + (\frac{1}{2}) + (\frac{1}{4}) + (\frac{1}{8}) + \dots + (\frac{1}{2^{n-1}})}{n}$$

$$(P(n))^{\frac{1}{n}} \le \frac{1 - \left(\frac{1}{2}\right)^{n}}{n}$$

$$(P(n))^{\frac{1}{n}} \le \frac{n + 2 - \left(\frac{1}{2}\right)^{n-1}}{n}$$

$$(P(n))^{\frac{1}{n}} \le \frac{n + 2 - \left(\frac{1}{2}\right)^{n-1}}{n}$$

$$(P(n))^{\frac{1}{n}} < \frac{n + 2}{n}$$

$$P(n) < \left(1 + \frac{2}{n}\right)^{n}$$

$$= 1 + n\left(\frac{2}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{2}{n}\right)^{2} + \frac{n(n-1)(n-2)}{3!}\left(\frac{2}{n}\right)^{3} + \dots + \frac{n(n-1)(n-2)\dots(2)(1)}{n!}\left(\frac{2}{n}\right)^{n}$$

$$(ii) < 1 + 2 + \frac{1}{2!}(2)^{2} + \frac{1}{3!}(2)^{3} + \dots + \frac{1}{n!}(2)^{n}$$

$$< 1 + 2 + \frac{1}{2!}(2)^{2} + \frac{1}{3!}(2)^{3} + \dots + \frac{1}{n!}(2)^{n} + \dots$$

$$< e^{2}$$

$$F_{n} - F_{n-1}$$

$$= w_{n}^{2} + w_{n-1}^{2} - 4w_{n}w_{n-1} - w_{n-1}^{2} - w_{n-2}^{2} + 4w_{n-1}w_{n-2}$$

$$= w_{n}^{2} - w_{n-2}^{2} - 4w_{n}w_{n-1} + 4w_{n-1}w_{n-2}$$

$$= (w_{n} - w_{n-2})(w_{n} + w_{n-2}) - 4w_{n-1}(w_{n} - w_{n-2})$$

$$= (w_{n} - w_{n-2})(w_{n} + w_{n-2} - 4w_{n-1})$$

$$F_{n} - F_{n-1} = (w_{n} - w_{n-2})(w_{n} + w_{n-2} - 4w_{n-1}) - \dots (1)$$

(a) Let
$$w_n$$
 be u_n . Then $u_n + u_{n-2} - 4u_{n-1} = 0$.
So we have $F_n - F_{n-1} = 0$ for $n \ge 2$ by result above. ie $F_n = F_{n-1}$ for $n \ge 2$
$$F_1 = u_1^2 + u_0^2 - 4u_1u_0 = 2^2 + 1^2 - 4(2)(1) = -3$$
Therefore $F_n = -3$ for all $n \ge 1$.
So we have $u_n^2 + u_{n-1}^2 = 4u_nu_{n-1} - 3$ for $n \ge 1$.

(b)(i) Let
$$w_n$$
 be v_n .

$$v_1^2 + 1^2 = 4(v_1)(1) - 3$$

$$v_1^2 - 4v_1 + 4 = 0$$

$$(v_1 - 2)^2 = 0$$

$$v_1 = 2$$

$$F_n = v_n^2 + v_{n-1}^2 - 4v_n v_{n-1} = -3$$
 for $n \ge 1$.

From (1), we have $v_n - v_{n-2} = 0$ or $v_n + v_{n-2} - 4v_{n-1} = 0$ for $n \ge 2$.

- (ii) Since 1,2,1,2,... satisfies $v_n v_{n-2} = 0$ for $n \ge 2$, then from (1), F_n is constant. Also since $v_0 = 1$ and $v_1 = 2$, then $F_n = -3$. So the sequence satisfies (*).
 - (iii) Take the sequence 1,2,7,2,1,2,7,2,..... that satisfies $v_n v_{n-2} = 0$ for odd $n \ge 2$ and $v_n + v_{n-2} 4v_{n-1} = 0$ for even $n \ge 2$ with period 4. Then by (1), F_n is constant and $F_n = -3$. So the sequence satisfies (*).
- 3 For all real values of t, $(tf(x) + g(x))^2 \ge 0$

Thus we have

$$\int_{a}^{b} (tf(x) + g(x))^{2} dx \ge 0$$

$$\Leftrightarrow \int_{a}^{b} t^{2} (f(x))^{2} + 2tf(x)g(x) + (g(x))^{2} dx \ge 0$$

$$\Leftrightarrow t^{2} \int_{a}^{b} (f(x))^{2} dx + 2t \int_{a}^{b} f(x)g(x) dx + \int_{a}^{b} (g(x))^{2} dx \ge 0$$

From above, we have

$$\int_{a}^{b} (tf(x) + g(x))^{2} dx \ge 0$$

$$\Leftrightarrow \left(2 \int_{a}^{b} f(x)g(x) dx\right)^{2} \le 4 \left(\int_{a}^{b} (f(x))^{2} dx\right) \left(\int_{a}^{b} (g(x))^{2} dx\right)$$

$$\Leftrightarrow \left(\int_{a}^{b} f(x)g(x) dx\right)^{2} \le \left(\int_{a}^{b} (f(x))^{2} dx\right) \left(\int_{a}^{b} (g(x))^{2} dx\right)$$

Equality holds when $\int_a^b (tf(x) + g(x))^2 dx = 0$. Since f and g are continuous this means that we must have tf(x) + g(x) = 0 for all real x, i.e. f is a scalar multiple of g.

(i) Setting
$$f(x) = 1$$
 and $g(x) = e^x$ in(*)
Since f is not a scalar multiple of g, we have

$$\left(\int_{a}^{b} e^{x} dx\right)^{2} < \int_{a}^{b} 1 dx \int_{a}^{b} e^{2x} dx$$

$$\left(e^{b} - e^{a}\right)^{2} < \left(b - a\right) \frac{1}{2} \left(e^{2b} - e^{2a}\right)$$

$$\left(e^{b} - e^{a}\right)^{2} < \frac{1}{2} \left(b - a\right) \left(e^{b} - e^{a}\right) \left(e^{b} + e^{a}\right)$$

$$e^{b} - e^{a} < \frac{1}{2} \left(b - a\right) \left(e^{b} + e^{a}\right)$$

Choosing a = 0 and b = t gives

$$e^t - 1 < \frac{1}{2}t\left(e^t + 1\right)$$

$$\frac{e^t - 1}{e^t + 1} < \frac{1}{2}t$$

(ii) Setting
$$f(x) = 1$$
 and $g(x) = \sqrt{\sin x}$ and $a = 0$ and $b = \frac{\pi}{2}$,

(*) becomes

$$\left(\int_{0}^{\frac{1}{2}\pi} \sqrt{\sin x} dx\right)^{2} < \left(\int_{0}^{\frac{1}{2}\pi} 1 dx\right) \left(\int_{0}^{\frac{1}{2}\pi} \sin x dx\right)$$

$$\left(\int_{0}^{\frac{1}{2}\pi} \sqrt{\sin x} dx\right)^{2} < \frac{1}{2}\pi \left[-\cos x\right]_{0}^{\frac{1}{2}\pi} = \frac{\pi}{2}$$

$$\int_{0}^{\frac{1}{2}\pi} \sqrt{\sin x} dx < \sqrt{\frac{\pi}{2}}$$

Setting $f(x) = \cos x$ and $g(x) = (\sin x)^{\frac{1}{4}}$ and a = 0 and $b = \frac{\pi}{2}$,

$$\left(\int_0^{\frac{1}{2}\pi} \cos x (\sin x)^{\frac{1}{4}} dx\right)^2 < \left(\int_0^{\frac{1}{2}\pi} \cos^2 x dx\right) \left(\int_0^{\frac{1}{2}\pi} \sqrt{\sin x} dx\right)$$

$$\left(\frac{4}{5} \left[\left(\sin x\right)^{\frac{5}{4}} \right]_{0}^{\frac{1}{2}\pi} \right)^{2} < \left(\frac{1}{2} \int_{0}^{\frac{1}{2}\pi} 1 + \cos 2x \, dx \right) \left(\int_{0}^{\frac{1}{2}\pi} \sqrt{\sin x} dx \right)$$

(*) becomes
$$\frac{16}{25} < \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right]_0^{\frac{1}{2}\pi} \left(\int_0^{\frac{1}{2}\pi} \sqrt{\sin x} dx \right)$$

$$\frac{16}{25} < \frac{1}{2} \cdot \frac{\pi}{2} \left(\int_0^{\frac{1}{2}\pi} \sqrt{\sin x} dx \right)$$

$$\int_0^{\frac{1}{2}\pi} \sqrt{\sin x} dx > \frac{64}{25\pi}$$

Combining, $\frac{64}{25\pi} < \int_0^{\frac{1}{2}\pi} \sqrt{\sin x} \, dx < \sqrt{\frac{\pi}{2}}.$

4 (i)
$$u = \frac{dy}{dx} + g(x)y \Rightarrow \frac{du}{dx} = \frac{d^2y}{dx^2} + g(x)\frac{dy}{dx} + g'(x)y$$

$$\frac{du}{dx} + f(x)u = h(x)$$

$$\Rightarrow \left(\frac{d^2y}{dx^2} + g(x)\frac{dy}{dx} + g'(x)y\right) + f(x)u = h(x)$$

$$\Rightarrow \frac{d^2y}{dx^2} + g(x)\frac{dy}{dx} + g'(x)y + f(x)\left(\frac{dy}{dx} + g(x)y\right) = h(x)$$

$$\Rightarrow \frac{d^2y}{dx^2} + \left(g(x) + f(x)\right)\frac{dy}{dx} + \left(g'(x) + f(x)g(x)\right)y = h(x)$$

(ii)
$$g(x) + f(x) = 2 + \frac{2}{x} \Rightarrow f(x) = 2 + \frac{2}{x} - g(x)$$

$$g'(x) + f(x)g(x) = \frac{4}{x}$$

$$\Rightarrow g'(x) + \left(2 + \frac{2}{x} - g(x)\right)g(x) = \frac{4}{x}$$

This is the first order differential equation satisfied by g(x).

If $f(x) = kx^n$, then $g(x) = 2 + \frac{2}{x} - kx^n$ and $g'(x) = -\frac{2}{x^2} - knx^{n-1}$

Subst into the above first order de for g(x),

$$-\frac{2}{x^{2}} - knx^{n-1} + \left(2 + \frac{2}{x} - kx^{n}\right)kx^{n} = \frac{4}{x}$$
$$-2 - knx^{n+1} + 2kx^{n+2} + 2kx^{n+1} - k^{2}x^{2n+2} = 4x$$

<u>Case 1:</u> $2n+2=n+2 \Rightarrow n=0$. Rejected as there is a constant term -2 that cannot be eliminated

Case 2: $2n+2=n+1 \Rightarrow n=-1$.

Comparing coefficients of x terms: $2k = 4 \Rightarrow k = 2$

Checking constant terms: LHS = -1 + 2 + 4 - 4 = 0 = RHS

So
$$f(x) = \frac{2}{x}$$
, $g(x) = 2 + \frac{2}{x} - \frac{2}{x} = 2$

Using
$$\frac{du}{dx} + f(x)u = h(x)$$
, we have

$$\frac{\mathrm{d}u}{\mathrm{d}x} + \left(\frac{2}{x}\right)u = \frac{6}{x}$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2}{x} (3 - u)$$

$$-\ln|3-u| = 2\ln|x| + C$$

$$3 - u = \frac{A}{x^2}$$

$$u = 3 - \frac{A}{r^2}$$

Using
$$\frac{dy}{dx} + g(x)y = u$$
 and we are given $y = 4$ and $\frac{dy}{dx} = -5$ at $x = 1$

$$-5+2(4)=u \Rightarrow u=3 \text{ at } x=1.$$

$$\therefore A = 0 \Rightarrow u(x) = 3.$$

Using
$$\frac{dy}{dx} + g(x)y = u$$
, we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 3$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 - 2y$$

$$-\frac{1}{2}\ln\left|3-2y\right| = x+D$$

$$\ln\left|3 - 2y\right| = -2x + E$$

$$3 - 2y = Be^{-2x}$$

When
$$x = 1$$
, $y = 4 \Rightarrow B = -5e^2$

$$y = \frac{3}{2} + \frac{5}{2}e^{-2x+2}$$

5
$$2r-1=2(2.3...p)-1$$

Claim: All prime factors of 2r-1 are greater than p.

Suppose there exists a prime factor p_1 such that $2 \le p_1 \le p$. Then $p_1 \mid (2r-1)$ and $p_1 \mid 2(2.3....p)$ which implies $p_1 \mid 1$. (contradiction)

Now
$$2r-1=2(2.3...p)-1\equiv -1 \pmod{4}\equiv 3 \pmod{4}$$

ie 2r-1 is of the form 4n+3 for some integer n.

Since 2r-1 is odd, the only possible prime factors are of the form 4k+1 or 4k+3 for integers k.

But
$$(4k_1+1)(4k_2+1) = 4(4k_1k_2+k_1+k_2)+1$$
 ie of the form $4k+1$

Hence there must exists a prime factor of 2r-1 of the form 4k+3 ie congruent to 3 modulo 4

Therefore there exists a prime factor q of 2r-1 such that q > p and $q \equiv 3 \pmod{4}$.

Suppose there is a finite number of primes of the form 4n+3 and p is the largest prime of this form.

From result above, 2r-1 has a prime factor q such that q > p and $q \equiv 3 \pmod{4}$ ie q is of the form 4k+3 for some integer k (contradiction)

Hence there is an infinite number of primes of the form 4n + 3, where n is an integer.

$$4n+3=3^{2k+1}$$
 where k is an integer

$$4n = 3(3^{2k} - 1) = 3(9^k - 1)$$

$$n = \frac{3(9^k - 1)}{4}$$

Since
$$(9^k - 1) = (9 - 1)(9^{k-1} + 9^{k-2} + ... + 1)$$
 which is divisible by 4, therefore

$$n = \frac{3(9^k - 1)}{4}$$
 is always an integer for all non-negative integer k.

Therefore $n = \frac{3(9^k - 1)}{4}$ where k = 0, 1, 2, ... give an infinite sequence of numbers for which the values of 4n + 3 are the odd powers of 3.

6 (
$$\Rightarrow$$
) If y is a solution of the congruences $y \equiv a \pmod{p^{\alpha}q^{\beta}}$
then $y \equiv mp^{\alpha}q^{\beta} + a$ for some integer m
 $y = mp^{\alpha}q^{\beta} + a \pmod{p^{\alpha}} \Rightarrow y \equiv a \pmod{p^{\alpha}}$
 $y = mp^{\alpha}q^{\beta} + a \pmod{q^{\beta}} \Rightarrow y \equiv a \pmod{q^{\beta}}$

(\Leftarrow) If y is a solution of both the congruences of $y \equiv a \pmod{p^{\alpha}}$ and $y \equiv a \pmod{q^{\beta}}$ then $y \equiv sp^{\alpha} + a$ and $y \equiv tq^{\beta} + a$ for some integers s, t. $sp^{\alpha} + a = tq^{\beta} + a$ $\Rightarrow sp^{\alpha} = ta^{\beta}$

Since p and q are distinct prime numbers and hence coprime, then

$$q^{\beta} \not \mid p^{\alpha} \Rightarrow q^{\beta} \mid s$$

$$\Rightarrow s = hq^{\beta} \text{ for some integer } h$$
We have $y \equiv sp^{\alpha} + a \Rightarrow y = hq^{\beta}p^{\alpha} + a \Rightarrow y \equiv a \pmod{p^{\alpha}q^{\beta}}$ (shown)

$$x^3 + 10x + 9 \equiv 0 \pmod{24} \Rightarrow x^3 + 10x + 9 \equiv 0 \pmod{2^3 \cdot 3}$$

ie it is equivalent to finding the solutions to
 $x^3 + 10x + 9 \equiv 0 \pmod{3}$ and $x^3 + 10x + 9 \equiv 0 \pmod{2^3}$

$$x^{3} + 10x + 9 \equiv 0 \pmod{3}$$
$$x^{3} + x \equiv 0 \pmod{3}$$
$$x(x^{2} + 1) \equiv 0 \pmod{3}$$

Since 3 is prime, therefore $x \equiv 0 \pmod{3}$ or $x^2 + 1 \equiv 0 \pmod{3}$

Consider x = 3k, 3k + 1, 3k + 2 where k is an integer

We have $x^2 + 1 \equiv 1 \pmod{3}$, $x^2 + 1 \equiv 2 \pmod{3}$, $x^2 + 1 \equiv 2 \pmod{3}$ respectively.

So there are no solution to $x^2 + 1 \equiv 0 \pmod{3}$

Then $x \equiv 0 \pmod{3} \implies x = 3n$ where n is an integer

$$x^3 + 10x + 9 \equiv 0 \pmod{8}$$

 $x^3 + 2x + 1 \equiv 0 \pmod{8}$

For x = 3n, consider n = 2r, 2r + 1 where r is an integer

For n = 2r, LHS is odd and RHS is even ie no solution

For
$$n = 2r + 1$$
, $x = 6r + 3$ we have
 $(6r + 3)^3 + 2(6r + 3) + 1 \equiv 0 \pmod{8}$
 $(6r)^3 + 3(6r)^2 + 3 + 3(6r) + 3^3 + 12r + 6 + 1 \equiv 0 \pmod{8}$
 $4r^2 + 6r + 2 \equiv 0 \pmod{8}$
 $2(2r^2 + 3r + 1) \equiv 0 \pmod{8}$
 $2(2r + 1)(r + 1) \equiv 0 \pmod{8}$
 $(2r + 1)(r + 1) \equiv 0 \pmod{4}$

Since 2r+1 is odd, we have $r+1 \equiv 0 \pmod{4}$ ie r=4w-1 where w is an integer So the solution to $x^3+10x+9 \equiv 0 \pmod{24}$ is

$$x = 6(4w-1)+3 = 24w-3, w \in \mathbb{Z}$$

7 (i) For 2 boxes each contains exactly 2 objects, all the other remaining (r-4) identical boxes must each contains 1 object.

Out of r distinct objects, choose 4 of them to be in the 2 boxes. This gives $\binom{r}{4}$ choices.

These 4 objects (eg, A, B, C and D) are to be among 2 identical boxes equally and this gives only $\underline{3}$ ways of doing so, namely $\{\{A,B\},\{C,D\}\},\{\{A,C\},\{B,D\}\}\}$ and $\{\{A,D\},\{C,B\}\}$.

Note that there is only 1 way to distribute the remaining (r-4) objects into the remaining identical boxes.

Hence, we have $3\binom{r}{4}$ ways.

(ii) To distribute r distinct objects, where $r \ge 3$, into (r-2) identical boxes, we can do via (i) or do so by distributing it such that exactly one of the boxes contains 3 objects.

This gives $\binom{r}{3}$ ways to do so. Adding it with part (i), we get

$$S(r, r-2) = {r \choose 3} + 3 {r \choose 4}$$

$$=\frac{r(r-1)(r-2)}{3!}+\frac{3r(r-1)(r-2)(r-3)}{4!}$$

$$=\frac{4r(r-1)(r-2)+3r(r-1)(r-2)(r-3)}{4!}$$

$$= \frac{r(r-1)(r-2)(4+3(r-3))}{4!}$$
$$= \frac{r(r-1)(r-2)(3r-5)}{24}$$

(iii) Distributing 10 distinct cookies among 8 (identical) boxes $= S(10,8) = \frac{10(9)(8)(30-5)}{24} = 750$

Distributing 10 distinct cookies among 8 (identical) boxes such that exactly 2 boxes each contains exactly 2 cookies = $3 \binom{10}{4} = 630$

Required probability $=\frac{630}{750} \times \frac{2}{8} = \frac{21}{100}$ or 0.21

8 (i)(a) $\binom{m+k-1}{k-1}$ or $\binom{m+k-1}{m}$

(b)
$$\binom{m+k-1}{m} \times m! = \frac{(m+k-1)!}{(k-1)!}$$

(ii) There is only 1 way to put m identical flags in 1 box T(m,1)=1

To arrange m identical flags in m boxes such that no box is empty,

T(m,m)=m!

(iii) To arrange m identical flags in n distinct boxes such that no box is empty,

Suppose the 1st flag is alone in a box:

There are n ways to choose which box this flag is in.

We arrange the remaining (m-1) flags in the remaining (n-1) boxes, giving us T(m-1, n-1) ways.

So, total $n \times T(m-1, n-1)$ ways

Suppose the 1st flag is not alone:

We isolate this particular flag.

We arrange the remaining (m-1) flags in n boxes, giving us T(m-1, n-1) ways.

There are n choices where this 1^{st} flag can be put in any of the already filled n boxes.

So, total $n \times T(m-1,n)$ ways

Adding the above cases up, we obtain

$$T(m,n) = n \times \left(T(m-1,n-1) + T(m-1,n)\right)$$

(iv) Let A_i denote the set of distinct arrangements by distributing m distinct flags into n distinct boxes, such that at least i box(es) being empty.

11

Where there is no restriction on the number of boxes, $|A_0| = n^m$

When at least 1 box is empty, $|A_1| = \binom{n}{1} (n-1)^m$

When at least 2 boxes are empty, $|A_2| = \binom{n}{2} (n-2)^m$

When at least r boxes are empty, $|A_r| = \binom{n}{r} (n-r)^m$

By principle of inclusion and exclusion,

$$T(m,n) = \sum_{r=0}^{n} (-1)^r |A_r| = \sum_{r=0}^{n} (-1)^r \binom{n}{r} (n-r)^m$$