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QQuuaannttuumm  PPhhyyssiiccss  IIII  
 

11    XX--rraayy  SSppeeccttrraa  

SSeett--uupp  

The key parts of the x-ray tube are shown in Fig. 1.1. The heated cathode 
emits electrons which are accelerated by a high voltage of tens to hundreds 

of kV. A small portion (1%) of the electrons’ kinetic energies is converted to 
x-rays when they collide with the tungsten atoms. The bulk of the kinetic 
energies become heat that is conducted away by a good conductor or with 
the use of circulating cooling liquid. 

 

An electron reaching the tungsten target gained KE at the expense of 
electric PE lost, 
      
 
 
where Va is the accelerating p.d, me and e are the electron mass and charge 
respectively. 

A typical x-ray spectrum can be 
seen in Fig. 1.2. It is actually a 
superposition of a continuous 
spectrum and a line spectrum. 
These are produced by two 
different mechanisms at the atomic 
level. The spikes from the line 
spectrum occur at two specific 
wavelengths that are characteristic 
of the material used as the target.  
 

MMeecchhaanniissmm  11  --  AAcccceelleerraattiioonn  ooff  CChhaarrggee  

 

The high speeds of the electrons allow them to 
penetrate the target atoms. The size of an atom is 

 10
-10

 m while the size of a nucleus is  10
-15

 m 
and the electron is even smaller. If the nucleus 
were 1 mm in size, then the atom would be about 
100 m across. However, in the vast empty space 
inside the atom, the electric field of the nucleus 
attracts an incoming electron and curves it 
around. The strong force and therefore 
acceleration(centripetal plus linear) results in 
radiation of an energetic x-ray photon, slowing 
down the electron in the process.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Charged 
particles are 
accelerated to 
high speeds 
before colliding 
with target atoms 
to produce x-
rays. 

The KE gained 
½ mv

2
 = eVa for 

electrons of 
charge e. 
 
 
 
 
The resulting x-
ray spectrum is 
made up of two 
parts - a 
continuous 
spectrum and a 
discrete 
spectrum. 
 
 
 
 
The mechanism 
for the 
production of 
continuous 
spectrum is 
based on the 
fact that 
accelerated or 
decelerated 
charges radiate 
electromagnetic 
energy.

Whenever a charge particle is accelerated or decelerated, it 
radiates electromagnetic energy.  

Also, greater acceleration leads to greater rate of radiation. 
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The x-rays produced in this way are 
called ‘Brehmsstrahlung’ in German for 
‘braking radiation’. Each incoming 
electron can potentially produce a few 
such x-ray photons of different energies 
by interacting with a series of different 
atoms. Also, an incoming electron can 
approach nuclei with different proximity 
and thus experience different forces 
and emit photons of different energies. A beam of incoming electrons will 
thus produce photons with a continuous range of energies or frequencies 
resulting in a spectrum as shown in Fig. 1.4 

The maximum photon energy Ep is equal to the maximum amount of KE(Eq. 
1.1) an electron can lose at one go. Hence  

     Ep  = eVa    but   Ep = hfmax = hc/min  

 hc/min = eVa 

   min = hc/eVa 

where the minimum wavelength of the 
continuous spectrum gets smaller as 
the accelerating p.d. gets larger. In 
other words, the spectrum extends 
more to the left as va increases as 
shown in Fig. 1.5. 
 

MMeecchhaanniissmm  22  --  DDiissllooddggiinngg  IInnnneerrmmoosstt  EElleeccttrroonn  

An incoming electron can also knock out an electron from the inner orbits of 
a target atom.  The vacancy will be quickly filled by an electron from one of 
the outer orbits with higher energy levels, thus emitting an x-ray photon.  

 

Recall from Quantum I that 
jumping of valence (outermost) 
electron from higher to lower 
energy levels give rise to 
discrete emission spectrum. 
Similarly, here the finite 
number of possible transitions 
leads to a discrete number of 
spectral lines as in Fig. 1.7 

Sometimes the L & L lines 
may not be present because 
those transitions do not 
correspond to x-rays but other 
lower frequency part of the EM 
spectrum. 

 
 
 
 
 
 
 
 
 
 
There is a 
shortest 
wavelength for 
the continuous 
spectrum 
because the 
greatest 
frequency or 
energy of a 
photon occurs 
when all the KE 
of an incoming 
electron is given 
to that photon. 

  

  

    

  
The second 
mechanism for 
x-ray production 
is due to the 
knocking out of 
an electron from 
the innermost 
orbits. X-ray 
photons of 
discrete energies 
are then 
produced due to 
electrons from 
outer orbits 
jumping to fill up 
the vacancy. 

 

 
Energy gaps 
between inner 
orbits are greater 
than between 
outer orbits, thus 
accounting for 
higher photon 
energies. 
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CCoommbbiinneedd  DDiissccrreettee  aanndd  CCoonnttiinnuuoouuss  SSppeeccttrruumm  

 

Fig. 1.8 shows that when accelerating p.d. is too low, the incoming electrons 
do not have enough energy to knock out the innermost electrons and so the 
spectrum only has the continuous part without the discrete contribution 
known as the characteristic x-rays. At a high enough p.d. of 25 kV, the 
characteristic spikes are present. The characteristic radiation is so called 
because the exact wavelengths and spacing of the lines or spikes are 
characteristic of the specific kind of target atoms. 

The key difference between Fig. 1.8 and Fig. 1.9 is that the horizontal axis is 
photon wavelength and energy respectively. Fig. 1.9 is similar to a plot 
against frequency (E = hf). 
 

22    PPootteennttiiaall  WWeellllss  aanndd  BBaarrrriieerrss  

 

Consider a depression in the ground (Fig. 2.1). If we take gravitational PE, 

UG, to be zero at ground level, then at any depth h, UG = mgh. Gravitational 

potential  = UG/m,   at each h is equal to gh.  If we plot UG or  versus 
horizontal position x, the result is shown in Fig. 2.2. The plot is called a 
gravitational potential energy well or just potential well.  

Consider a roller coaster ride 
as shown in Fig. 2.3. If the car 
were to start at rest below 
point P instead of above, it 
would not be able to reach S. 
We call the section QRS a 
gravitational potential barrier. 
For the car to cross the 

potential barrier from the left side, it must have total energy (GPE + KE) 
greater than its GPE at R. 

Potential wells and barriers can also be electromagnetic instead of 
gravitational. It all depends on the type of force or field involved. In general, 
a potential barrier is 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The discrete 
spectrum is also 
known as 
characteristic 
spectrum 
because the 
exact 
wavelengths and 
spacing of the 
spikes are 
characteristic of 
the kind of target 
atoms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A potential 
barrier is a 
region, in a force 
field, with higher 
potential than its 
surrounding 
such that an 
object requires 
energy to pass 
through it. 

a region, in a force field, with higher potential than its surrounding 
such that an object requires energy to pass through it. 
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A potential well or barrier need not 
be concrete and visible. For 
example, Fig. 2.4 shows the 
potential energy between a nucleus 
and an electron in an isolated atom 
for variable electron position x. An 
electron with negative total energy is 
thus trapped in a potential energy 
well of the same shape as the 
plotted graph. 

 

 
Fig. 2.5 shows the invisible potential 
barrier between Earth and moon 
such that a spacecraft from Earth 
that wishes to land on moon must 
have enough energy to pass 
through the potential barrier region. 

 

 

33    WWaavvee  aanndd  PPrroobbaabbiilliittyy  DDeennssiittyy  FFuunnccttiioonnss  

Recall that de Broglie came up with the relation  = h/p for the wavelength of 
particles. The waves of particles with mass are called matter waves. In 1926, 

Schrödinger developed an equation(
2 2

2
( )

2
i U x

t m x

  
   

 
) for these matter 

waves.  is a mathematical function which describes how the values of  
vary with spatial coordinates and time just like those displacement-time and 

displacement-distance equations or functions in the topic Waves. Thus  is 
called a wave function as it represents a waveform which may progress in 
time. If we want to highlight its spatial(3D) and time dependence we would 

write it as (x,y,z,t).  

Just as a quadratic equation has solutions which are some numbers, the 
Schrödinger equation has solutions but they are mathematical functions. For 

example, x
2
  x  2 = 0 is (x + 1)(x  2) = 0 and has solutions x = 1, 2 while 

the solutions of the 1D Schrödinger equation looks like (x,t) = C[cos(kx - t) 

+ isin(kx - t)] where C, k &  are constants & i = 1 . 

The last two paragraphs are not needed for exams but just to provide some 
sense of how the wave function comes about. The important thing is 
regarding the interpretation of the wave function. In the same year that 
Schrödinger published his equation, Max Born provided the probability 

interpretation of the wave function : 

 

The wave function  itself does not correspond to any measurable physical 

quantity. Only ||
2
 has a physical meaning. In the Schrödinger equation, U(x) 

is a function that describes the potential energy just like in Fig. 2.2 or 2.4. To 
better understand the wave function and probability density function, we will 
look at an example involving an ‘infinite potential well’. 

 

Note for those interested 
Why do you need to take the square of the absolute value and not just simply square the wave 
function? The reason is that in most cases, the wave function turns out to be a complex quantity 

containing i (= 1 ). For a real quantity x, x
2
 = |x|

2
 but for a complex quantity z, z

2
  |z|

2
. 

Potential wells 
and barriers are 
very common. In 
photoelectric 
effect, the 
electrons are 
trapped in a 
potential well so 
are the electrons 
in an atom. 
There is also a 
gravitational 
potential barrier 
between Earth 
and moon. 

 

 

 

 

 

 
De Broglie’s 

equation  = h/p 
where p = mv 
gives the 
wavelength of 
matter waves. 

Matter waves 
are described by 
wave functions 

 which do not 
correspond to 
any physically 
measurable 
quantities. 
However, they 
contain 
information like 
an object’s 
momentum & 
energy. 

 
The square of 
the absolute 
value of the 
wave function 
gives the 
probability 
density function 

P(x,t) = |(x,t)|
2
. 

For 1D case, 
P(x,t) tells us the 
probability per 
unit length for 
finding a particle 
at x at time t. 

 

The square of the absolute value of the wave function gives the 

probability density function P(x,t) = |(x,t)|
2
. For 1-dimensional 

case, P(x,t) tells us the probability per unit length for finding a 
particle at x at time t. 

x 
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IInnffiinniittee  PPootteennttiiaall  EEnneerrggyy  WWeellll  

Consider a particle trapped inside a PE 
well that is infinitely deep and take the 
bottom of the well to be at zero energy. 
Mathematically,  
 
  
 
 
 
The Schrödinger equation with the 
above U(x) will produce a set of wave 

function solutions (x,t) = s(x)T(t). 

s(x) is the spatial part shown in Fig. 

3.1 while T(t) is a time varying part 

which in this case causes s(x) to 
change periodically giving rise to 
standing waves (Fig. 3.2).  

Thus each (x,t) describes a stationary 
wave mode corresponding to an 
allowed kinetic energy. The first 3 

allowed KE and s(x) are shown in 
Fig.3.1.  

Considering a given moment in time when  = s(x), Fig. 3.3 to 3.5 show 

how squaring the magnitude of the wave functions  lead to their 
corresponding probability density functions. 

 

Here, ||
2
 gives the probability per unit length along x. In Fig. 3.3, the 

probability of finding the particle at x = d/2 within the tiny segment ∆x is given 

by the value |(d/2)|
2
∆x or p∆x i.e. the probability is the shaded area. The 

total area is 1 since the particle has to be somewhere within the well. 

The trapped particle can be found in one of the allowed energy levels and 
each level has a different probability density distribution function. It can be 
seen that the probability of finding the particle around x = d/4 is greater when 
the particle has KE2 (Fig. 3.4) than when it has KE1 (Fig. 3.3). We can also 
see that the particle has zero probability of being found in the regions x < 0 
and x > d which is no surprise since we expect the particle to be ‘trapped’ 
inside the well. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Given a 1D wave 

function (x,t) 
the area under 

||
2
-x graph is 

probability. 

 

||
2
-x graph 

shows where the 
particle is more 
likely to be found. 
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The particle trapped in an infinite potential well is quite similar to an electron 
trapped in an atom except that the potential well of an atom does not have 
the same shape and is not infinitely deep. In both cases, there are allowed 
energy levels or quantisation of energy associated with the formation of 
standing matter waves due to confinement by the well.  
 

44    HHeeiisseennbbeerrgg’’ss  UUnncceerrttaaiinnttyy  PPrriinncciippllee  

ppxxxx    ħħ//22  

In 1927 Werner Karl Heisenberg arrived at the uncertainty relation: 

 

When we say ‘position of a system is determined’, we do not necessarily 
mean using a measuring instrument to ‘find out’ the position as a reading. It 
can also mean setting up the apparatus such that we ‘know’ the position of a 
system. Consider the double slit set-up (Fig. 4.1) from Quantum I. 

 
Zooming in on one of the slits as in Fig. 4.2, the slit width’s effect is to 
‘determine’ the x-position of the passing particle with an uncertainty of ∆x. 
According to the uncertainty relation, the particle must simultaneously have 
minimum uncertainty of ∆px in the x-component momentum px whereby ∆px = 
ħ/2∆x. Since ∆px = m∆vx, this means that the particle will not necessarily go 
to M but could reach anywhere between L and R. Treating the particle as a 
matter wave would have led to the same outcome since waves diffract after 
passing through the slit. 

If instead of the slit above, we have two instruments or set-ups for measuring 
the particle’s momentum and position. Let’s say we have very good 
instruments such that individually or separately, each has best limiting 

precision px’ and x’ respectively. It is theoretically possible that the product 

px’x’ is smaller than ħ/2. However, the uncertainty principle or nature 
would dictate that simultaneously it is not possible for the instruments to 

yield measurements with uncertainties of px’ and x’. In other words, px 

and x in the uncertainty principle are not the limiting precisions of 

instruments. px and x are more like the inherent limits of our knowledge of 
the momentum and position. 

The reason for the inherent limits was explained by Heisenberg using a 
‘thought experiment’. In this experiment, the position of an electron is to be 
determined by bouncing light off it into a microscope. As in all measurement 
processes, the measuring instrument has to interact with the system to be 
measured and thus inevitably change the system. To minimise the 
disturbance on the electron, imagine only one photon is bounced off the 
electron. It turns out that the shorter the wavelength, the more precise the 
position measurement. However, the shorter the wavelength, the greater the 

momentum of the photon (p = h/) and the greater the disturbance. 
Therefore, nature sets ultimate limits on the precisions of simultaneous 
measurements of position and momentum. Furthermore there are other 

similar pairs of quantities (a, b) which follow the uncertainty relation ab  
ħ/2. 

 

 

 

 

 

 

The more 
precisely the 
position of a 
system is 
determined, the 
less precisely 
the momentum 
can be known 
simultaneously, 
and vice versa. 
Quantitatively, 

pxx  ħ/2 

where ħ = h/2. 

 

 

 

 

 

 

 

 

 

px and x in the 
uncertainty 
principle are not 
the limiting 
precisions of 
instruments. 
Instead, they are 
the inherent 
limits of our 
knowledge of the 
momentum and 
position when 
measured 
simultaneously. 
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The more precisely the position of a system is determined, the less 
precisely the momentum can be known simultaneously, and vice versa. 

Quantitatively, pxx  ħ/2 where ħ = h/2. 
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EEtt    ħħ//22  

Another uncertainty relation involves the energy and time pair - Et  ħ/2. 

The E, t pair is not quite like the previous p, x pair. Here t is not the 

uncertainty in measuring or determining t. The interpretation of E & t is 
dependent on context. Below are just two example scenarios: 
 

SScceennaarriioo  11  --  DDeeccaayy  ooff  EExxcciitteedd  SSttaattee  

An excited state could be that of an atom. 
Excited states are unstable. If an atom 
stays in the excited state for 10

-10
 s before 

emitting a photon, 10
-10

 s would be the 
lifetime of the excited state. The energy-
time uncertainty relation then says that the 
energy of the excited state will have an 

inherent uncertainty E = ħ/2(10
-10

). This 
means that the energy level is not a sharp 
line but has a small spread. 

This inherent uncertainty cannot be reduced by using better equipment or 
procedures. There are other sources of uncertainties from measuring 
instruments and the motion of the atom but these can theoretically be 
reduced with better instruments or set-ups.  

Another example of an excited state is found in some nuclear processes in 
which a virtual particle with very short lifetime is created. Thereafter, it 

decays to other particles. It has been found that the shorter the lifetime t of 

the virtual particle, the greater the inherent uncertainty E of the energy of 
the particle. 
 

SScceennaarriioo  22  --  WWaavvee  PPuullssee  

A laser is able to produce a light beam with very precise frequency and 
hence photons of very uniform energy. However if the laser is fired in pulses 

of duration t, the energy and thus frequency of the photons (E = hf) will no 
longer be as uniform as before. Now there will be a range of photon energies 

E and frequencies f such that Et  ħ/2. 

A continuous wave of a single frequency has spectrum as shown in Fig. 4.4. 
In contrast, a wave pulse can be constructed by superposing waves of a 
range of frequencies, leading to a spectrum as shown in Fig. 4.5. Again, the 
uncertainties represent inherent limits of nature that has nothing to do with 
precision of measuring instruments 

 

[There is a lot more to the uncertainty principle. There are areas of confusion and 
issues of interpretation regarding the principle and quantum theory in general, so 
keep your mind open for further development in research.] 

 

The Et  ħ/2 
uncertainty 
relation has 
different 
interpretations in 
different 
situations. 
 
When applied to 
the decay of an 
excited state 

t is the lifetime 
of the excited 

state while E is 
the uncertainty in 
the energy of the 
state. 
 
 
 
 
 
 
 
 
 
 
 
 
 
When applied to 
a wave pulse, 

t is the duration 
of the pulse 

while E is the 
range of 
energies of the 
component 
waves 
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2

1

kdT e

T R



 
    where 

2

2

8 ( )m U E
k

h

 
  

 

55    QQuuaannttuumm  TTuunnnneelllliinngg  

 

In Fig 5.1, a ball between 2 hills is released from rest at point A with total 
energy E (KE = 0 and GPE = E). Assuming no energy loss, the ball can only 
roll back and forth between A and B. It is impossible for the ball to appear at 
C or D without further intervention. However at microscopic scale, a particle 
such as an electron with energy E lower than U can in fact be found at the 
other sides of the barriers at C or D! This is a quantum phenomenon, called 
quantum tunnelling that cannot happen according to classical physics. 

In section 3, it was explained that in Schrodinger’s equation 
2 2

2
( )

2
i U x

t m x

  
   

 
, U(x) is a mathematical function which describes the 

shape of the potential energy between a particle of mass m and its 
environment. By using the appropriate U(x) for a given situation, the 

equation can be solved. The solutions are wave functions s whose 

magnitudes squared give the probability per unit length P(x,t) = |(x,t)|
2
 of 

finding the particle at each position x. It turns out that at the microscopic 

scale,  (P) is not zero inside and beyond the potential barrier as shown in 
Fig. 5.2 for a rectangular barrier. That means that the particle can be found 
inside and beyond the barrier i.e. particle can tunnel through the barrier. 

 

On either side of the barrier, the particle’s kinetic energy is E.  
   E  = ½ mv

2
 

 = p
2
/2m  as p = mv 

 = h
2
/2m

2
  de Broglie’s relation p = h/  

Thus, shorter wavelength of matter wave corresponds to greater particle KE. 
Fig. 5.2 shows the same wavelength and thus KE before and after tunnelling. 
Quantum tunnelling is definitely not like a bullet tunnelling through a wall as 
the bullet will have lesser KE upon emerging from the other side. 

Referring to Fig. 5.2, the probability that a particle of mass m can tunnel 
through a barrier of width d and potential energy U is given by: 
 
 
 
 

T -  transmission coefficient or probability.    R -  reflection probability. 

Notice the following intuitively reasonable features of the formula: 

1 As the barrier gets thicker (d larger), T gets smaller. 
2 As the mass m increases, T gets smaller. 
3 As the barrier gets higher (larger U), T gets smaller. 
4 As E increases (E < U), T increases. 
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probability T at a 
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

 
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One key idea in this section is that ‘the solution  shows that a particle can 
tunnel through a barrier’. Does the statement really explain why? Indeed, 
physics merely describes how nature behaves according to some rules 
without telling us why the rules are the way they are and how they come 
about. Therefore, an exam question asking you to ‘explain why’ is really 
asking you to show how some theories, laws, principles or ideas can be 
used to derive a certain outcome or result. In the end, quantum tunnelling is 
just how nature behaves and its weirdness is due to it being an uncommon 

encounter. For particles with larger masses,  will decrease exponentially 
more quickly inside the barrier, hence just like most quantum phenomena, 
tunnelling is only observed at microscopic scales. 
 

TTuunnnneelllliinngg  EExxaammpplleess  

In radioactive decay of 

 particle, the particle 
can be seen as trapped 
inside a potential well 
created by the rest of 

the nucleus. The  
particle, made up of 2 
neutrons and 2 protons, 
does not have sufficient 
energy according to 
classical physics to 
escape from the 
nucleus but it does so 
by quantum tunnelling. 

In stars, nuclear fusion of two protons is also a quantum tunnelling process. 
When protons get near to each other, they experience a dominant repulsive 
Coulomb force but when they are even nearer, they will experience a 
dominant attractive nuclear force. The resulting potential energy curve looks 
quite similar to Fig. 5.2 except that now, a proton is trying to get into the well 
instead of out. 
 

SSccaannnniinngg  TTuunnnneelllliinngg  MMiiccrroossccooppee  

The STM (Scanning Tunnelling Microscope) makes use of an extremely 
small pointed tip to scan over the surface of a conductor (Fig. 5.4a). The tip 
is maintained at a distance of a few atomic diameters from the surface so 
that electrons can tunnel across the gap. In one mode of operation, the tip is 
moved across the sample at a fixed level as shown in Fig. 5.4b. When the tip 
is right above an atom e.g. A or B, the tunnelling current will be bigger than 
when the tip is between A and B because the gap (or barrier width) between 
the tip and sample is smaller when right above A and B. The variation of 
current with position reveals the profile of the surface (Fig. 5.4c). 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Examples of 
quantum 
tunnelling 

- -decay 
- fusion of 

protons in star. 
 
 
 
 
 
 
 
 
STM makes use 
of quantum 
tunnelling for 
microscopy. 
 
 
 
 
 
 
The surface 
profile can be 
revealed by 
either scanning 
at constant 
height or current.
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In a second mode, the STM tip is moved across the surface while keeping 
the tunnelling current constant by moving the tip up or down (Fig. 5.4d). The 
variation of the tip’s height with position reveals the surface profile (Fig. 5.4e) 

 

The data collected is usually processed by 
a computer into colour coded pictures 
such as the one to the left in which 
individual gold atoms could be seen. 
 
(Picture in public domain. Author: Erwinrossen) 
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