

ST. MARGARET'S SCHOOL (SECONDARY) Preliminary Examinations 2023

CANDIDATE NAME				
CLASS		REGISTER NUMBER		
SCIENCE (PHYSICS,CHEMISTRY)		5105/04, 5107/04		
SCIENCE (CHEMISTRY, BIOLOGY)		17 Augu	ıst 2	023
Paper 4 Chemistry		1 hour 15 i	minu	ıtes
Secondary 4 Normal (Academic)				
Additional Materials: NIL				

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any two questions.

Write your answers in the spaces provided on the question paper.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 11.

The use of an approved scientific calculator is expected, where appropriate.

For Examiner's Use			
Section A	14		
Section B	16		
Total	30		
Parent's Signature			

Section A [14 marks]

Answer all questions.

Write your answers in the spaces provided on the question paper.

Α1	A list of	substances	is	given	below.
----	-----------	------------	----	-------	--------

	Ag	Cla	2	H ₂	$MgC\mathit{l}_2$	
		Na ₂ O	SiO ₂		ZnO	
You may only use each substance once. From the list, choose the substance which						
(a)	can react with both acid and alkali.					
(b)	is produced who	en magnesium	reacts with sulf	uric acid.		
(c)	can be dissolved in water to form a solution with pH greater than 7.					
(d)	can displace iod	line from aque	ous potassium i	odide.	[4]	
					[Total: 4]	

A2 Table 2.1 shows the number of protons and nucleons in six particles.

Table 2.1

particle	proton number	nucleon number
Т	3	7
U	8	16
V	11	23
w	13	26
х	13	27
Z	18	40

(a)	Which particle exists as monatomic element in nature?	
(b)	Which particles are isotopes of the same element?	
(c)	Which particle belongs to Group I of the Periodic Table?	[3]

(d) Draw a 'dot and cross' diagram for the compound formed when particle **W** reacts with particle **U**, showing only the outermost electrons.

				[2] [Total: 5]
А3	pro	oane.	an react with hydrogen, in the presence of a suitable catalyst, to for	m
	The	chemi	cal equation for the reaction is as below:	
			C_3H_6 + H_2 \rightarrow C_3H_8	
			propene	
	(a)	Draw	the structural formula for propene in the box provided.	[1]
	(b)	Name	e the conditions required for the reaction between ethene and hydro	_
	(c)		ribe a test to distinguish propene from propane.	

Propene can also react with chlorine to form dichloropropane.

(d) Draw the structural formula of the dichloropropane formed.

[1]

[Total: 5]

Section B [16 marks]

Answer any **two** questions from this section in the spaces provided.

B4 Crystals of copper(II) sulfate, CuSO₄ can be prepared using the method shown in Fig. 4.1.

Fig. 4.1 shows the first three steps used to prepare the crystals. Solid **Q** is added in excess.

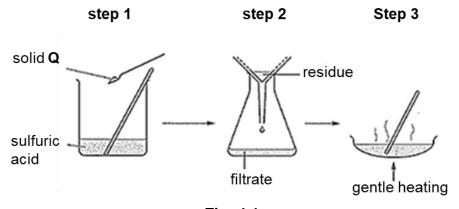


Fig. 4.1

(a)	what can solid Q , added to sulfuric acid to form copper(II) sulfate, be?	[1]
(b)	Name the apparatus used to measure 50.0 cm ³ of the sulfuric acid for step 1.	[1]
(c)	What is the purpose of heating the solution gently in step 3?	[1]
(d)	What is the purpose of adding solid Q in excess?	[1
		ָ וי

On the other hand, insoluble salts like barium sulfate, can be prepared by precipitation reaction.

The equation shows the reaction between barium nitrate and potassium sulfate to form precipitate, barium sulfate.

$$Ba(NO_3)_2 + K_2SO_4 \rightarrow 2KNO_3 + BaSO_4$$

(e) (i) Calculate the relative formula mass of barium sulfate.

Relative formula mass = _____[1]

(ii)	At the end of the reaction, 5 g of barium sulfate is formed. Calculate the number of moles of barium sulfate formed at the end of reaction.	of the	
	number of moles =	mol	[1]
(iii)	Based on the equation and your answer in (e)(ii) , calculate the num moles of barium nitrate used at the start of the reaction.	ber of	
	number of moles of barium nitrate =	mol	[1]
(iv)	Hence, calculate the mass of barium nitrate used at the start of the reaction.		
	mass of barium nitrate =	g	[1]
		[Tota	l: 8]

B5 The National Environment Agency (NEA) monitors air pollution in five regions in Singapore. Air pollution levels are reported every hour on the NEA website.

Table 5.1 shows the concentration of a few air pollutants at 5 pm, on 3 July 2023, for the five regions in Singapore. The Central Business District (CBD) is the financial hub, where there is a dense concentration of trading and banking offices, while the rest of the regions are mainly residential.

It was raining heavily in the CBD at the time the report was generated.

Table 5.1

regions	sulfur dioxide (µg/ m³)	nitrogen dioxide (µg/ m³)	carbon monoxide (µg/ m³)		
North	2	27	300		
South	3	9	300		
East	6	27	300		
West	7	28	300		
Central Business District (CBD)	2	44	400		

(a)	July	nich region is the concentration of carbon monoxide the highest at 5 pm on 2023? gest a possible reason for the higher concentration in the region chosen.	3
			. [2]
(b)	State	e a possible source of nitrogen dioxide at the CBD.	
			. [1]
(c)	Desc	cribe one harmful effect of sulfur dioxide on human health.	
			
			[1]
(d)		ur dioxide can dissolve in rainwater to form acid rain.	
	(i)	Describe a simple test to confirm the presence of acid in a sample of rainwater.	
			[2]

(ii)	The acid rain formed can acidify the soil and this may make it unsuitable for the growth of certain crops. Suggest a substance that can be used and explain how it can help to increase the pH of the soil.			
		[2]		

[Total: 8]

- **B6** Different metals have different uses and can be extracted using different methods.
 - (a) Nickel metal can be obtained via the reaction of magnesium and nickel chloride.

The reaction of magnesium with nickel chloride is represented by the following equation.

$$NiCl_2(aq) + Mg(s) \rightarrow MgCl_2(aq) + Ni(s)$$

(i)	From the equation, which metal, magnesium or nickel is more reactive?	
		[1]
(ii)	Explain your answer in (a)(i)	

[1]

Nickel is a metal that resists corrosion and is commonly used to plate other metals to protect them.

(iii) Explain how nickel can protect iron from corrosion when plated on it.

[2]

(b) Iron is extracted from iron(III) oxide in haematite by reduction with coke in the blast furnace shown in Fig. 6.1.

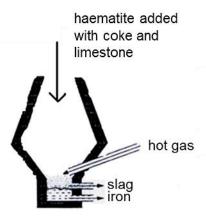


Fig. 6.1

i)	Explain the importance of adding limestone into the blast furnace.	
		[2]

Iron is an important substance used in the making of an alloy, steel. Steel is harder and stronger than iron and can be used to build bridges, construction materials and machinery.

(ii)	Explain why steel is harder and stronger than pure iron.
	[2]
	[Total: 8

The Periodic Table of Elements

Group																	
	II											III	IV	V	VI	VII	0
							1										2 He
								H									
Key							hydrogen 1										helium 4
3								J				5	6	7	8	9	10
Li	Be	atomic symbol										В	١č	Ι'nΙ	ő	F	Ne
lithium	beryllium	name										boron	carbon	nitrogen	oxygen	fluorine	neon
7	9	relative atomic mass										11	12	14	16	19	20
11	12					-						13	14	15	16	17	18
Na	Mg											Αl	Si	P	S	Cl	Ar
sodium	magnesium											aluminium	silicon	phosphorus	sulfur	chlorine	argon
23	24	24		- 22	- 24	25	- 20	0.7	- 20	- 20	- 20	27	28 32	31	32 34	35.5	40
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	Ge	33 As	Se	35 Br	36 Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	ZI1	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
85	88	89	91	93	96	-	101	103	106	108	112	115	119	122	128	127	131
55	56	57 – 71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Та	. W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
caesium 133	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium	astatine —	radon —
87	88	89 – 103	104	105	106	107	108	109	110	111	112	204	114	203	116		\vdash
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F/		Lv		
francium	radium		Rutherfordium	dubnium	seaborgium	bohrium	hassium		darmstadtium				flerovium		livermorium		
_	_		_	-	-	-	-	_	_	_	_		_		-		
la	lanthanoids		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
		lanthanum	cerium	praseodymium		promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		139	140	141	144	-	150	152	157	159	163	165	167	169	173	175	
actinoids		89	90 Th	91	92	93 No	94	95	96	97 Dia	98	99	100	101	102	103	
		Ac actinium	Th thorium	Pa protactinium	Uuranium	Np neptunium	Pu plutonium	Am americium	Cm	Bk berkelium	Cf californium	Es einsteinium	Fm fermium	Md mendelevium	No nobelium	Lr	
			actinium —	232	231	238	neptunium —	piutonium —	americium –	curium —	Derkellum —	- californium	einsteinium –	Termium _	mendelevium -	nobelium —	awrencium –
						200											

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).