Mark Scheme | Question | Answer | Marks | |----------|---|-------| | 1(a)(i) | current recorded to correct 1 d.p. in mA (setting of digital ammeter) | 1 | | (ii) | $\frac{1}{I}$ recorded in the same s.f. as recorded in the corresponding I . | 1 | | (iii) | percentage uncertainty calculated correctly using appropriate method and given to 1 or 2 s.f. | M1 | | | E.g. $I = 70.4 \text{ mA}, \frac{1}{I} = 14.2 \text{ A}^{-1}$ | | | | Using $\frac{\Delta(\frac{1}{I})}{1/I} = \frac{\Delta I}{I}$, | | | | so percentage uncertainty = $\frac{\pm 2}{70.4} \times 100\% = \pm 2.8\%$ or $\pm 3\%$ | A1 | | | Alternative or max $\frac{1}{I} = \frac{1}{684} = 14.6 \text{ A}^{-1}$ | | | | taking difference with $\frac{1}{I} = 14.2 \text{ A}^{-1}$ | | | | So absolute uncertainty can be estimated as $\pm 0.4 \text{ A}^{-1}$, | | | | so percentage uncertainty = $\frac{\pm 0.4}{14.2} \times 100\% = \pm 2.8\%$ or $\pm 3\%$ | | | (b) | $ gradient = \frac{R}{E} $ $ intercept = \frac{r}{E} $ | 1 | | | | | | (c)(i) | correctly plotting of points with acceptable best fit line drawn | 1 | | (ii) | correct method to calculate gradient | 1 | | | correct method to calculate intercept | 1 | | (iii) | | 1 | | | $\frac{R}{r}$ obtained by $\frac{gradient}{intercept}$ | | | (iv) | line parallel to original line and shifted upwards (or to the left) | 1 | | Question | Answer | Marks | |----------|--|-------| | 2(a) | • $L = 98.5 \pm 0.1 \text{ cm}$ | 1 | | (b) | y₂ lesser than y₁ y, y₂ and y₁ are all recorded to the nearest 0.1 cm Repeated measurements | 1 | | (c) | Tabulation Collected 5 sets of data for m, y₁ and y₂. Correct trend (0 marks for 4 sets and fewer) | 1 | | | Column Heading Each column heading must contain a quantity and a unit: y/cm, m/g No split table | 1 | | | Raw data (i.e x and I): Precision of recording All values of y₁ and y₂ to nearest mm & All values of m to nearest g | 1 | | | Calculated quantity: Accuracy of calculation All values of y calculated correctly with the correct d.p | 1 | | (d) | Graph: Scale, Size & Axes ■ Sensible scales, no awkward scales (eg 3 units into 10 small squares) ■ Plotted pts occupy at least ½ the graph grid in both x & y directions ■ Axes labelled with the quantity & unit {ECF for wrong units in (c)} Successive scale markings: no more than 20 small squares apart. | 1 | | | Plotting of Points | 1 | | | Best fit line & Anomaly Minimum number of 4 non-anomalous points. Line drawn with approx. equal number of points on either side of line (anomalous points not considered). Line not be kinked/disjointed or thicker than half a small square Anomalous plot clearly indicated (eg by a circle or labelled.) Allow 1 anomalous plot only. | 1 | | {Rule of thumb: A plot is considered anomalous if it is > 4
mm from line of best fit.} | | |--|---| | Determination of Gradient ☐ Recorded the 4 coordinates for gradient calculation correctly ☐ Hypotenuse of triangle > half length of line drawn ☐ No obscurity of the 2 points used for gradient calculation. {Hence triangle must not be drawn too near a data plot.} | 1 | | Determination of y-intercept Vertical intercept calculated using a point on the line {not from the table} & value of gradient. {Allow reading off the y- intercept if x-axis starts from zero & there is no 'bunching of plots'} | 1 | | m/g | y1/cm | y2/cm | y/cm | |-----|-------|-------|------| | 60 | 90.0 | 84.0 | 87.0 | | 80 | 70.0 | 65.0 | 67.5 | | 100 | 51.0 | 44.0 | 47.5 | | 110 | 40.2 | 34.5 | 37.4 | | 120 | 34.0 | 24.0 | 29.0 | | 130 | 24.0 | 13.0 | 18.5 | | Question | Answer | Marks | |-----------|--|-------| | 3(a)(ii) | value of d to nearest 0.01 mm and final value in range 1.50 – 1.70 | | | | mm | | | | show repeated readings | 1 | | 3(a)(iii) | value of θ to nearest degree and final value in range 55°–65° | 1 | | | | I | | 3(a)(iv) | $\Delta\theta$ range from $\pm3^{\circ}$ to $\pm5^{\circ}$ | | | | percentage uncertainty given to 1 or 2 s.f. | 1 | | 3(a)(v) | correct calculation of $\sin^2(\theta/2)$ using values from (a)(iii) | | | | substitution of values in your working is needed | | | | correct significant figures | 1 | | | no units | | | 3(b)(i) | Value of e to nearest 0.1 cm and final value in range 0.8 – 1.6 cm. | | | | Δe range from \pm 0.2 cm to \pm 0.5 cm | 2 | | | percentage uncertainty given to 1 or 2 s.f. | | | | clear working and substitutions | | | | correct significant figures | | | | correct units | | | 3(b)(iii) | value of <i>t</i> in range 15.00 – 20.00 s | | | 3(0)(111) | show repeated readings | 1 | | | All t values to nearest 0.01 s | - | | | 7.m r values to hearest 0.013 | | | 3(c) | value of θ to nearest degree and final value in range 25°–35° | _ | | | correct calculation of $\sin^2(\theta/2)$ | 2 | | | value of <i>t</i> in range 7.00 – 9.00 s | | | | show repeated readings for values of t | | | | All t values to nearest 0.01 s | | | | correct significant figures | | | | correct units | | | 3(d)(i) | Two values of <i>k</i> calculated correctly. | 2 | | | correct significant figures | | | | correct units | | | 3(d)(ii) | Testing against percentage uncertainty in (a)(iv) and (b)(i) with | | | | appropriate conclusion. | 1 | | | Do not accept arbituary criterion such as 10% or 20% | | | | | | | 3(d)(iii) | spring constant of spring / length of wire / mass of wire / angle $ heta$ between the straight part of the wire | 1 | |-----------|---|---| | 3(e) | Setup according to Fig. 3.2 and conduct oscillations according to Fig. 3.3. Appropriate procedures with mention of variation of masses and collect corresponding values of t. Conduct at least 6 sets of data for masses and t. Identify masses attached to end of wire as independent variable, time as dependent variable. Angle of bend, length of wire, spring constant, etc as controlled variable. Identify stopwatch to record timing and protractor to measure angle. (optional: mass balance to measure calibrated masses). Plot a graph of time against mass to determine constant gradient of the graph and zero y-intercept. Light masses may result in unstable oscillating behaviour of the wire / Heavy masses may fall off the wire during oscillating (or not able to conduct experiment since the spring is deformed due to heavy masses) | 5 | | 3(f)(i) | values of t (no mass) is less values of t (with mass) Use a table to present the results. Repeats: At least two values of $t \ge 10$ s All t values to nearest 0.01 s correct significant figures correct units | 3 | | 3(f)(ii) | When masses are attached to the end of the wire, the centre of gravity shifted lower/away from the pivot point. Since period is proportional to the distance between the pivot and the centre of gravity for a simple oscillating object about the vertical plane, the period increases when masses are added. | 1 | | Qn | Answer | Marks | |----|--|-------| | 4 | Diagram | | | | labelled diagram with | 1 | | | retort stand to hold capillary tube; | | | | h labelled; | | | | container resting on bench. (Include rule if mentioned in procedure) | | | | | | | | Defining the problem | 4 | | | Part 1 | 1 | | | r is the independent variable and h is the dependent variable or vary r measure h . | | | | or vary / measure n. | | | | and density of liquid to be kept constant. | | | | <u></u> | | | | Part 2 | 1 | | | ho is the independent variable and h is the dependent variable | | | | or vary <i>r</i> measure <i>h</i> . | | | | | | | | and r to be kept constant. | | | | | | | | Methods to data collection | | | | Measure inner diameter d using travelling vernier microscope | 1 | | | or | ' | | | | | | | allow estimate diameter d by measuring external d using micrometer screw | | | | gauge or vernier caliper | | | | | | | | and $r = d/2$ | | | | NACCOURS COLUMN CONTRACTOR OF CONTRACTOR OF COLUMN CONTRACTOR OF CONTRAC | 4 | | | Measure volume of water using measuring cylinder | 1 | | | Measure mass of water using electronic balance. Calculate density using mass / volume | | | | Calculate defisity using mass / volume | | | | (accept measure density using hydrometer) | | | | , , , , , , , , , , , , , , , , , , , | | | | Measure h using tail of vernier caliper or metre rule clamped vertically. | 1 | | | | | | | Method of varying density of liquid. | 1 | | | E.g. changing different types of liquid or add solute into solvent. Need to | | | | give examples of solute used. | | | | Mothod of analysis | | | | Method of analysis Part 1 | 1 | | | Plot $\lg h \ vs \lg r$; p = gradient | ' | | | Tiotigh vaigi, p- gradiont | | | | Part 2 | 1 | | | Plot Plot $\lg h \ vs \lg \rho$; $q = \text{gradient}$ | _ | | | | | | | | | | Additional detail including safety considerations | max
3 | |--|----------| | Method of ensure capillary tube and instruments used to measure h is vertical. E.g. use of plumbline or use set square | 1 | | Ways to check if cross-section of capillary tube is constant. E.g. pass
a fixed volume of coloured liquid through tube. Check if length of
coloured liquid is constant. | 1 | | check that the temperature is constant throughout experiment to
prevent expansion or contraction of capillary tube. | 1 | | Method to exclude mass of container. E.g. use 'tare' function or
subtract mass of empty container. | 1 | | take preliminary readings for radius <u>and/or</u> density to obtain range
that gives significant variation in h. | 1 | | Other good answers colour the liquid to aid measurement of h. | 1 | | Safety: way to handle broken glass capillary tube. E.g. wear gloves to handle broken glass. (thick cloth glove should be used, not thin latex glove.) way to prevent breaking glass capillary tube. E.g. using foam to cushion clamp. way to prevent spillage. Eg. put a cloth or container under the beaker. cloth to wipe off spilled oil/water | max
1 | | No marking value (NMV) unrealistic for this experiment - methods pertaining wearing of boots. - methods pertaining electric shock. - methods pertaining splashes of liquid. common expectation in procedure that should be done anyway. - wearing of goggles. - take average of several readings - clean and dry containers and tubes | |