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Mathematical Formulae 

 

1. ALGEBRA 

 

Quadratic Equation 
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2. TRIGONOMETRY 

 

Identities 

 

AAec

AA

AA

22

22

22

co t1co s

tan1sec

1co ssin

+=

+=

=+

 

BA

BA
BA

BABABA

BABABA

tantan1

tantan
)tan (

sinsinco sco s)co s(

sinco sco ssin)sin (






=

=

=

 

A

A
A

AAAAA

AAA

2

2222

tan1

tan2
2tan

sin211cos2sincos2cos

cossin22sin

−
=

−=−=−=

=

 

 

Formulae for ABC  
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1 The curve    
5 12 7x y

y x xy

−
− =  and the line 5 2 7x y− = − intersect at the points   

 

A and B. Find the coordinates of A and B. [5] 
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2 (a)   Express 
3

3 2−
in the form p q+ where p and q are integers. [2] 
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(b)   The diagonals of a rhombus are 30 and 

3

3 2−
 and the perimeter of the  

 

         rhombus is P. Calculate P2, giving your answer in the form of a b c+   

         where a, b, and c are integers. [4] 
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3 The cost per submarine, $y in millions, of assembling x submarines can be modelled 

by 
25

20 100
2

y x x= − +  , where 8x  . 

 

 (i) Explain the meaning of the constant term 100 in this model. 

 

 

 

 

 

[1] 

 
(ii) Express  

25
20 100

2
y x x= − + in the form of 

2( )y a x h k= − + . [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 (iii) Explain the significance of x h=  in (ii). [1] 
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4 
 

(a) Solve the equation 
( )4

4 4

log 3
log 2 3log 2

2
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(b) Given that 

27 9log logz y=  , express z in terms of y.  [3] 
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5 Express 
3 2

2

2 6 1

( 1)( 2)

x x

x x

+ +

− +
in partial fractions. [5] 
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6 The diagram below shows a quadrilateral ABCD in which A is (0, 6) and AB is   

 parallel to the x-axis. D is a point on the x-axis such that the equation of DC is  

 5 6x y+ = − . AC is perpendicular to the line 2 7y x= + .  

   

 

 

 

 

 

 

 

 

 

 (a) Find the coordinates of point C. [4] 
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 (b) Given that the area of triangle ACD is 1.5 times that of triangle ABC, find  

  (i) the coordinates of point B, [3] 

 

 

  

 

 

 

 

 

 

 

 

 

 

  (ii) the perpendicular distance from D to AC. [3] 
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7 The diagram shows a badge, made of thin sheet metal, consisting of   

 two semi-circular pieces, centres B and C, each of radius x cm. They are attached   

 to each other by a rectangular piece of thin sheet metal, ABCD, such that AB and   

 CD are the radii of the semi-circular pieces and that AD = BC = y cm.  

    

  

                

 

  (i)   Given that the area of the badge is 40 cm2, show that the perimeter,   

  
       P cm,  of the badge is given by 

80
2P x

x
= + . 

   

[4] 
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  (ii)   Given that x can vary, find the stationary value of P, and determine   

          whether this value is a maximum or a minimum. [6] 
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8 The roots of a cubic equation ( ) 0F x =  are −1, 2 and 5. When ( )F x  is divided by 

3x − , the remainder is 30. 

 

 

(i) Find the remainder when ( )F x  is divided by 3x + . [4] 
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(ii) Solve the equation ( ) 0F m = . [2] 
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9 It is given that f ( ) 3cos2 1x x= + and ( ) sin
2

x
g x

 
=  

 
.  

 

 

(i) State the amplitude and period of f ( ).x  [2] 

 

  

 

 

 

 

(ii) Sketch, on the same axes, the graphs of  = f ( )y x  and ( )y g x=  
 

 

 for 0 360x  . [4] 

 

  

 

 

 

 

 

 

 

  
 

 

 

(iii) State the value of k for which the equation  

 

 

 
3cos 2 1 sin

2

x
x k
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 
 has 7 solutions for 360 360x−   . 
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10 In an industrial process, water flows at a constant rate of p
3cm / s  into a funnel. The   

 water flows out through a small hole in the funnel at a constant rate of q
3cm / s ,   

 where q p . The volume of the water in the funnel at time t seconds is V
3cm .   

 Initially, the funnel is empty.  

 
(i) Express 

d

d

V

t
 in terms of p and q. 

[1] 

 

 

 

 

 

 

 

 
(ii) It is given further that 

31

3
V h= , where h is the vertical height of the funnel  

 

  in contact with water. In the case where 90 and 10p q= = , find the rate of 

change of the vertical height of the funnel in contact with the water, 

 

  where 5h = . [3] 
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11 In the figure below, AB is a diameter of the circle with centre O.  Chords AD and BC 

intersect at F. AD produced meets the tangent to the circle, TBE at E. AE is an angle 

bisector of angle BAC. 

  

 

 

 

 

 

 

 

 

 

 (a) Prove that CBD = DBE. [3] 
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 Given that AOF = 90º, prove that  

 (b) (i) triangle AOF is similar to triangle ADB, [2] 

   

 

 

 

 

 

 

 

 

  (ii) 2(AO)2 = AF × (AF + FD). [2] 
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12  

 

 

 

 

 

The diagram above shows part of the curve 6 5y x= − intersecting the line  y x=   

at points A and B.  A point T lies on the curve and the tangent at point T is parallel to 

the line y x= . 

 

 (i) Find the coordinates of T. 
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 (ii) Find the area of the shaded region enclosed by the line and curve. [6] 
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13 (i) Prove the identity 
sin 1

cosec
1 cos tan




 
− =

−
. [4] 
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(ii) Hence, solve the equation 

sin 2 1
9sin 2

1 cos 2 tan 2

A
A

A A
− =

−
 for 0 A   . [4] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

END OF PAPER 

 

Hence, solve the 

equation 

sin 1
9sin

1 cos tan
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