Dunman High School Year 5 Holiday Revision Set B Answers

1 (a) Use
$$v^2 = u^2 + 2gs$$

At highest point, v = 0

$$0 = (800 \sin \alpha)^2 - 2(9.81)s$$

or
$$s = \frac{640000 \sin^2 \alpha}{2g}$$
 [A1]

Minimum height = s + 300

$$= \frac{640000 \sin^2 \alpha}{2g} + 300$$
 [A1]

(b) Time of flight *t* is found using v = u + gt

$$-800 \sin \alpha = 800 \sin \alpha - gt$$

$$t = \frac{1600 \sin \alpha}{g}$$
 [A1]

Use
$$x = ut = (800 \cos \alpha) \left(\frac{1600 \sin \alpha}{g} \right)$$
 [M1]

$$=\frac{(800)^2(2)(\sin\alpha)(\cos\alpha)}{g}$$

$$=\frac{640000(\sin 2\alpha)}{g}$$
 [A0]

(c)(i) units of $R = \text{units of } E^{0.2} \rho^{-0.2} t^z$

m =
$$(kg m^2 s^{-2})^{0.2} (kg m^{-3})^{-0.2} s^z$$

= $m s^{z-0.4}$ [M1]

$$z = 0.4$$
 [A1]

(c)(ii)
$$R = E^{0.2} \rho^{-0.2} t^{0.4}$$

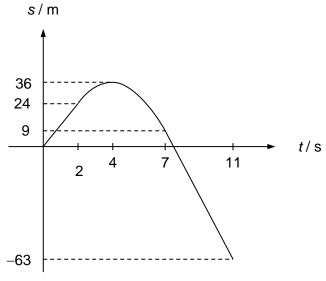
$$E = R^5 \rho t^{-2}$$

$$\frac{\Delta E}{E} = 5 \left(\frac{\Delta R}{R} \right) + \frac{\Delta \rho}{\rho} + 2 \left(\frac{\Delta t}{t} \right)$$
 [M1]

$$=5\left(\frac{2}{80}\right)+\frac{0.1}{1.2}+2\left(\frac{0.001}{0.006}\right)$$

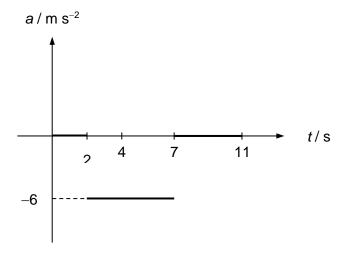
$$\Delta E = 0.6 \times 10^{14}$$
 [A1]

$$E = (1.1 \pm 0.6) \times 10^{14} \text{ J}$$
 [A1]


2 (a) Velocity is defined as the rate of change of displacement with respect to time.

(b) (i)
$$s = (12 \times 2) + (\frac{1}{2} \times 12 \times 2) - (\frac{1}{2} \times 18 \times 3) - (18 \times 4)$$

= -63 m


(ii) Curve from 2 to 7 s, highest point at 4 s, smooth line at 2 and 7 s.

Straight line with positive gradient from 0 to 2 s, straight line with negative gradient from 7 to 11 s.

Correct displacements at 2, 4, 7, 11 s.

(iii) Horizontal lines for 0 to 2 s, 7 to 11 s, a = 0 m s⁻². Horizontal line from 2 to 7 s, a = -6 m s⁻².

- **3 (a)** If body A exerts a force on body B, then body B exerts a force of the same type that is equal in magnitude and opposite in direction on body A. [1]
 - **(b)** Force by rocket on water = $\frac{\Delta p_{water}}{\Delta t} = \left(\frac{m_{water}}{\Delta t}\right) \Delta v$ = mass of water ejected per unit time × v [1]

By Newton's 3^{rd} Law, the thrust (force) T, of rocket due to ejected water is equal to the force by rocket on ejected water. [1]

Taking upwards as positive, net force on the rocket F is

$$F = T - W$$
 where W is the weight of rocket [1]
$$= \pi r^2 \rho v \times v - mg$$
 Hence $F = \pi r^2 \rho v^2 - mg$

(c) (i) Initial thrust will be the same as the gas pressure remains the same. [1]

Alternative Solution

Initial thrust will be greater as the total pressure at the nozzle is greater due to a larger volume (height) of water above it.

Further elaboration

Pressure at nozzle = Initial air pressure + water pressure = Initial air pressure + $\rho g(V/A)$

Where g is gravitational field strength, V is volume of water and A is cross sectional area of bottle, assuming cylindrical bottle.

BUT the additional water pressure is about $1000 \times 10 \times 0.1 = 1000$ Pa (not very significant compared to 160000 Pa) assuming A of about 20 cm³

(ii) Magnitude of initial acceleration will be smaller as mass of rocket and its contents is greater. [1]

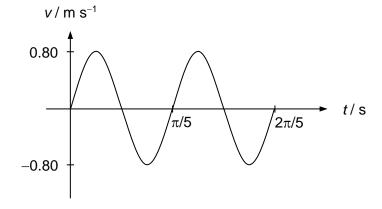
Acceleration =
$$\frac{\pi r^2 \rho v^2}{m} - g = \frac{\pi r^2 \rho v^2}{\rho V} - g$$

= $\frac{\pi r^2 v^2}{V} - g$

Since velocity of ejected water v remains the same (increase is insignificant), the initial acceleration experienced is smaller.

(iii) Maximum height reached is smaller because the acceleration experienced by the toy is smaller. [1]

4	(a)	(i) Consider if the block (with penny) start to slide first, $F_1 = 0.40 \ (m_1 + m_2)g = (m_1 + m_2)r\omega^2$ ($m_1 \& m_2$ are mass of block and penny respectively) $\omega = \left(0.40 \times \frac{9.81}{0.12}\right)^{0.5} = 5.72 \ \text{rad s}^{-1}$	M1 A1
		(ii) Consider if the penny starts to slide first, $F_2 = 0.52 (m_2)g = (m_2)r\omega^2$ $\omega = \left(0.52 \times \frac{9.81}{0.12}\right)^{0.5} = 6.52 \text{ rad s}^{-1}$	M1
		(iii) Max allowable $\omega = 5.72 \text{ rad s}^{-1}$	M1
		Number of revolution per minute = $\frac{\omega}{2\pi} \times 60 = 54.6 \text{ min}^{-1}$	A1
	(b)	Friction provides the centripetal force for mud to stay in circular motion.	M1
		$F_{friction} = mrw^2 = centripetal force.$	
		The required centripetal force increases as <i>r</i> increases	


so flies off at edge first if the required centripetal force is greater than frictional force.

5	(a)		gravitational potential at a point is defined as the work done per unit mass by	B1
			external agent in bringing a small test mass from infinity to that point, without ducing any acceleration of the test mass.	
		proc	ducing any acceleration of the test mass.	
	(b)	(i)	$\emptyset_p = 4\emptyset_{due\ to\ 1\ mass\ at\ P}$	M1
				A1
			$\sqrt{R^2 + h^2}$	
		(ii)	Loss in $E_{k \text{ (from P to infinity)}} = Gain in E_{P \text{ (from P to infinity)}}$	M1
			$\frac{1}{2}Mv^{2} - 0 = M\left[0 - \left(-4\frac{Gm}{\sqrt{R^{2} + h^{2}}}\right)\right]$ $v = \frac{\sqrt{8Gm}}{\sqrt[4]{R^{2} + h^{2}}}$	
			$v = \frac{\sqrt{8Gm}}{\sqrt{8Gm}}$	A1
				D4
6	(a)		A <u>straight line</u> passing through the <u>origin</u> ⇒ acceleration is directly proportional to displacement.	B1
			Negative gradient	B1
			⇒ direction of acceleration is opposite to the direction of displacement	D4
			The features of the graph show that $\underline{a} \propto -x$ (defining equation for SHM)	B1
	(b)	(i)	Energy stored in spring = $\frac{1}{2}kA^2$	A1
			$= \frac{1}{2}(100)(0.200)^2$	
		(ii)	= 2.00 J Loss in EPE = Gain in KE	M1
		(11)	$2.00 = \frac{1}{2} (m_1 + m_2) v^2$	IVII
			$2.00 = \frac{1}{2}(9.00 + 7.00)v^2$	
			$v = 0.500 \text{ m s}^{-1}$	A1
			OR $\omega = (k/m)^{1/2}$	M1
			$=(100/(9.00+7.00))^{1/2}$	
			= 2.50 rad s ⁻¹	4.4
			$v = r_0 \omega$ = (0.200)(2.50)	A1
			$= 0.500 \mathrm{m s^{-1}}$	
		(iii)	Loss in KE = Gain in EPE	M1
			$\frac{1}{2}m_1v^2 = \frac{1}{2}kA'^2$	
			$\frac{1}{2}(9.00)(0.500)^2 = \frac{1}{2}(100)(A')^2$	
				A 1
			A' = 0.150 m OR	A1
				M1
			$\omega = \frac{R}{R}$	
			\sqrt{m}	
			- 100	
			$=\sqrt{9.00}$	
			= 3.33 rads ⁻¹	
			$v = A'\omega$ 0.500 = $A'(3.33)$	A1
			$A' = 0.150 \text{ m s}^{-1}$	
			-	

7 (a)
$$v_0 = \omega x_0 = \left(\frac{2\pi}{T}\right) x_0$$
 [M1]
$$= \left(\frac{2\pi}{\pi/5}\right) (0.080)$$
$$= 0.80 \text{ m s}^{-1}$$
 [A1]

(b) sine graph [B1]

y-axis labeled correctly [B1]

(c)
$$v = \omega \sqrt{x_0^2 - x^2}$$

$$x = \sqrt{x_0^2 - \frac{v^2}{\omega^2}}$$

$$= \sqrt{(0.080)^2 - \frac{(0.42)^2}{10^2}}$$

$$= 0.068 m = 6.8 \text{ cm}$$
[M1]

Displacement =
$$-6.8 \text{ cm}$$
 [A1]

(d) At equilibrium point, mg = ke

$$e = \frac{mg}{k}$$

$$= \frac{0.200 \times 10}{20}$$

$$= 0.10 = 10 \text{ cm}$$
[M1]

At highest point,

EPE
$$= \frac{1}{2}ke^{2}$$

$$= \frac{1}{2}(20)(0.10-0.080)^{2}$$

$$= 0.0040 = 4.0 \text{ mJ}$$
[A1]

(e)

	Lowest Point	Equilibrium Point	Highest Point
Gravitational Potential Energy / mJ	0	160	320
Elastic Potential Energy / mJ	324	100	4
Kinetic Energy / mJ	0	64	0

(a)	(i)	Total charge of particles = $(e)(n)(A)(L)$	B1
	(ii)	Time taken for all particles to pass through shaded area = L/v	B1
	(iii)		M1
		= [(e)(n)(A)(L)] / (L / v)	B1
		= n A v e	A0
(1)			
(b)		Faulty: C	B1 B1
		Nature: lamp is shorted OR	ы
		Lamp has no resistance.	
4.			
(c)		$R = 15 \Omega$	A1
(d)	1	V = IR	A1
		$R = \frac{6.0}{0.20} = 30 \ \Omega$	
		0.20	
(e)		Filament is cold when measuring with ohm-meter	B1
		and the resistance of the filament lamp rises as temperature increases	B1
		OR The increased towns and two led to increased assistances	D4
		The increased temperature led to increased resistance Temperature of 2 cases highlighted to have increased	B1 B1
		OR	
		Lattice vibrations increased with temperature increase.	
(f)	(i)	V V	
		S R	B1
		1. S is open to measure <i>E</i> ;	B1
		2. S is closed to measure V.	B1
	(ii)	V^2 11.6 ²	
		1. $R = \frac{V^2}{P} = \frac{11.6^2}{20.0}$	M1
		$=6.73~\Omega$	A1
		2.	
		Rearranging the equation $V = E - Ir$, we obtain	
		$1 = \frac{E}{V} - \frac{r}{R}$	M1
		, , , , , , , , , , , , , , , , , , ,	C1
		$r = R\left(\frac{E}{V} - 1\right) = 6.73\left(\frac{15.0}{11.6} - 1\right) = 1.97 \Omega$	
		(V) 5115(11.6 ·) 1151 25	A1

End