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Chapter 9  Calculus 
 

The topics for Calculus, namely Differentiation, Integration, Power Series and Differential 

Equations, should be familiar from your study of H2 Mathematics. In this chapter we collect 

together some additional tips and techniques that might be useful in H3 Mathematics.  

 

SYLLABUS INCLUDES 

 

 Knowledge of the following topics (differentiation, Maclaurin series, integration 

techniques and differential equations) and suitable extensions 

 Proving statements involving derivatives and integrals 
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1 Derivatives 

  

It is important to understand that the derivative is defined via a limiting process. 

 

Definition 1 Let I be an open interval and 0x  be a point in I. We say that a function defined on 

I is differentiable at I if the limit 
0

0

0

f ( ) f ( )
lim
x x

x x

x x




 exists. In this case, the limit is called the 

derivative of f at the point 0x , and is written as 0f ( )x . If this limit exists for every point in I, we 

say that f is differentiable on I and its derivative is written as f ( )x . 

 

Example 1 Let us use the definition above to find the derivative of 
2f ( )x x . For any real 

number x, we have 

 
2 2

0 0 0

f ( ) f ( ) ( )
f '( ) lim lim lim(2 ) 2 .

h h h

x h x x h x
x x h x

h h  

   
      

 

This derivation is also known as differentiation from first principles. 

 

Exercise 1 Find from first principles the derivatives of the following: 

 

(i) f ( ) nx x , where n is a positive integer; 

(ii) f ( ) sinx x . 

 

 

 

 

 

 

In similar fashion, we can work out the derivatives of simple functions and then use familiar 

results like the product, quotient and chain rules to work out derivatives of more complicated 

functions. Such techniques will be assumed to have been mastered and will not be pursued here.  

Higher Order Derivatives 

 

If a function is such that f ( )x  is still differentiable, we can form the second derivative f ( )x

and similarly for higher order derivatives. When it exists, the nth derivative of y = f(x) with 

respect to x is denoted by 
( )f ( )n x  or 

d

d

n

n

y

x
.  

Using the product rule and induction, we can prove the following generalized product rule:  

If f and g are n times differentiable, then 
( ) ( ) ( )

0

(fg) f g
n

n k n k

k

n

k





 
  

 
  for all positive integers n, 

where ( )f n  denotes the nth derivative of f. This result was an exercise in Tutorial 1, and the proof 

is basically done via Mathematical Induction. 
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Here, let us just interest ourselves in finding a formula for the nth derivative of certain functions. 

 

Exercise 2 Find a formula for the nth derivative of the following functions 

 

(i) 
5 2e xy x ; 

(ii) e sinxy x . 

 

Let us end the discussion on derivatives by introducing two important results in real analysis 

involving derivatives. There is no need to know how to prove them, but you should be able to 

have an intuitive understanding of why they are true. 

 

Rolle’s Theorem 

 

Rolle’s Theorem states that if f is a continuous function on an interval [a, b] and differentiable 

on (a, b), given that f(a) = f(b) = 0, then there exists a c in the interval (a, b) such that f ( ) 0c  . 

 
 

Mean Value Theorem 

 

The Mean Value Theorem states that if f is a continuous function on an interval [a, b] and 

differentiable on (a, b), there exists a c in the interval (a, b) such that 
f ( ) f ( )

f ( )
b a

c
b a


 


. 

 

 
 

We can understand this result geometrically in the following manner: Typically one draws the 

graph of a function y = f(x) which happens to make several turns (i.e. has inflection points) on an 

interval [a, b] and the straight line connecting the points (a, f(a)),   (b, f(b)) on the same set of 

axes. Then one observes that the slope of this line is equal to the slope of the tangent to the 

graph of the function at least at one value of x in (a, b).  

 

 



Raffles Institution H3 Mathematics    

_______________________________________________________________________________________________________ 

_______________________ 
Chapter 9: Calculus 

Page 4 of 21 

 

Applications of the Mean Value Theorem 

 

Example 2 The function f ( ) exx   has derivative f ( ) exx   for all real x. We will now show 

that e 1x x   for all real x.  

 

If x = 0, the inequality is an equality. If x > 0, applying the Mean Value Theorem, we know that 

there is a real number c such that 0 c x   and 
0e e e ( 0)x c x   . Since e 1c   for 0x  , 

0e e e ( 0) e 1x c xx x x       . Repeat a similar argument for x < 0 and we are done. 

 

Exercise 3 If 0 a b  , show the following: 

 

(i) 1 1

2 2
tan tan

1 1

b a b a
b a

b a

  
  

 
; 

(ii) 1 ln 1
a b b

b a a

 
    

 
; 

(iii) 
2 2

2 2

3

a ab b
a b

 
  . 

 

 

 

 

 

 

 

 

 

 

2 Integration 

 

What is commonly referred to as Integration in the A-level syllabus is actually two separate 

concepts, involving the computation of areas and the inverse of differentiation, i.e. finding 

which functions, when differentiated, will result in the given function. That there is an intimate 

connection between these two concepts is the statement of a seminal theorem, known 

appropriately as the Fundamental Theorem of Calculus.  

 

2.1 Riemann Sums 

 

Let f :[ , ]a b   be a continuous function. One way to compute the area bounded by the curve 

y = f(x), the x-axis, the lines x = a and x = b is as the limit of Riemann sums. 

 

Definition 2 A partition of [a, b] is a finite set of points { }kx , k = 0, 1, …, n such that  

0 1 ... na x x x b     . 

 

We will only use partitions in which the points { }kx  are evenly spaced, that is 1
b a

k k n
x x 

   for 

all k = 1, 2, …, n. Thus ( )k
k n

x a b a   . Such partitions are also known as regular partitions. 
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Definition 3 The Riemann sum associated to f and a regular partition with n subintervals, 

denoted by S(f, n) is given by 

1 1

1 1

1
(f , ) ( )f ( ) f ( )

n n

k k k

k k

b a k
S n x x x a b a

n n
 

 

  
     

 
  . 

 

S(f, n) can be taken to be an approximation to the area under the curve, with the case for n = 6 

illustrated below: 

 
 

 

To get a better approximation to the area, it seems natural to increase the number of rectangles 

used, so we can attempt to let n → ∞ to compute the exact area. Unfortunately, it is not always 

the case that a limit will exist. In those cases in which the limit exists, it is defined to be the 

(Riemann) definite integral f ( ) d

b

a

x x . In other words,  

1

1
f ( ) d lim f ( )

b n

n
ka

b a k
x x a b a

n n


  
   

 
 , 

provided the limit exists. For the above Riemann sums, we used the left end point of the 

rectangles to compute the height 1f ( )kx  . We could equally well have used the right end point, 

giving the following equivalent result  

1

f ( ) d lim f ( )

b n

n
ka

b a k
x x a b a

n n


  
   

 
 . 

For the A-levels, you do not need to worry about whether the limit exists. Rather, focus on 

understanding how the approximation works. In particular if we restrict ourselves to the domain 

[0, 1], we have  

1

1 10

1 1 1
f ( ) d lim f lim f

n n

n n
k k

k k
x x

n n n n 
 

   
    

   
  . 
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Example 3 Let us evaluate 
1

2

0

 dx x  using Riemann sums.                                                              

You may use the result 2

1

( 1)(2 1)
.

6

n

k

n n n
k



 
  

Using a regular partition on [0, 1], we have 

21

2

10

2

3
1

3

1
 d lim

1
            = lim

( 1)(2 1) 1
            = lim .

6 3

n

n
k

n

n
k

n

k
x x

n n

k
n

n n n

n









 
  

 

 




  

Sometimes the table is turned, and Riemann sums are used to evaluate limits of sums. This, of 

course, assumes we have some other means of computing definite integrals.  

Example 4 To evaluate 
1

1
lim

n

n
k n k
 
 , we try to write it as a Riemann sum of some function. 

In fact we have 
1

1 1 0

1 1 1 1
lim lim  d ln 2

1 1

n n

kn n
k k n

x
n k n x 

 

  
  

   . 

Note that this provides another method to evaluate some series which we have briefly discussed 

in Chapter 7. 

Exercise 4 Evaluate 
2

3

0

 dx x  using Riemann sums. You may use the result 

2 2
3

1

( 1)
.

4

n

k

n n
k




  

 

 

Exercise 5 Evaluate the following: 

(i) 
1

1
lim sin

n

n
k

k

n n






 , 

(ii) 
2

1

lim
( )

n

n
k

n

n k
 
 . 
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2.2 Integration Techniques 

 

Even with a list of anti-derivatives at hand, we are still far from being able to evaluate most 

integrals. In this section, we will look at two main techniques to augment our H2 artillery, 

integration using reduction formula as well as the use of suitable substitutions. However, it is 

important to appreciate that there are certain anti-derivatives that cannot be expressed as a finite 

operation consisting of addition, multiplication and composition of “usual” functions. For 

example, we cannot “evaluate” anti-derivatives like 
2

e  dx x . 

 

2.2.1 Reduction Formula 

 

Some integration methods are applicable to functions involving a power n where n is a small 

positive integer. For instance cos  dn x x  can be found when n = 4 by using trigonometric 

identities, but the same method will be unwieldy for 20cos  dx x . Systematically reducing the 

value of n is called a reduction method, and is usually based on the technique of integration by 

parts.  

Example 5 If cos  dn

nI x x  , applying integration by parts we have 

1

1 2 2

1 2 2

1 2

1

2

cos  d cos cos  d

    = sin cos ( 1) cos sin  d

    = sin cos ( 1) cos (1 cos ) d

    = sin cos ( 1) cos  d ( 1) cos  d

    = sin cos ( 1) ( 1)

n n

n

n n

n n

n n n

n

n n

I x x x x x

x x n x x x

x x n x x x

x x n x x n x x

x x n I n I



 

 

 





 

 

  

   

   

 





 

 

 

Rearranging we have 
1

2

sin cos 1n

n n

x x n
I I

n n






  . This gives us a recurrence relation for nI , so 

that starting with 0I  and 1I  (which are easily found), we can systematically work out nI  for 

larger values of n. 

 

If nI  is a definite integral with limits of, for example 0 and 
2


, we have 

2

1
n n

n
I I

n



 . From 

0
2

I


  and 1 1I  , we can obtain 
2

1

2 1

2 2

m

m

k

k
I

k






   and 

2 1

1

2

2 1

m

m

k

k
I

k







 . These results are also 

valid for 
2

0

sin  dn

nI x x



  . 

Some reduction formulae cause the value of n to fall by 2 in each step, while in other cases n 

falls only by 1 every step. Also, it is not always required to use integration by parts.  
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Exercise 6  

(i) Establish a reduction formula that could be used to find e  dn x

nI x x   and use it to find 

4I . 

(ii) If tan  dn

nJ x x  , find a reduction formula and use it to evaluate 
4

6

0

tan  dx x



 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2 Useful Substitutions 

 

In the H2 syllabus, if a substitution is required to evaluate an integral, it will be provided. 

However, for H3, this is not necessarily the case. So there is a need to discuss how we can come 

up with some useful substitutions. 

 

General Tips 

When encountering expressions like 
1

 d
1

x
x 

 , the idea is to simplify the integrand into 

something we know how to deal with. u x  is a natural choice and it does work. (Check!) 

 

Expressions involving 21 x , 2 1x  . 

 

The main idea is to use a suitable trigonometric substitution, and using one of the following 

trigonometric identities 2 2sin cos 1    or 2 21 tan sec    to simplify the expression in the 

surd to a single trigonometric function.  

 

For example, if we encounter an integral like 
2

1
 d

4
x

x 
 , we could use the substitution 

2secx  . Then 
2 2

1 2sec tan 2sec tan
 d  d  d sec  d

2 tan4 4sec 4
x

x

   
   


  

 
    .  
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Expressions of the form (sin ,cos ) dR x x x , where R is a rational function of two variables. 

The substitution that works in all cases is tan
2

x
t   which also means that we have  

2

2 2 2

2 1 d 2
sin ,   cos ,    

1 1 d 1

t t x
x x

t t t t


  

  
 

and we can hence reduce the original expression to a rational function, which we can then apply 

the technique for rational functions to evaluate.  

Obviously, applying this method requires the use of trigonometric identities (which can turn out 

to be very ugly). But in theory, we can be sure of obtaining the answer (though we do not know 

very well at the end of how many pages...)  

Example 6 Let us evaluate 
1

 d
2 sin

x
x . 

Using the substitution tan
2

x
t  , we have 

   

2

22

1

2

2

22 31
2 2

1

1 1 2
 d  d

2 sin 2 1

2
                      =  d

2(1 ) 2

1
                      =  d

1

1
                      =  d

2 2 1
                      = tan

3 3

              

t

t

x t
x t

t
t t

t
t t

t
t

t
C






  

 

 

 

 
 

 

 







1 2
2 tan 12

        = tan
3 3

x

C  
 

 

 

 

Of course, one should not always turn to this substitution when we see a rational function of sine 

and cosine. In some cases, we can always try to see if the integral is of the form 
f ( )

 d
f ( )

x
x

x


 , 

such as 
sin

 d
2 cos

x
x

x  (of course the substitution will still work). 
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A particular case 

In the case where the rational function of sine and cosine is of the form cos sin  dm nx x x , the 

substitution used can be made simpler: 

 

 If m is odd, we can use the substitution sint x ; 

 If n is odd, we can use the substitution cost x ; 

 If m and n are even, we can ‘linearize’ the expression using the double angle formula. 

Try to understand why these substitutions work! 

 

Exercise 7 Evaluate the following integrals: 

 

(i) 3 4cos sin  dx x x ; 

(ii) 4 2cos sin  dx x x ; 

(iii) 
2

cos sin
 d

1 cos

x x
x

x



 . 
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3 Maclaurin Series 

 

For H3 Mathematics, instead of working with just the first few terms in the series expansion, 

you should be at ease with working with the general term. 

 

Techniques to find Series Expansions 

 

In H2 Mathematics, you have seen how to use standard series or repeated differentiation to find 

Maclaurin series. Here we consider a few more approaches.  

A power series can be differentiated or integrated term by term to get new series, as the 

following example illustrates.  

Example 7 To find the series expansion of 
1tany x , we start with 

2 2 4

2
0

1
( 1) 1 ...

1

k k

k

x x x
x





     


  

and integrate to obtain 

1 2 1

0

( 1)
tan

2 1

k
k

k

x x C
k


 




 


  

where C is an arbitrary constant. To determine C, we note that when x = 0, 
1tan 0 0y    and 

thus C = 0. 

 

Another approach is to form a differential equation and differentiate that repeatedly. You should 

already be familiar with this in H2 Mathematics, but by making use of the generalized product 

rule 
( ) ( ) ( )

0

(fg) f g
n

n k n k

k

n

k





 
  

 


 

we can do it even more efficiently. 

 

Example 8 

 

Returning to 
1tany x , we have 2 d

(1 ) 1
d

y
x

x
  .  Differentiating with respect to x gives 

2
2

2

d d
(1 ) 2 0.

d d

y y
x x

x x
    

 

Using the generalized product rule we thus have  

 
2 1 1

2

2 1 1

d d d d d
(1 ) 2 2 2 2 0

1 2 1d d d d d

n n n n n

n n n n n

n n ny y y y y
x x x

x x x x x

  

  

     
          

     
. 

 

Substituting x = 0 and simplifying, we get 
( 2) ( )(0) ( 1) (0).n ny n n y     Using this relation and 

the fact that (0) 0, '(0) 1y y   and ''(0) 0y  , we have 
(2 ) (2 1)(0) 0, (0) ( 1) (2 )!.m m my y m    

This again gives the same result in Example 7, that 
1 2 1

0

( 1)
tan

2 1

k
k

k

x x
k


 







 . 
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4 Differential Equations 

 
In your H2 Mathematics syllabus you are very much restricted to solving differential equations 

of the form 
d

f ( )
d

y
x

x
 , 

d
f ( )

d

y
y

x


 
and those reducible to these two via substitutions. For the H3 

syllabus, you should still be able to use substitutions to reduce the differential equations, as well 

as formulating a differential equation from novel problem situations.  

 

We shall equip you with 2 additional simple tools to tackle solving of first order differential 

equations. You need not know them, but you can be easily guided to solve problems using these 

techniques. 

 

 

Variable Separable Equations (in H3 syllabus) 

 

A first order differential equation of the form 

                      
d

f ( )g( )
d

y
x y

x
 ,   (1) 

 

where f(x) is a function of x and g(y) is a function of y, is said to be separable or to have 

separable variables.  

 

Rewriting (1), we have 

                     
1 d

f ( )
g( ) d

y
x

y x
  (2) 

provided that g(y)  0. 

 

Integrating (2) with respect to x, we have 

                     
1 d

d
g( ) d

y
x

y x

 
 
   = f ( ) dx x . 

 

Hence, the general solution of the above variable separable first order differential equation is 

given by 

                y
y

d
)g(

1
 = f ( ) dx x  

which will introduce an arbitrary constant. 

 

Note that this is not very much different from solving 
d

f ( )
d

y
y

x
 ; the whole idea is to separate 

the x and y variables on both sides of the expression which we eventually integrate. 
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Example 9 

Find the general solution of the differential equation 2 2d
(1 ) 1 .

d

y
y x y

x
    

Rearranging the expression such that all the y appears on the LHS and the x on the RHS,  

2 2

1
 d  d

1 1

y
y x

y x


    

2 11
ln( 1) tan

2
y x C   , where C is an arbitrary constant. 

1

2 1

2 2tan 2

ln( 1) 2 tan 2

1 e x C

y x C

y






  

 
 

12 2tan 21 e ,  where ex Cy A A


   . 

 
Integrating Factor (not in H3 syllabus) 

 

The idea of the integrating factor is to make one side of a differential equation an exact 

differential. For example, consider the differential equation 
d

2.
d

y
x y

x
   If you recall the 

product rule, you might recognize that the expression 
d

d

y
x y

x
  can be written as 

d
( )

d
xy

x
. Thus 

the differential equation integrates trivially to xy = 2x + c.  

 

Differential equations of this type are called exact differential equations. Of course, we will not 

always get such nice differential equations. But we will discuss how we can introduce an 

‘integrating factor’ which makes the differential equation exact.  

 

 

Example 10 

Find the general solution of the differential equation 

2d
2 e .

d

xy
y y

x
 

  
By observation, if we multiply this equation throughout by ex , we obtain 

2 2d
2 e e e .

d

x x xy
y y

x
   

Recall the product rule of differentiation, this is equivalent to 

 2 2d
e e .

d

x xy
x

  

Integrating on both sides, the general solution is 2 21
e e .

2

x xy C   

 

The term ex  is also known as the integrating factor, and this approach works for linear first 

order differential equations. Let us detail this method. 
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Method of Integrating Factor (not in H3 syllabus) 

 

1. Write the first order linear differential equation in the standard form 

x

y

d

d
 + p(x)y = q(x) 

In particular, the coefficient of 
d

d

y

x
must be 1. 

2. Find the integrating factor 
P( )d

u( ) e
x x

x  . 

3. Multiply the differential equation by the integrating factor 

          
p( )d p( )dp( )d d

p( ) e q( ) ee
d

x x x xx x y
x y x

x

             
     

.                    

 

4. Write the result obtained above as 

p( )dd
e

d

x x

y
x

   
 

p( )d

q( ) e
x x

x
 
 
 

 

p( )dp( )d p( )dd d
(Since   p( ) e )e e

d d

x xx x x x y
x yy

x x

            
       

5. Integrate both sides with respect to x to obtain the solution as  

   
 

p( )d

e
x x

y  
p( )d

q( ) e  d
x x

x x
 
 
  . 

 

Question: 

Why is it not necessary to include any arbitrary constant in finding the integrating factor? 

 

Although the method of integrating factor is not in the H3 syllabus, you can be guided to do 

questions which involves them, as the following exercise shows. 

 

Exercise 8 

Show, by means of the substitution 
1

y
z

 , that the differential equation  

        2d
(1 ) 2 (1 ) 0

d

y
x y x y

x
            (*) 

reduces to  

d 2
1

d 1

z
z

x x

 
  

 
. 

By considering   2d
1

d
x z

x
  or otherwise, solve the differential equation (*) for x > 1, given 

that 1y   when 0x  . 
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Exercise 9 [9810/2009/3] 

 Air pressure, P pascals, reduces with height above sea level, h metres. At any height, the rate of 

change of air pressure with respect to height is proportional to the air pressure. On the summit of 

Mount Everest, at a height of 8848 metres above sea level, air pressure is approximately one 

third of its value at sea level. Show that air pressure halves for approximately every 5600 metres 

of height gained.  
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Tutorial  
 
1. [RI/2014/Lecture Test 2/Q5] 

 Let f be a function on [0, ) , defined by 
2f ( ) ln(e 2e )x xx   . 

 Let C denote the curve f ( )y x . 

(i) Show that 
3f ( ) 2 ln(1 2e )xx x     [1] 

(ii) Show that f is strictly increasing on [0, ) .  [2] 

(iii) Hence, sketch the curve C and the curve y = 2x on the same diagram. [2]  

(iv) Show that ln(1 )u u 
 
for all 0u   [3] 

 Let ( )A   denote the area bounded between the curves C and y = 2x, and the lines x = 0 

and x  .  

 (v) Show that 
2

( )
3

A  
 
for all real  . [4] 

 

 
2.  [RI/9824/Prelims/2] 

 A sequence of polynomials ( )nP x  is defined recursively by 1
1 2
( )P x x   and 

1

d
( ) ( ), (0) (1)

d
n n n nP x nP x P P

x
   

  for 2.n    

 

 (i) By considering 3 3(0) (1),P P  show that 2
2

1
6

( .)P x x x     [2] 

 (ii) Find 3( )P x  and 4 ( ).P x   [3] 

 (iii) Prove, using Mathematical Induction, that  

1 1( 1) ( ) ( 1) n

n nP x P x n x      

 for 0.n    [4] 

 (iv) Use the results in (ii) and (iii) to obtain a formula for 
0

3.
m

x

x


    [3] 

 

 

3. [9824/2015/3] 

 (i) Prove that  
1

2 tan
tan  d tan  d

1

n
n n x

x x x x c
n


   

  , for 0n  , where c is an arbitrary 

constant.  [2] 

 (ii) Hence find 5tan  dx x . [3] 

 (iii) Let f ( )x , g( )x  and h( )x  be functions of x such that f ( ) g ( )x x x   and
2h ( ) (1 )g ( )g( )x x x x   . Use integration by parts to find the following. [Your 

answers must be given in terms of one or more of f ( )x , g( )x  and h( )x .] 

  (a) g( ) dx x  [2] 

  (b)
  

f ( )g( ) dx x x  [4] 

 (iv) Hence find 2 1ln(1 ) tan  dx x x . [3] 
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A graphing calculator must not be used for this question. 

4 [RI/9820/2017/Prelims/Q6] 

 (i) Given that f is a continuous function, explain, with the aid of a sketch, why the value 

of  

1 1 2
lim f f ... f
n

n

n n n n

      
        

      
 

  is 
1

0

f ( ) dx x .  [2] 

 

 (ii) Hence evaluate 
2 2

1

1

(
im

)
l

3

n

n
k n k
 
 , leaving your answer in exact form. [4] 

 

 (iii) (a) By considering the function g( ) sinx x x  , show that sin x x  for 0x  . 

   Hence or otherwise, show that 
3

sin
6

x
x x   for 0x  . [4] 

  (b) Deduce that 
3

2 6 2 2
1 1 1

sin sin sin sin
6

n n n

k k k

k k k k k k k

n n n n n n n  

 
   

 
   . [1] 

  (c) Hence determine the exact value of 
2

1

lim sin sin
n

n
k

k k

n n


 . [3] 

 

 
 

5.  [RI/2013/Lecture Test 1/Q6] 

Let g be the function defined on (–1, 1) such that g(0) = 0 and 
2

1
g ( )

1
x

x
 


. Let h be 

the composite function defined on (, 0) by h(x) = g(cos x). 

(i)  Determine h ( )x .              [2] 

 (ii)  Calculate 2
h( )  and hence deduce an expression for h(x).         [3] 

 

 

 

 

6. [RI/2013/Lecture Test 1/Q7] 

Let 
0f :[0,1]   be a continuous function. Suppose that there exists a real number a 

such that for all 
  t [0,1], 

0
f ( ) f ( ) d

t

t a u u  .  Let 
0

F( ) f ( ) d
t

t u u  . 

(i)  Show that the function g( ) F( )e att t   is decreasing on [0, 1].         [2] 

(ii) Hence or otherwise, show that f is identically zero.          [3] 
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7. [RI/9824/2013/Prelims/Q2] 

 (a) Let 
1 1 1

1 ... ( 1) .
3 5 2 1

n

nS
n

     


 

       (i)   State the sum of the series 
2 4 21 ... ( 1)n nx x x     .

  
 [1]

  

       (ii)  Hence show that 

1
2 2

2

0

( 1)  d .
4 1

n
n

n

x
S x

x

 

  
   

[2]
 

       (iii) Deduce that nS  differs from 
4


 by at most 

1
.

2 3n   
[2] 

 (b) (i)  Given that 
4

0

sin(2 1)
 d

sin
n

n x
I x

x




  , show that, for any positive integer n, 

   
1

1 1
sin

2
n nI I n

n


 
   

     

[2] 

       (ii)  Hence or otherwise find the exact value of  
4

0

sin11
 d

sin

x
x

x



 .
 

[2] 

 
8.    [9824/2016/1] 

 

       Do not use a calculator in answering this question. 

 

       By first using the substitution 
1

u x
x

  , find the exact value of              

                                                  

1
2

2(3 5)

2 4 21

1
 d

( 1) 1

x
x

x x x

 

   .         [10] 

 

 
9. [Specimen Paper/9820/Q2] 

 (i)    Find the exact value of 

9

4

 d
1

u
u

u  . [5] 

 (ii)  Show that the differential equation 
2

1 d
f

d

y y y

x x x x

 
  

 
 can be transformed into the      

equation  
d

f
d

u
u

x
  by the substitution y = xu. [3] 

 (iii) A solution curve of the differential equation 

2d

d

y x y x
x

x y x y
    

   passes through the point  1 4
3 3
, . Find the exact value of the x-coordinate of the point 

where this curves intersects the line y = 9x. [4] 
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10. [9824/2014/3] 

 

 (i) (a) For any positive integer n, prove that 

                     
2

2 4 1 2 2

2 2

1
1 ... ( 1) 1

1 1

n
nn n x

x x x
x x

        
 

 .

                  

[2] 

 

  (b) Let D be the difference between 
4


 and the sum of the first 1000 terms of the   

series 
1 1 1

1 ...
3 5 7

   

  

   

By considering 
1 2

2

0

 d
1

nx
x

x
, show that 

1 1

2001 4002
D  .

 

[7] 

 (ii) By expressing 41 x  as  2 4 21 x x x   , find the exact value of 

             

1
4

6

0

1
 d

1

x
x

x



 .

 

[6] 

 

 

 
11.  [RI/9824/Prelims/3] 

 (i) Let a be a positive real number and f a function defined on  [0, ]a  satisfying 

f ( ) f ( )x a x  . Show that  

0 0
f ( ) d f ( ) d .

2

a aa
x x x a x x    

[2] 

 

 (ii) Hence, prove that for n  , 

2

0 0 0
sin  d sin  d  sin  d .

2

n n nx x x x x x x


 
     

[2] 

 

 (iii) For nonnegative integers n, let 2

0
sin  dn

nI x x


  . Show that 2( 1)n nnI n I    where 

2.n    [3] 

 

 

 (iv) Hence find the exact value of 11

0
sin  d .x x x



  [3] 

 

 (v) Show that the sequence defined by  1n n nx nI I    for n   is constant. [1] 

 

 (vi) Hence show that, for n  , 
2( 1) 2

nI
n n

 
 


. [3] 
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Assignment 
 
1. (i) Use the substitution y = ux, where u is a function of x, to show that the solution of 

the differential equation 

 

d
,    ( 0, 0)

d

y x y
x y

x y x
     

 

  that satisfies y = 2 when x = 1 is   

 
24 2ln ,   ( e )y x x x    . 

 

 (ii) Use a substitution to find the solution of the differential equation 

 

d 2
,    ( 0, 0)

d

y x y
x y

x y x
     

 

  that satisfies y = 2 when x = 1. 

 

 (iii) Find the solution of the differential equation 

 
2d 2

,    ( 0, 0)
d

y x y
x y

x y x
     

 

  that satisfies y = 2 when x = 1. 

 

 

2 (i) It is given that A, B and C are real numbers. Show that the quadratic function
2h( ) 2t At Bt C    is non-negative for all real values of t if and only if 0A   

and 
2.AC B    [2] 

  

   

 (ii) Let f and g be continuous functions on the interval [ , ]a b . By considering 

 
2

f ( ) g( )  d
b

a
t x x x , show that  

       
2

2 2
f ( ) d g( ) d f ( )g( )d

b b b

a a a
x x x x x x x    

and determine when equality holds.  [3] 

   

  

(iii) Hence show that 
1

3

0

5
1 d

2
x x  . [3] 

   

 (iv) Let k be a continuous and differentiable function on the interval [0,1]  satisfying 

k(1) 0 . Show that 

    
2

1 1 2

0 0

1
k( ) d k ( )  d

3
x x x x   

and determine when equality holds.  
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3 For every nonnegative integer n, define 
21

2 1

0
e d .n x

nI x x    

 
 (i) Show that for 1n   , 

                                   1

1
.

2e
n nI nI                                   [3]  

 (ii)  Show that for all positive integers n,  

                
1 1

! 1
2 e

n nI n S
 

  
 

,    where 
0

1

!

n

n

r

S
r

 . [4] 

 

 

 
 

(iii) Show that 
1

0
2 2

nI
n

 


 . [2] 

  

(iv) Deduce that nS  differs from e by at most  
e

( 1)!n 
. [2] 

 

 

Additional Practice Questions 

 
Refer to the compilation of 2010 to 2019 STEP I and II problems. A graphing calculator should 

not be used for all these questions. 

 

 

1. 2010/STEP I/4 

 

2. 2010/STEP II/4 

 

3. 2011/STEP II/6 

 

4. 2012/STEP I/5 

 

5. 2013/STEP II/2 

 

6. 2014/STEP II/4 

 

7. 2015/STEP II/6 

 

8. 2016/STEP II/8 

 

9. 2017/STEP I/6 

 

10. 2017/STEP II/1 

 

11. 2018/STEP I/8 

 

12. 2019/STEP II/2 

 

 


