	Qn	Working	Mark Awarded	Sub- total	Remarks
1	(a)	7.004869155 = 7.00 (to 3 s.f.)	B1	1	
	(b)(i)	2.589×10^{-6}	B1	1	
	(ii)	$(5.97 \times 10^6) \div (7.34 \times 10^2)$	M1		
		$= 8.133514986 \times 10^{3}$ = 8.13×10 ³ (to 3 s.f.)	A1	2	
2		Sum of interior angles in a pentagon = $(5-2) \times 180^{\circ}$ = 540°	M1		
		Angle FED = angle EDC = angle DCG = $540^{\circ} \div 5$ = 108°	M1		
		$x = 180^{\circ} - 108^{\circ} \text{ (adj angles on a straight line)}$ $= 72^{\circ}$	A1		
		$540^{\circ} - 90^{\circ} - 108^{\circ} - 108^{\circ} - 108^{\circ}$ $= 126^{\circ}$			M1 for equation formed.
		(2y-3) + (y+15) = 126 3y + 12 = 126	M1		
		$3y = 114$ $y = 38^{\circ}$	A1	5	
3	(a)(i)	The total number of students in each class may be different so it is not accurate to compare using the size of the sector or its angle.	B1	1	
	(ii)	Grey eyes in Class $1A \rightarrow 30^{\circ}$ $30^{\circ} \rightarrow 3$ students			
		$1^{\circ} \rightarrow \frac{1}{10}$ student	M1		
		$360^\circ \rightarrow \frac{1}{10} \times 360 = 36$ students	A1	2	
	(iii)	$\frac{45}{360} \times 100\%$	M1		
		= 12.5%	A1	2	

2023 Sec 4NA Math Prelim Paper 2 Marking Scheme

	Qn	Working	Mark Awarded	Sub- total	Remarks
	(b)(i)	Median = $\frac{23+24}{2} = 23.5$	B1	1	
	(b)(ii)	$ \begin{array}{l} \hline \text{Total} \\ = 08 + 09 + 12 + 15 + 15 + 16 + 18 + 18 + 21 + 23 + \\ 24 + 24 + 26 + 27 + 27 + 27 + 28 + 29 + 30 + 30 \\ = 427 \end{array} $			
		= 427 Mean = 427 ÷ 20 = 21.35	M1 A1		
		[Alternative solution] Mean $= (08 + 09 + 12 + 15 + 15 + 16 + 18 + 18 + 21 + 23 + 10)$			
		$24 + 24 + 26 + 27 + 27 + 27 + 28 + 29 + 30 + 30) \div$ = 21.35	[M1] [A1]	2	
	(b)(iii)	P(scored more than 25 marks) = $\frac{8}{20}$	M1		
		$=\frac{2}{5}$	A1	2	
4		Let <i>r</i> be the radius of the water surface. $\pi r^2 = 225\pi$ <i>r</i> = 15 cm	M1 M1		
		By Pythagoras' Theorem, $\sqrt{17^2 - 15^2}$ = 8 cm	M1		
		x = 17 - 8 = 9	A1	4	
		$\sqrt{17^2 - r^2}$ 17 cm (17 - x) 17 cm x cm			
5	(a)	60 000 cm = 60 000 / 100 000 km = 0.6 km	B1	1	

	Qn	Working	Mark Awarded	Sub- total	Remarks
	(b)	$13 \times 0.5 = 7.8 \text{ km}$	B1	1	
	(c)	$ \begin{array}{c} 1 \text{ cm to } 0.6 \text{ km} \\ 1 \text{ cm}^2 \text{ to } 0.6^2 \text{ km}^2 \\ 1 \text{ cm}^2 \text{ to } 0.36 \text{ km}^2 \end{array} $	M1		
		$\frac{4.8}{0.36} = 13\frac{1}{3}$ cm ²	A1	2	
6		(5x-4)(x+2) = 0 5x-4 = 0 or $x+2 = 0$	M1		No marks given for any other
		$x = \frac{4}{5}$ or $x = -2$	A2	3	methods used.
7	(a)	Volume of cone = $\frac{1}{3}\pi r^2 h$			
		$3 = \frac{1}{3}\pi \times 12^2 \times 5$ = 753.9822369 cm ³	M1		
		Volume of cylinder = $\pi r^2 h$ = $\pi \times 12^2 \times 8$ = 3619.114737 cm ³	M1		
		Volume of composite solid = $753.9822369 + 3619.114737$ = 4373.096974 = 4370 cm^3 (to 3 significant figures)	A1	3	
	(b)	By Pythagoras' Theorem, $\sqrt{5^2 + 12^2}$ = 13 cm	B1	1	
	(c)	Curved surface area (cone) = πrl = $\pi \times 12 \times 13$ = 490.088454 cm ²	M1		
		Curved surface area (cylinder) = $2\pi rh$ = $2\pi \times 12 \times 8$ = 603.1857895 cm ²	M1		
		Surface area of circle (base) = πr^2 = $\pi \times 12^2$	M1		

	Qn	Working	Mark Awarded	Sub- total	Remarks
		$= 452.3893421 \text{ cm}^{2}$ $490.088454 + 603.1857895 + 452.3893421$ $= 1545.663586$ $= 1550 \text{ cm}^{2} \text{ (to 3 significant figures)}$	A1	4	
8	(a)	A(-2, 5), B(4, 2) Length of AB $=\sqrt{(-2-4)^2 + (5-2)^2}$ $=\sqrt{45}$ = 6.7082 = 6.71 units (to 3 s.f.)	B1	1	
	(b)	y-intercept = 4 Gradient = $-\frac{1}{2}$ Equation: $y = -\frac{1}{2}x + 4$	B1	1	M1 for both y- intercept and gradient
	(c)	(1, 3.5)	B1	1	
	(d) (i)	(1, -1)	B1	1	
	(ii)	Length of AB = $\sqrt{45}$ = 6.7082 units (from (a)) Length of BC = $\sqrt{(4-7)^2 + (2-(-4))^2}$ = $\sqrt{45}$ = 6.7082	M1		M1 for calculating the length of <i>BC</i> .
		AB = BC Yes, Claire is correct.	A1	2	A1 for stating that Claire is correct.

	Qn	Working	Mark Awarded	Sub- total	Remarks
	(iii)	y A	M1		
9	(a)	= 81 - 54 = 27 units ² -3	A1 B1	2	
	(b)	 Refer to annex for graph. Plotted points: 2 marks for all 7 correctly plotted points. 1 mark for at least 4 correctly plotted points 			
		1 mark for smooth curve	B3	3	
	(c) (i)	2.25 (Acceptable range of 1.75 to 2.75, inclusive) (+/- 1 square)	B1	1	No marks awarded if students have conducted any
	(ii)	-1.55 (Acceptable range of -1.6 to -1.5 inclusive) (+/- 1 square)	B1	1	form of calculations to find the values of <i>x</i> or <i>y</i> .
	(d)	1 mark for tangent drawn. Gradient = 0	M1 A1	2	No marks awarded if no tangent is drawn.
10	(a)	Total distance = 1.5 + 40 + 10 = 51.5 km	B1	1	

	Qn	Working	Mark Awarded	Sub- total	Remarks
	(b)	$135 \text{ min} = \frac{135}{60} \text{ h}$ = 2 h 15 min			
		Silver award	B1	1	
	(c)	$\frac{40}{22}$	M1		
		$=1\frac{9}{11}$ h	A1	2	
	(d)	Shortest possible time if trains intensely for swimming = $\frac{1.5}{5} + \frac{40}{22} + \frac{10}{8}$ = $3\frac{81}{220}$ h	M1		
		= 3 h 22 min (rounded off to nearest minute) Shortest possible time if trains intensely for running = $\frac{1.5}{3} + \frac{40}{22} + \frac{10}{11.9}$ = $3\frac{415}{2618}$ h	M1		
		 = 3 h 10 min (rounded off to nearest minute) Susan should train intensively for running as 3 h 10 min < 3 h 22 min or 	A1 A1		A2 for any reasonable answers.
		3 h 10 min (running) would result in the bronze award while 3 h 22 min (swimming) would result in the consolation prize.	[A1]	4	
11	(a) (i)	Estimated mean = $\frac{2(145) + 11(155) + 18(165) + 6(175) + 3(185)}{2 + 11 + 18 + 6 + 3}$ = 6570			
		$=\frac{40}{40}$ = 164.25 cm	B1	1	
	(ii)	Standard deviation = 9.588404455 = 9.59 cm (to 3 s.f.)	B1	1	
	(iii)	The students in Class B are taller			

	Qn	Working	Mark Awarded	Sub- total	Remarks
		because 169.3 > 164.25 or because the mean height of Class B is more than that of Class A.	B1	1	1 mark given when both answer and explanation are given.
	(iv)	The students in Class B have more consistent heights because 7.8 < 9.59. or because the standard deviation of Class B is less than that of Class A.	B1	1	1 mark given when both answer and explanation are given.
	(b) (i)	Probability tree diagram: <u>First Ball</u> <u>Second Ball</u> $2 \over 9$ Blue $3 \over 10$ Blue $7 \over 9$ Red $3 \over 9$ Blue $7 \over 9$ Red $3 \over 9$ Blue $6 \over 9$ Red	В2	2	B1 for every two correct answers.
	(ii)	P(different colours) = P(blue, red) + P(red, blue) = $\left(\frac{3}{10} \times \frac{7}{9}\right) + \left(\frac{7}{10} \times \frac{3}{9}\right)$ = $\frac{7}{15}$	M1 A1	2	
12	(a)	Cosine Rule $a^{2} = b^{2} + c^{2} - 2bc \cos A$ $259^{2} = 213^{2} + 105^{2} - 2(213)(105) \cos \measuredangle ABC$	M1 M1		M1 for use of Cosine Rule.

Qn	Working	Mark Awarded	Sub- total	Remarks
	$\measuredangle ABC = \cos^{-1} \left(\frac{259^2 - 213^2 - 105^2}{-2(213)(105)} \right)$ = 103.8229497° = 103.8° (to 1 d.p.) (shown)	A1	3	
(b)	Sine Rule $\frac{AC}{\sin \measuredangle ADC} = \frac{CD}{\sin \measuredangle CAD}$ $\frac{259}{\sin 79^{\circ}} = \frac{CD}{\sin 42^{\circ}}$ $CD = \frac{259 \sin 42^{\circ}}{\sin 79^{\circ}}$ $= 176.5485206$ $= 177 \text{ km (to 3 s.f.)}$	M1	2	M1 for use of Sine Rule.
(c)	Let N_1 be the North of A and N_2 be the North of C .		2	
	N_1 B N_2 North A 259 870 C 42° 59° C 79° D			
	$\measuredangle N_1 AD = 135^{\circ}$ $\measuredangle N_1 AC = 135^{\circ} - 42^{\circ} = 93^{\circ}$ $\measuredangle ACN_2 = 180^{\circ} - 93^{\circ}$ (interior angles, $N_1 A // N_2 C$) $= 87^{\circ}$	M1		M1 for finding 93°.
	$\measuredangle ACD = 180^{\circ} - 42^{\circ} - 79^{\circ} (\text{sum of angles in a } \Delta)$ $= 59^{\circ}$	M1		M1 for finding angle <i>ACD</i> .
	Bearing of C from D = $360^{\circ} - 87^{\circ} - 59^{\circ}$ (angles at a point) = 214°	A1	3	