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1 Let n be a positive integer and denote by σpnq the sum of all the positive divisors of n. We say
that a number n is perfect if σpnq “ 2n. For example, the 2 smallest perfect numbers are 6 and 28
since σp6q “ 1` 2` 3` 6 “ 12 and σp28q “ 1` 2` 4` 7` 14` 28 “ 56.

(a) If p and 2p ´ 1 are prime numbers, show that n “ 2p´1 p2p ´ 1q is a perfect number. [3]

(b) Write down 2 perfect numbers other than 6 and 28. [2]

(c) Show that the last digit of all perfect numbers of the form n “ 2p´1 p2p ´ 1q is either 6 or
8. [5]

2 Let Spr, nq denote the number of ways of distributing r distinct objects into n identical boxes so
that no box is empty.

(a) State the value of Spr, r ´ 1q. [1]

(b) Explain why Spr, 2q “ 2r´1 ´ 1. [2]

(c) Prove that Spr, nq “ nSpr ´ 1, nq ` Spr ´ 1, n´ 1q for 1 ď n ď r. [3]

(d) Hence use mathematical induction to show that Spr, r ´ 2q “
ˆ

r
3

˙

` 3
ˆ

r
4

˙

for r ě 3. [5]

(e) Use a combinatorial argument to explain why the result in (d) is true. [3]

3 (a) Let A “ t1, 2, ..., pu and f : A Ñ A. By considering the number of functions f that are
surjective, use the principle of inclusion-exclusion to show that

p! “
p
ÿ

r“0

p´1qr
ˆ

p
r

˙

pp´ rqp. [5]

(b) Let p be a prime number. Hence show that

pp´ 1q! ” p´1qp`1
p´1
ÿ

r“1

rp´1 (modulo pq. [3]

(c) Let p be a prime number and let n be a positive integer. Use mathematical induction to
show that np ” n (modulo p). [4]

(d) Deduce that pp´ 1q! ” ´1 (modulo p) for a prime number p. [2]
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4 You may assume that all integrals in this question converges.

(a) Show that

2
n
ÿ

k“1

cosp2kxq sin x “ sinp2n` 1qx´ sin x. [3]

(b) Deduce that for all positive integers n,

ż π
2

0

sinp2n` 1qx
sin x

dx “
π

2
. [3]

Let f be a continuous function defined on ra, bs such that it is also differentiable and its derivative
f1 is also continuous on ra, bs.

(c) Use integration by parts to show that lim
nÑ8

ż b

a
fpxq sinpnxq dx “ 0. [3]

Let g be defined on r0, π2 s by

gpxq “

$

&

%

1
x
´

1
sin x

if 0 ă x ď
π

2
,

0 if x “ 0.

You may assume that the function g and its derivative g1 is continuous on r0, π2 s.

(d) Hence evaluate
ż 8

0

sin x
x

dx. [3]
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5 Let tx1, x2, ..., xnu and ty1, y2, ..., ynu be two sequences of real numbers. We say that the sequence
tx1, x2, ..., xnu majorizes the ty1, y2, ..., ynu, if the following conditions are fulfilled:

• x1 ě x2 ě ... ě xn;

• y1 ě y2 ě ... ě yn;

• x1 ` x2 ` ¨ ¨ ¨ ` xn “ y1 ` y2 ` ¨ ¨ ¨ ` yn;

• x1 ` x2 ` ¨ ¨ ¨ ` xk ě y1 ` y2 ` ¨ ¨ ¨ ` yk for all 1 ď k ď n´ 1.

For example, t3, 0, 0u majorizes t2, 1, 0u and t2, 1, 0u majorizes t1, 1, 1u.

Let f be a convex function defined over the real numbers.

(a) Use a sketch to explain why if x ď y ă z then

fpzq ´ fpxq
z´ x

ď
fpzq ´ fpyq

z´ y
. [2]

Let ta1, a2, ..., anu and tb1, b2, ..., bnu be two sequences of real numbers such that ta1, a2, ..., anu

majorizes the sequence tb1, b2, ..., bnu, and let ci “
fpbiq ´ fpaiq

bi ´ ai
. Define the sequences tAiu and

tBiu by A0 “ 0, Ak “

k
ÿ

i“1

ai and B0 “ 0, Bk “

k
ÿ

i“1

bi.

(b) (i) Show that
n
ÿ

i“1

pfpaiq ´ fpbiqq “

n´1
ÿ

i“1

pci ´ ci`1qpAi ´ Biq. [3]

(ii) Deduce that

fpa1q ` fpa2q ` ¨ ¨ ¨ ` fpanq ě fpb1q ` fpb2q ` ¨ ¨ ¨ ` fpbnq. [3]

(c) Let a, b, c be positive real numbers. Use the result in (b) to show that

1
a` b

`
1

b` c
`

1
c` a

ď
1

2a
`

1
2b
`

1
2c
. [3]

(d) Let x1, x2, ..., xn P

”

´
π

6
,
π

6

ı

. Show that

cosp2x1´ x2q ` cosp2x2´ x3q ` ¨ ¨ ¨ ` cosp2xn´ x1q ď cos x1` cos x2` ¨ ¨ ¨ ` cos xn. [4]
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