
Q1 Solutions Comments 
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Many students tried to 

show this using MI. This is 

a valid method, but either 

requires binomial 

expansion similar to the 

solution here or uses  
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which requires 2 

predecessors and therefore 

2 base cases. 

 
For k even, 

2

k
 is an integer, hence 
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is an integer since N and 
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r

 
 
 

 are also integers 

 

 



For k odd, 
1

2

k 
 is an integer, hence 
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is an integer since N and 
k

r

 
 
 

 are also integers. 

 

Therefore  
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 is an integer 

for all positive integer k. 

(ii) 
Let  
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, where I is the 

integer from part (i). 

 

Since 
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is positive and 
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 for 2N  ,  

 2

2
1

1k

I N N I     . 

Therefore the integer closest to  2 1
k

N N   is I.  

Some students neglected to 

show that what the closest 

integer is. 

 

Alternatively, students 

should at least mention that 

the closest integer is AT 

MOST  2 1
k

N N   

away. 

 
Notice that for any real number
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Most students were able to 

show this part of the 

inequality. 



Hence for 
5
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4

N   , we have 
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k

N N   differs from I by less than 
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Q2 Solutions Comments 

(i)    
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Therefore, ,q ac bc ab    r abc and 0.a b c    

 

(ii)  
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Some students did not use 

the Maclaurin expansion 

in MF26, and instead went 

through differentiation. 

(iii)        2 3ln 1 ln 1 ln 1 ln 1qx rx ax bx cx         

Coefficient of 

     
 

1 1 1

11 1 1
1

n n nn n n
nn

n

a b c
x T

n n n

  

  
       

where .
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T
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Most students were able to 

use the correct logarithm 

law. They should directly 

look for the general term 

in the expansion (given in 

MF26), instead of 

generalizing from the 

coefficients of 
2 3, , ,...x x x   

(iv)  
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The question states that 

the results in (ii) and (iii) 

should be used. Students 

need to follow this 

instruction strictly.  

 

  



Q3 Solutions Comments 

 Using :u x     0 a 1 b 0x x x    

Using e :xu      e a e b e 0x x xx x   , which implies 

   1 a b 0x x    since e 0.x   

 

Subtracting the two equations, we obtain 

   1 1 b 0x x   . Therefore,  and 

 a .
1

x
x

x
 


 

  

 

(i) 
From 

1 d

d

u
y

u x
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Many students wrongly 

wrote  
2

2 2

d 1 d 1 d
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y u u

x u x u x

 
   

 
 

(without the power 2 in 

the last term). 

(ii) Using (1), the general solution is e .xu Ax B   Therefore,  
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Some students found the 

values of 
d

d

u

x
and/or 

d

d

y

x
  

when 0, 2.x y  They 

are not required in the 

question.  

The approach should be 

to first find the general 

solution to (2), with the 

help of the general 

solution of (1) given in 

the question, and then 

substitute the initial 

condition to find the 

particular solution.  
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Q4 Solutions Comments 

 For convenience, we will draw all diagrams using a net 

diagram with sides Top, Bottom, East, South, West, North: 

 

 T   

E S W N 

 B   
 

Symmetry for this 

question is difficult. 

 

H2 syllabus deals with 

rotational symmetry. 

There is a need to 

consider other axis of 

rotation here. 

(i) 3 colours. 

 

Since a vertex shares 3 faces adjacent to each other, they 

must be all different in colour. 

The only way a cube can be coloured in 3 colours is when 

opposite sides are coloured in the same colour. 

Hence, there are 
3

7 35C   such cubes. 

 

In 3 colours, this is the only possible result up to rotation: 

 

 R   

B Y B Y 

 R   

There are 35 such cubes. 

 

This part was generally 

well done. 

(ii) 
Since 6 colours are used, we have 

6

7 7C   ways to choose 

the colours used. 

 

With an uncoloured cube, there are too many rotational 

symmetry in 3D. Hence, we start by colouring in 1 side. 

If red is available, we will paint red. (o.w. use orange) 

 

Since the cube will end with 1 coloured side and 5 

uncoloured, there is 6 6 1   way to colour it in. 

Rotate the cube to have the coloured side bottom. 

    

    

 R   

This reduces the symmetry to 2D, similar to a square table 

question. 

Since only the top side is unique, there’s 5 colour choice, and 

the remaining 4 sides is a square rotational symmetry. 

 

Alternative method: 
7

6

6

1 4

6!C

C




 

7

6C for choosing the 

colours, 6!  for arranging 

6 colours, 6

1C  to choose 

the bottom side (locking 
it in to reduce 3D to 2D), 

4  for rotational 
symmetry. 



Number of ways 0
4!

5
4

7 21     

(iii) If 4 colours are used, 2 colours must be used twice and 

painted opposite each other. 

There are 
2

7 21C   ways these colour can be chosen and 

painted. 

The remaining 2 colours have 
2

5 10C   choices and can be 

painted in 2! 2  ways. 

 

These are the same: (hence 2! 2 ) 

 R     R   

Y G Y B  Y B Y G 

 R     R   

 

Number of ways 21 2! 2 21010    

 

Most students have 

some idea of tackling 

this question, but may 

have missed out some 

order of rotational 

symmetries or 

considered identical 

cases. 

 If 5 colours are used, 1 colour must be used twice and painted 

opposite each other. 

 

There are 7 ways this colour can be chosen and painted. 

 

The remaining 4 colours have 
4

6 15C   choices and can be 

painted in 
4!

2 3
4
   ways. ( 2  when the cube is flipped 

upside down)  

 

Eg. (similar when top/bottom flipped) 

 

 R     R   

Y G B I  I B G Y 

 R     R   

 

 

Number of ways 3157 3 15    

 

 3-colours: 35 

4-colours: 210 

5-colours: 315 

6-colours: 210 

 

Total no. of ways 35 210 315 210 770      

 



 

Q5 Solutions Comments 

(i)   
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Since 0,b a  we have  
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Note that    
2 2 2 24ab b a b a p q      .  

Hence 

 2 2 2 2

2 2 2

4 3

3 3 .

p p q p q

p q p q

  

 
   

Most students had no 

problem integrating and 

equating the two 

integrals, but some 

faced difficulties when 

trying to replace in 

terms of p and q. 

(ii) Since 1,b a   by part (i), 

       

   

     

2 2 2

22 2

22

3 2

3 1 1 3 1 1

3 6 3 2 1 3 1 1

4 1 3 1 1

3 7 7 0

b b b b

b b b b b b

b b b b

b b b

     

       

    

   

 

 

 

(iii)  

 

 

 

 

 

 

2 2

2
2

2 22
2 2 2

3 1

3 1

1 3 3 4 3

3 1 3 1 3 1

p q q

q
p

q

q q q qq
p q q

q q q

 




  
    

  

  

Since 
2 2 4 0,p q ab   we have 

 

 

2 4 3
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3 1
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4 3
0

1

q

q





. Solving, we obtain 

4
1 .

3
q   

Many students were 

unable to do this part of 

the question.  



Since 1,b q a q     we have 
7

2 .
3

b   

 

 

Q6 Solutions  

(a) For a word of length 2n  , the last letter can be same as the 

penultimate letter or not. 

If the last letter is different, then we have 4 ( 1)A n  . 

If the last 2 letters are the same, then the third last letter 

will be same as the initial last letter. We can remove the last 

2 letters and there would still be an odd number of 

consecutive letters in the word. 

  ( )2 4 ( 1)A n A n A n     

 1 5A     02 25 4A    

   3 4 20 5 85A        4 4 85 20 360A     

   5 4 360 85 1525A     

In recurrence relations 

questions, students are 

strongly encouraged to 

list out the base cases 

explicitly. In this case, 

 1A  and  2A . 

(b) This is equivalent to distributing 7 identical balls into 5 

distinct boxes. (+1 to each of the five, hence 12-5=7) 

The total number of ways such that each letter used once 

and no restrictions is given by 
7 4

330
4

 
  
 

. 

It is easy to see that only 1 letter can appear at least 5 times 

and other letters appearing at least once. 

This is equivalent to distributing 3 identical balls into 5 

distinct boxes. (+5 to one, +1 to other four, hence 12-5-

4=3) 

Hence, there are 5
3 4

175
4

 
 

 
 ways this happens. 

Therefore, there are 330 175 155   ways. 

Some students tried to do 

this by PIE or cases. 

These are possible 

methods, but listing cases 

is the last resort as it is 

difficult to score 

method/working marks. 

(c) Let X  be the number of ways in which only X is chosen. 

Similarly for other letters. No. of ways at least 1 chosen 

7 7 7 7 7

 or  or  or  or 

5 5 5 5 5
1 2 3 4 5

1 2 3 4 5

16800

X Y Z J C

         
             
         



 

 

Probability 7 672
16800  or 0.21504

3125
5   (exact) 

Some students 

misunderstood the 

question or considered the 

total cases wrongly. 

 

Denominator should be 

75  instead of 
7 4

4

 
 
 

. 



7 4

4

 
 
 

 has it that 

   7 6 1 1n X n X Y  , 

but 

   1 7 6 1 7n X n X Y   

(d) 14 ways by listing. 

10,

9 1,

8 2, 8 1 1,

7 3, 7 2 1,

6 4, 6 3 1, 6 2 2,

5 5, 5 4 1, 5 3 2,

4 4 2, 4 3 3

 
 


 
   
 

   
     
 

     
 

    

 

In identical to identical, 

listing is the only method.  

 

List as many cases as 

possible to get working 

marks. 

 

  



Q7 Solutions  

(i) g( ) sinx x  

g'( ) cosx x  

g''( ) sinx x   

 

For 0 x   , sin 0x  . Hence g''( ) sin 0x x   . 

Therefore g is concave downwards on its domain 0 x   . 

 

h( ) lnx x  

1
h'( )x

x
  

2

1
h''( ) 0x

x
    for 0x    

Therefore h is concave downwards on its domain 0x  . 

 

 

Generally, well done. 

(ii)       , and 0 ,  ,        since ,  ,      are interior 

angles of a triangle. 

 

Since the function g( ) sinx x , 0 x    is a concave 

downwards function (from (i)), using Jensen’s inequality,  

 

   
1 1

sin sin sin sin
3 3

     
 

     
 

  

1
sin sin sin 3sin

3
   

 
     

 
   

3 3
sin sin sin

2
       

We note that equality holds if and only if     . 

 

g( ) sinx x  is concave 

for the domain 

0 x    only. 

 

Condition is not 

provided in question 

directly, hence it needs 

to be mentioned or 

shown. 

  



(iii) From (i), h( ) lnx x , 0x   is a concave downwards function. 

Hence for any positive numbers 1 2,  ,  ,  nx x x ,  

1 1

1 1
ln( ) ln

n n

k k

k k

x x
n n 

 
  

 
   

  1 2

1

1 2
1 2

1 1
ln ln
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n

n k

k

nn
n

x x x x
n n

x x x
x x x

n



 
   

 

   
   

 


 

From (i), 
1

h '( ) 0x
x

   for 0x  . Therefore h is a strictly 

increasing function. 

Since h is strictly increasing, 

 

1 2
1 2

1 2
1 2

ln ln nn
n

nn
n

x x x
x x x

n

x x x
x x x

n

   
  

 

  
 

 

We note that equality holds if and only if 1 2 nx x x   . 

Generally well done, 

but due to the 

number of marks 

given, students 

should try to show 

more working where 

possible. (ie. Explain 

that log-function is 

increasing or non-

decreasing) 

(iv) 5 5 5 5 5
5 5 5 5 55

5 5 5

5 5 5

2 2
2 2

5

64
4

5

20 64

x y z
x y z

x y z
xyz

x y z xyz

   


  
 

     

 

and equality holds if and only if 2x y z   .  

 

Therefore the minimum value of 
5 5 5 20x y z xyz    is 64 , 

attained when 2x y z   .   

Many students do not 

know where to start 

despite the hint of 

(iii). Due to the 5th 

power, 5 terms 

should be used and 

so 2 more 5k  should 

be added. 

 

Some students tried 

to use AM-GM, but 

the question wanted 

(iii) to be used. 

 

 

Note: Jensen’s 

inequality is a very 

strong result which 

can show almost 

EVERY inequatlity. 

Hence, it cannot be 

quoted for use in A-

levels. 

 

  



Q8 Solutions  

(i) Sub 0x y  , 

     

   

 

f 0 0 f 0 f 0

f 0 2f 0

f 0 0

  





 

Well done. 

(ii) Sub y x  , 

      

     

   

f f f

f 0 f f

f f

x x x x

x x

x x

    

  

  

 

Well done, but with 

some poor 

presentation. 

(iii) Let  P n  be the proposition that    f fnx n x . 

Considering  1P :    f 1 1 fx x    

Assume that  P k  is true, consider  1P k  . 

     

   

   

f f f

f f

1 f

x kx x kx

x k x

k x

  

 

  

 

Hence       f 1 1 fk x k x   . 

By Mathematical Induction, since  1P  is true and 

   1P k P k  ,  P n  is true for all n  . 

Some students have 

poor MI presentation. 

(iv) 
By part (iii),    

1
f f f f f

x x x
x m m x

m m m m

     
        

     
. 

 

(v) 
When q  , q

n

m
 . 

By parts (iii) and (iv),  f f 1
n n

m m

 
 

 
 for ,m n  . 

Hence,    f f 1x x  for all 
n

m

 . 

By part (ii),  f f f 1
n n n

m m m

   
       
   

. 

This extends    f f 1x x  for all {0}x  . 

By part (i), we have    f 0 0 0 f 1   . 

Sub (1,3)  into  y=f x ,  f 1 3 . 

Hence    f f 1 3x x x   for all x . 

Many students 

neglected the condition 

that ,m n   in (iii) 

and (iv). These only 

shows 
n

m

 . 

 

Most did not show 

0x   and x   

cases. 

 

  



Q9 Solutions Comments 

(i) 
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Since 0 1,t   1 1 1 0,n n nt t t t      therefore, 
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1
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.  Hence 12 0,n nI I   and 

1

1
.

2
n nI I    

Alternative solution 

   

1
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11 1

n n

n n n

t t t
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Let  
1

f 1 .
1 1

t
t

t t
  

 
  For 0 1,  t    

 
2

1
f ' 0.

1
t

t
 


 

Therefore, f is strictly increasing for 0 1t  and 

   
1

f f 1
1 2

t
t

t
  


 for 0 1.t  Hence,  

   

1 1
1 1

1
0 0

1 1
 d  d .

1 2 21 1

n n

n nn n

t t t
I t t I

t t t

 

    
  

   

Many students 

skipped this 

question (possibly 

due to lack of 

time). Instead of 

skipping the 

question 

completely, 

students should 

attempt the easier 

parts like (ii) [use 

integration by 

parts], and (iii) [use 

MOD]. 

(ii) Using integration by parts, 
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From (i), 
1
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2 2
n n nn

I I I
n

    . Hence 

1
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1
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n n
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I
n

I
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(iii) 
From 

1

1
,

2
n nn

I I
n

    we have 
1

1

2
n nn

I I
n

  . Therefore,  
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Note that 
 

1 1
1 1 1

1 1 00 0

1
 d  d ln 1 ln 2.

11

t
I t t t
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Therefore, 1

1

1
ln 2

2

n

nr
r

I
r





   and we obtain 

1

1

1
ln 2 .

2

n

nr
r

I
r





   

(iv) Since 1 0nI   ,  

from (iii), we have 
1

1
ln 2 .

2

n

r
r r

   

On the other hand,
 

1

1 1

1 1 1
ln 2

2 2 1 2

n n

nr r n
r r

I
r r n



 

   


  from 

(ii) and (iii).  

Together, 
 1 1

1 1 1
ln 2

2 2 1 2

n n

r r n
r rr r n 

  


   

Choosing 4,n   we have 

 
0.68854 ln 2 0.69479

0.69 ln 2 0.69

 

  
 

(corrected to 2 d.p. within the inequalities). 

Hence ln 2 0.69.    

This part is poorly 

done. The essence 

is to obtain a lower 

bound and an upper 

bound for ln2 using 

(ii) and (iii) and 

then choose a 

suitable value for n 

to approximate ln2.  

 

  



Q10 Solutions Comments 

(i) 15 3 5    

1 1
f (15) 15 1 1 8

3 5

  
     

  
  

 
2 2180 2 3 5    

1 1 1
f (180) 180 1 1 1 48

2 3 5

   
       

   
 

The whole question is 

generally well 

attempted.  

(ii) For any positive integer N, let 1 2

1 2
lkk k

lN p p p  be its unique 

prime factorisation, ik  .  

 

Thus  

 

     

1 2

1 2

1 2

1 2
1 2

1 2

11 1

1 2 1 2

1 1 1
f( ) 1 1 1

11 1

1 1 1

l

l

l

kk k l
l

l

kk k

l l

N N
p p p

pp p
p p p

p p p

p p p p p p
 

   
      

    

     
    

    

   

 

where 1ik   is an integer greater than or equals to zero, and 

 1ip   is an integer. Hence f ( )N  is an integer. 

 

(iii)(a)    

 

f 15 f 12

1 1
8 12 1 1

2 3

8 4

32

48

f 180

  
     

  

 







  

Hence statement is not true. 

 

(iii)(b) (IF) Let a and b be coprime to each other. 

 

Let 1 2

1 2
maa a

ma p p p  and 1 2

1 2
nbb b

nb q q q  be the prime 

factorizations of a and b respectively. Since a and b are coprime to 

each other, i jp q  for all 1 i m  , 1 j n  . We also note that 

1 2 1 2

1 2 1 2
m na ba a b b

m np p p q q q  is a prime factorization of ab. Since 

prime factorizations are unique, it must be the only one. Hence 

1 1 2, , , , ,m np p q q q  are the prime factors of ab. Thus, 

 

This is the part which 

most students lost 

marks because they 

only showed one 

direction.  

 

 

 

 

 

 

 



1 2 1 2

1 2 1 2

1 1 1 1 1 1
f ( ) 1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

f ( )f ( )

m n

m n

ab ab
p p p q q q

a b
p p p q q q

a b

        
              

        

        
              

        



  

 

(ONLY IF) Let f ( ) f ( )f ( )ab a b . 

 

Suppose a and b are not coprime to each other. Thus, let 1r , 2r , 

, cr  be all the prime factors common to both a and b.  

 

Hence we will have the prime factorization of a and b as  

 

1 21 2

1 2 1 2
m m m m ca a a aa a

m ca p p p r r r   , 

1 21 2

1 2 1 2
n n n n cb b b bb b

n cb q q q r r r   , 

where i jp q  for all 1 i m  , 1 j n  . By recycling the proof in 

the (IF) part, we know that 1p , 2p , , mp , 1q , 2q , , nq , 

1,  ,  cr r  are all the prime factors of ab. So 

1 2 1 2

1 2

1 2 1 2

f ( ) f ( )f ( )

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1
    1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

   1

m n

c

m c

ab a b

ab
p p p q q q

r r r

a
p p p r r r

b



        
               

        

   
     

    

        
               

        

1 2 1 2

1 2

1 1 1 1 1 1
1 1 1 1 1

1 1 1
1 1 1 1

n c

c

q q q r r r

r r r

        
             

        

   
       

    

 

a contradiction, since 
1

1
ir

 
 

 
 is a proper fraction which means 

1 2

1 1 1
1 1 1 1

cr r r

   
      

    
. 

Hence a and b must be coprime to each other. 

          

 

 

 

 

 

 

 

Some of the students 

who attempted to 

prove this direction 

were not clear in their 

explanations.  



(iv) 
 11

f ( ) 1 1k k kp p p p
p

 
    

 
 

 

Note that 1 is coprime to any positive integer. 

Since p is prime, the integers less than or equal to 
kp  that are not 

coprime to 
kp  are of the form mp , where m is a positive integer 

such that 11 km p   . Hence there are 
1kp 
 integers that are not 

coprime to 
kp .  

 

Hence the number of positive integers that are less than or equal to 
kp and are coprime to 

kp  1 1( 1) f ( )k k k kp p p p p            

(shown)  

 

Some students were 

unable to explain why 

number of positive 

integers that are less 

than or equal to 
kp

and are coprime to 
kp  is 

1k kp p  .       

 


