Q1	Solutions	Comments
(i)	$\begin{aligned} \frac{1}{\left(N+\sqrt{N^{2}-1}\right)^{k}} &= \frac{\left(N-\sqrt{N^{2}-1}\right)^{k}}{\left(N+\sqrt{N^{2}-1}\right)^{k}\left(N-\sqrt{N^{2}-1}\right)^{k}} \\ &= \frac{\left(N-\sqrt{N^{2}-1}\right)^{k}}{\left(N^{2}-\left(N^{2}-1\right)\right)^{k}} \\ &= \frac{\left(N-\sqrt{N^{2}-1}\right)^{k}}{\left(N+\sqrt{N^{2}-1}\right)^{k}} \\ &= \left(N-\sqrt{N^{2}-1}\right)^{k} \\ &= \left(N+\sqrt{N^{2}-1}\right)^{k} + \frac{1}{\left(N+\sqrt{N^{2}-1}\right)^{k}} \\ &= \left(N+\sqrt{N^{2}-1}\right)^{k} + \left(N-\sqrt{N^{2}-1}\right)^{k} \\ &= \sum_{i=0}^{k} \binom{k}{i} N^{k-i} \left(N^{2}-1\right)^{\frac{i}{2}} + \sum_{i=0}^{k} \binom{k}{i} N^{k-i} \left(-\left(N^{2}-1\right)^{\frac{1}{2}}\right)^{\frac{i}{2}} \\ &= \sum_{i=0}^{k} \binom{k}{i} \left(1+\left(-1\right)^{i}\right) N^{k-i} \left(N^{2}-1\right)^{\frac{i}{2}} + \sum_{i=0}^{k} \binom{k}{i} N^{k-i} \left(-1\right)^{i} \left(N^{2}-1\right)^{\frac{1}{2}} \\ &= \sum_{i=0}^{k} \binom{k}{i} \left(1+\left(-1\right)^{i}\right) N^{k-i} \left(N^{2}-1\right)^{\frac{i}{2}} \\ &= \sum_{i=0}^{k} \binom{k}{i} \left(N^{2}-1\right)^{\frac{k}{2}}, \qquad \text{if k is even} \\ &= \binom{k}{2\binom{k}{0} N^{k}+2\binom{k}{2} N^{k-2} \left(N^{2}-1\right)+2\binom{k}{4} N^{k-4} \left(N^{2}-1\right)^{2} + \dots \\ &+ 2\binom{k}{k-1} N \left(N^{2}-1\right)^{\frac{k-1}{2}}, \qquad \text{if k is odd} \end{aligned}$	Many students tried to show this using MI. This is a valid method, but either requires binomial expansion similar to the solution here or uses $[x^k + x^{-k}](x^1 + x^{-1})$ $= x^{k+1} + x^{k-1} + x^{-(k+1)} + x^{-(k+1)}$ which requires 2 predecessors and therefore 2 base cases.
	For k even, $\frac{k}{2}$ is an integer, hence	
	$2\binom{k}{0}N^{k} + 2\binom{k}{2}N^{k-2}(N^{2}-1) + 2\binom{k}{4}N^{k-4}(N^{2}-1)^{2} + \dots$	
	$+2\binom{k}{k}\left(N^2-1\right)^{\frac{k}{2}}$	
	is an integer since N and $\binom{k}{r}$ are also integers	

	For k odd, $\frac{k-1}{2}$ is an integer, hence	
	$2\binom{k}{0}N^{k} + 2\binom{k}{2}N^{k-2}(N^{2}-1) + 2\binom{k}{4}N^{k-4}(N^{2}-1)^{2} + \dots$	
	$+2\binom{k}{k-1}N\left(N^2-1\right)^{\frac{k-1}{2}}$	
	is an integer since N and $\binom{k}{r}$ are also integers.	
	Therefore $\left(N + \sqrt{N^2 - 1}\right)^k + \frac{1}{\left(N + \sqrt{N^2 - 1}\right)^k}$ is an integer	
(ii)	for all positive integer k. Let $I = \left(N + \sqrt{N^2 - 1}\right)^k + \frac{1}{\left(N + \sqrt{N^2 - 1}\right)^k}$, where I is the	Some students neglected to show that what the closest integer is.
	integer from part (i).	Alternatively, students
	Since $\frac{1}{\left(N+\sqrt{N^2-1}\right)^k}$ is positive and	should at least mention that the closest integer is AT MOST $\left(N + \sqrt{N^2 - 1}\right)^k$
	$\frac{1}{\left(N+\sqrt{N^2-1}\right)^k} < \frac{1}{N^k} \le \frac{1}{2^k} \le \frac{1}{2} \text{ for } N \ge 2,$	away.
	$I > \left(N + \sqrt{N^2 - 1}\right)^k > I - \frac{1}{2}.$	
	Therefore the integer closest to $\left(N + \sqrt{N^2 - 1}\right)^k$ is <i>I</i> .	
	Notice that for any real number $x > \frac{1}{2}$, we have	Most students were able to show this part of the
	$2x - \frac{1}{2} < x + \sqrt{x^2 - 1}$	inequality.
	$\Leftrightarrow x - \frac{1}{2} < \sqrt{x^2 - 1}$	
	$\Leftrightarrow \left(x - \frac{1}{2}\right)^2 < x^2 - 1,$	
	$\Leftrightarrow x^2 - x + \frac{1}{4} < x^2 - 1$	
	$\Leftrightarrow x > \frac{5}{4}$	

Hence for
$$N \ge 2 > \frac{5}{4}$$
, we have

$$2N - \frac{1}{2} < N + \sqrt{N^2 - 1}$$

$$\Rightarrow \frac{1}{N + \sqrt{N^2 - 1}} < \frac{1}{2N - \frac{1}{2}}$$

$$\Rightarrow \frac{1}{\left(N + \sqrt{N^2 - 1}\right)^k} < \left(2N - \frac{1}{2}\right)^{-k}$$
Hence $\left(N + \sqrt{N^2 - 1}\right)^k$ differs from *I* by less than
 $\left(2N - \frac{1}{2}\right)^{-k}$.

Q2	Solutions	Comments
(i)	(1+ax)(1+bx)(1+cx)	
	$= 1 + (a + b + c)x + (ac + bc + ab)x^{2} + abcx^{3}$	
	$=1+(ac+bc+ab)x^2+abcx^3$	
	Therefore, $q = ac + bc + ab$, $r = abc$ and $a + b + c = 0$.	
(ii)	$\ln(1+qx^{2}+rx^{3}) = (qx^{2}+rx^{3}) - \frac{(qx^{2}+rx^{3})^{2}}{2} + \dots$	Some students did not use the Maclaurin expansion in MF26, and instead went through differentiation.
	$= qx^{2} + rx^{3} - \frac{q^{2}}{2}x^{4} - qrx^{5} + \dots$	
(iii)	$\ln(1+qx^{2}+rx^{3}) = \ln(1+ax) + \ln(1+bx) + \ln(1+cx)$ Coefficient of	Most students were able to use the correct logarithm law. They should directly
	$x^{n} = \frac{\left(-1\right)^{n+1} a^{n}}{n} + \frac{\left(-1\right)^{n+1} b^{n}}{n} + \frac{\left(-1\right)^{n+1} c^{n}}{n} = \left(-1\right)^{n+1} T_{n}$ where $T_{n} = \frac{a^{n} + b^{n} + c^{n}}{n}$.	look for the general term in the expansion (given in MF26), instead of generalizing from the coefficients of $x, x^2, x^3,$
(iv)	$(-1)^{2+1} T_2 = q \Rightarrow T_2 = -q$ $(-1)^{3+1} T_3 = r \Rightarrow T_3 = r$ $(-1)^{5+1} T_5 = -qr \Rightarrow T_5 = -qr$ Hence $\frac{(a^2 + b^2 + c^2)(a^3 + b^3 + c^3)}{6}$ $= \frac{(a^2 + b^2 + c^2)(a^3 + b^3 + c^3)}{2}$ $= T_2 T_3$ $= -qr$ $= T_5$ $= \frac{a^5 + b^5 + c^5}{5}$	The question states that the results in (ii) and (iii) should be used. Students need to follow this instruction strictly.

Q3	Solutions	Comments
	Using $u = x: 0 + a(x)(1) + b(x)x = 0$	
	Using $u = e^x : e^x + a(x)(e^x) + b(x)e^x = 0$, which implies	
	$1+a(x)+b(x)=0$ since $e^x > 0$.	
	Subtracting the two equations, we obtain	
	$1+(1-x)b(x)=0$. Therefore, $b(x)=\frac{1}{x-1}$ and	
	$a(x) = -\frac{x}{x-1}.$	
(i)	From $y = \frac{1}{u} \frac{du}{dx}$, we have	Many students wrongly wrote
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{u} \frac{\mathrm{d}^2 u}{\mathrm{d}x^2} - \frac{1}{u^2} \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{u} \frac{\mathrm{d}^2 u}{\mathrm{d}x^2} - \frac{1}{u^2} \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)$
	$\Leftrightarrow \frac{1}{u} \frac{\mathrm{d}^2 u}{\mathrm{d}x^2} - \frac{1}{u^2} \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2 + \frac{1}{u^2} \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2 + \frac{x}{1-x} \left(\frac{1}{u} \frac{\mathrm{d}u}{\mathrm{d}x}\right) = \frac{1}{1-x}$	(without the power 2 in the last term).
	$\Leftrightarrow \frac{1}{u}\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + \frac{x}{1-x}\left(\frac{1}{u}\frac{\mathrm{d}u}{\mathrm{d}x}\right) = \frac{1}{1-x}$	
	$\Leftrightarrow \frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + \frac{x}{1-x}\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{1}{x-1}u = 0$	
(ii)	Using (1), the general solution is $u = Ax + Be^x$. Therefore,	Some students found the
	$y = \frac{1}{u}\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{Ax + Be^x}\left(A + Be^x\right).$	values of $\frac{du}{dx}$ and/or $\frac{dy}{dx}$
	When $x = 0$, $y = 2$,	when $x = 0$, $y = 2$. They
	$2 = \frac{A+B}{A+B}$	are not required in the question
		The approach should be
	2B = A + B	to first find the general
	B=A.	solution to (2), with the
	Hence, $y = \frac{1}{Ax + Ae^x} (A + Ae^x) = \frac{1 + e^x}{x + e^x}.$	solution of (1) given in
	Ax + Ae $x + e$	the question, and then
		substitute the initial
		condition to find the

Q4	Solutions	Comments
	For convenience, we will draw all diagrams using a net diagram with sides Top, Bottom, East, South, West, North:	Symmetry for this question is difficult.
	T E S W N B	H2 syllabus deals with rotational symmetry. There is a need to consider other axis of rotation here.
(i)	3 colours. Since a vertex shares 3 faces adjacent to each other, they must be all different in colour. The only way a cube can be coloured in 3 colours is when opposite sides are coloured in the same colour. Hence, there are ${}^7C_3 = 35$ such cubes.	This part was generally well done.
	In 3 colours, this is the only possible result up to rotation:	
(ii)	Since 6 colours are used, we have ${}^{7}C_{6} = 7$ ways to choose the colours used. With an uncoloured cube, there are too many rotational symmetry in 3D. Hence, we start by colouring in 1 side. If red is available, we will paint red. (o.w. use orange) Since the cube will end with 1 coloured side and 5 uncoloured, there is $6 \div 6 = 1$ way to colour it in. Rotate the cube to have the coloured side bottom. R This reduces the symmetry to 2D, similar to a square table question. Since only the top side is unique, there's 5 colour choice, and	Alternative method: $\frac{{}^{7}C_{6} \times 6!}{{}^{6}C_{1} \times 4}$ ${}^{7}C_{6}$ for choosing the colours, 6! for arranging 6 colours, ${}^{6}C_{1}$ to choose the bottom side (locking it in to reduce 3D to 2D), $\div 4$ for rotational symmetry.

	Number of ways = $7 \times 5 \times \frac{4!}{4} = 210$	
(iii)	If 4 colours are used, 2 colours must be used twice and painted opposite each other. There are ${}^{7}C_{2} = 21$ ways these colour can be chosen and painted. The remaining 2 colours have ${}^{5}C_{2} = 10$ choices and can be painted in 2!÷2 ways.	Most students have some idea of tackling this question, but may have missed out some order of rotational symmetries or considered identical cases.
	These are the same: (hence $2! \div 2$) R $Y = G = Y$ R R R R R Number of ways = $21 \times 10 \times 2! \div 2 = 210$	
	If 5 colours are used, 1 colour must be used twice and painted	
	There are 7 ways this colour can be chosen and painted.	
	The remaining 4 colours have ${}^{6}C_{4} = 15$ choices and can be	
	painted in $\frac{4!}{4} \div 2 = 3$ ways. ($\div 2$ when the cube is flipped upside down)	
	Eg. (similar when top/bottom flipped)	
	R R Y G B I I B G Y R R R R	
	Number of ways = $7 \times 15 \times 3 = 315$	
	3-colours: 35 4-colours: 210 5-colours: 315 6-colours: 210	
	Total no. of ways $= 35 + 210 + 315 + 210 = 770$	

Q5	Solutions	Comments
(i)	$\int_{a}^{b} x^{2} dx = \frac{b^{3} - a^{3}}{3} = \frac{(b - a)(b^{2} + ab + a^{2})}{3}$	Most students had no problem integrating and equating the two
	$\left(\int_{a}^{b} x dx\right)^{2} = \left(\frac{b^{2} - a^{2}}{2}\right) = \frac{(b+a)(b-a)}{4}$	integrals, but some faced difficulties when trying to replace in
	$\frac{(b-a)(b^{2}+ab+a^{2})}{(b-a)^{2}} = \frac{(b+a)^{2}(b-a)^{2}}{(b-a)^{2}}$	terms of p and q .
	$3 \qquad 4$ Since $b-a \neq 0$, we have	
	$4(b^{2}+ab+a^{2})=3(b+a)^{2}(b-a)$	
	$4\left[\left(b+a\right)^2-ab\right]=3\left(b+a\right)^2\left(b-a\right)$	
	$4(b+a)^{2}-4ab=3(b+a)^{2}(b-a)$	
	$4p^2 - 4ab = 3p^2q$	
	Note that $4ab = (b+a)^2 - (b-a)^2 = p^2 - q^2$.	
	Hence	
	$4p^2 - (p^2 - q^2) = 3p^2q$	
	$3p^2 + q^2 = 3p^2q.$	
(ii)	Since $b > a = 1$, by part (i),	
	$3(b+1)^{2} + (b-1)^{2} = 3(b+1)^{2}(b-1)$	
	$3b^{2}+6b+3+b^{2}-2b+1=3(b+1)^{2}(b-1)$	
	$4(b^{2}+b+1) = 3(b+1)^{2}(b-1)$	
	$3b^3 - b^2 - 7b - 7 = 0$	
(iii)	$3p^2(q-1) = q^2$	Many students were
	$p^2 = \frac{q^2}{3(q-1)}$	the question.
	$p^{2} - q^{2} = \frac{q^{2}}{3(q-1)} - q^{2} = \frac{q^{2}(1-3q+3)}{3(q-1)} = \frac{q^{2}(4-3q)}{3(q-1)}$	
	Since $p^2 - q^2 = 4ab \ge 0$, we have $\frac{q^2(4-3q)}{3(q-1)} \ge 0$, implying	
	$\frac{4-3q}{q-1} \ge 0$. Solving, we obtain $1 < q \le \frac{4}{3}$.	

Since $b = q + a = q + 1$, we have $2 < b \le \frac{7}{3}$.	

Q6	Solutions	
(a)	For a word of length $n+2$, the last letter can be same as the penultimate letter or not. If the last letter is different, then we have $4 \times A(n+1)$. If the last 2 letters are the same, then the third last letter will be same as the initial last letter. We can remove the last 2 letters and there would still be an odd number of consecutive letters in the word. $A(n+2) = 4 \times A(n+1) + A(n)$ A(1) = 5 $A(2) = 5 \times 4 = 20$ A(3) = 4(20) + 5 = 85 A(4) = 4(85) + 20 = 360 A(5) = 4(360) + 85 = 1525	In recurrence relations questions, students are strongly encouraged to list out the base cases explicitly. In this case, A(1) and $A(2)$.
(b)	This is equivalent to distributing 7 identical balls into 5	Some students tried to do
	This is equivalent to distributing 7 identical balls into 5 distinct boxes. (+1 to each of the five, hence 12-5=7) The total number of ways such that each letter used once and no restrictions is given by $= \begin{pmatrix} 7+4\\ 4 \end{pmatrix} = 330$. It is easy to see that only 1 letter can appear at least 5 times and other letters appearing at least once. This is equivalent to distributing 3 identical balls into 5 distinct boxes. (+5 to one, +1 to other four, hence 12-5- 4=3) Hence, there are $= \begin{pmatrix} 3+4\\ 4 \end{pmatrix} \times 5 = 175$ ways this happens. Therefore, there are $330-175=155$ ways.	this by PIE or cases. These are possible methods, but listing cases is the last resort as it is difficult to score method/working marks.
(c)	Let $ X $ be the number of ways in which only X is chosen.	Some students
	Similarly for other letters. No. of ways at least 1 chosen $= X \text{ or } Y \text{ or } Z \text{ or } J \text{ or } C $ $= {5 \choose 1} 1^7 - {5 \choose 2} 2^7 + {5 \choose 3} 3^7 - {5 \choose 4} 4^7 + {5 \choose 5} 5^7$ $= 16800$	misunderstood the question or considered the total cases wrongly. Denominator should be 5^7 instead of $\begin{pmatrix} 7+4\\ 4 \end{pmatrix}$.
	Probability = $16800 \div 5^7 = \frac{672}{3125}$ or 0.21504 (exact)	

			$\binom{7+4}{4}$ has it that n(7X) = n(6X1Y) = 1, but $1 = n(7X) \neq n(6X1Y) = 7$
(d)	14 ways by listing.		In identical to identical,
	(10,)	listing is the only method.
	9+1,		List as many assas as
	8+2, 8+1+1,		possible to get working
	7+3, 7+2+1,	}	marks.
	6+4, 6+3+1,	6 + 2 + 2,	
	5+5, 5+4+1,	5+3+2,	
	4+4+2,	4 + 3 + 3	

Q7	Solutions	
(i)	$g(x) = \sin x$	
	$g'(x) = \cos x$	Generally, well done.
	$g''(x) = -\sin x$	
	For $0 < x < \pi$, $\sin x > 0$. Hence $g''(x) = -\sin x < 0$.	
	Therefore g is concave downwards on its domain $0 < x < \pi$.	
	$h(x) = \ln x$	
	$h'(x) = \frac{1}{x}$	
	x	
	$h''(x) = -\frac{1}{x^2} < 0$ for $x > 0$	
	Therefore h is concave downwards on its domain $x > 0$.	
(ii)	$\alpha + \beta + \gamma = \pi$, and $0 < \alpha$, β , $\gamma < \pi$ since α , β , γ are interior	
	angles of a triangle.	$g(x) = \sin x$ is concave
		for the domain
	Since the function $g(x) = \sin x$, $0 < x < \pi$ is a concave	$0 < x < \pi$ only.
	downwards function (from (i)), using Jensen's inequality,	
		Condition is not
	$\frac{1}{3}(\sin\alpha + \sin\beta + \sin\gamma) \le \sin\left(\frac{1}{3}(\alpha + \beta + \gamma)\right)$	directly, hence it needs
	$\Rightarrow \sin \alpha + \sin \beta + \sin \gamma \le 3\sin\left(\frac{1}{3}\pi\right)$	shown.
	$\Rightarrow \sin \alpha + \sin \beta + \sin \gamma \le \frac{3\sqrt{3}}{2}$	
	We note that equality holds if and only if $\alpha = \beta = \gamma$.	

(iii)	From (i), $h(x) = \ln x$, $x > 0$ is a concave downwards function.	Generally well done,
	Hence for any positive numbers x_1, x_2, \dots, x_n ,	but due to the
	$1 - \frac{n}{2}$ $(1 - \frac{n}{2})$	number of marks
	$\frac{1}{n}\sum \ln(x_k) \leq \ln\left \frac{1}{n}\sum x_k\right $	given, students
	$n \frac{1}{k=1}$ $(n \frac{1}{k=1})$	should try to show
	$\rightarrow \frac{1}{n} (\ln(x + x - x)) \leq \ln\left(\frac{1}{n}\sum_{r=1}^{n} x\right)$	nore working where possible (ie Explain
	$\xrightarrow{n} \binom{m(x_1, x_2, \dots, x_n)}{n} = \binom{n}{k_{k-1}} \binom{n}{k_{k-1}}$	that log-function is
	$(x_1 + x_2 + + x_n)$	increasing or non-
	$\Rightarrow \ln \sqrt[n]{x_1 x_2 \dots x_n} \le \ln \left(\frac{1}{n} \right)$	decreasing)
	1	
	From (i), $h'(x) = \frac{1}{x} > 0$ for $x > 0$. Therefore h is a strictly	
	increasing function	
	Since h is strictly increasing	
	$\sum_{r=1}^{n} (r + r + r)$	
	$\ln \sqrt[n]{x_1 x_2 \dots x_n} \le \ln \left[\frac{x_1 + x_2 + \dots + x_n}{x_n} \right]$	
	$\Rightarrow \sqrt[n]{x_1 x_2 \dots x_n} \le \frac{x_1 + x_2 + \dots + x_n}{x_1 + x_2 + \dots + x_n}$	
	n	
	We note that equality holds if and only if $x_1 = x_2 = = x_n$.	
(iv)	$\frac{x^5 + y^5 + z^5 + 2^5 + 2^5}{2^5 2^5 x^5 y^5 z^5} > 5\sqrt{2^5 2^5 x^5 y^5 z^5}$	Many students do not
	$5 = \sqrt{2 2 x y z}$	know where to start
	$x^5 + y^5 + z^5 + 64$	despite the hint of
	$\Leftrightarrow \frac{1}{5} \ge 4xyz$	(III). Due to the 5 ^r
	$\Leftrightarrow x^5 + y^5 + z^5 - 20xyz \ge -64$	should be used and
	and equality holds if and only if $x = y = z = 2$	so 2 more k^5 should
		be added.
	Therefore the minimum value of $r^5 + v^5 + z^5 - 20rvz$ is -64	
	indefende the minimum value of $x + y + z = 20xyz$ is $0+$,	Some students tried
	attained when $x = y = z = 2$.	to use AM-GM, but
		the question wanted
		(iii) to be used.
		Noto: Jongon's
		inequality is a very
		strong result which
		can show almost
		EVERY inequality.
		Hence, it cannot be
		quoted for use in A-
		levels.

Q8	Solutions	
(i)	Sub $x = y = 0$,	Well done.
	f(0+0) = f(0) + f(0)	
	f(0) = 2f(0)	
	f(0) = 0	
(ii)	Sub $y = -x$,	Well done, but with
	f(x+(-x)) = f(x) + f(-x)	some poor
	f(0) = f(x) + f(-x)	presentation.
	f(-x) = -f(x)	
(iii)	Let $P(n)$ be the proposition that $f(nx) = nf(x)$.	Some students have
	Considering $P(1)$: $f(1 \times x) = 1 \times f(x)$	poor MI presentation.
	Assume that $P(k)$ is true, consider $P(k+1)$.	
	f(x+kx) = f(x) + f(kx)	
	= f(x) + kf(x)	
	$=(k+1)\times f(x)$	
	Hence $f([k+1]x) = [k+1]f(x)$.	
	By Mathematical Induction, since $P(1)$ is true and	
	$P(k) \Rightarrow P(k+1), P(n)$ is true for all $n \in \mathbb{Z}^+$.	
(iv)	By part (iii), $f(x) = f\left(m\frac{x}{m}\right) = mf\left(\frac{x}{m}\right) \Leftrightarrow \frac{1}{m}f(x) = f\left(\frac{x}{m}\right).$	
(v)	When $q \in \mathbb{Q}^+$, $q = \frac{n}{m}$.	Many students neglected the condition
	By parts (iii) and (iv), $f\left(\frac{n}{m}\right) = \frac{n}{m}f(1)$ for $m, n \in \mathbb{Z}^+$.	that $m, n \in \mathbb{Z}^+$ in (iii) and (iv). These only
	Hence, $f(x) = xf(1)$ for all $\frac{n}{m} \in \mathbb{Q}^+$.	shows $\frac{n}{m} \in \mathbb{Q}^+$.
	By part (ii), $f\left(-\frac{n}{m}\right) = -f\left(\frac{n}{m}\right) = -\frac{n}{m}f(1)$.	Most did not show
	This extends $f(x) = xf(1)$ for all $x \in \mathbb{Q} - \{0\}$.	$x = 0$ and $x \in \mathbb{Q}$
	By part (i), we have $f(0) = 0 = 0 \cdot f(1)$.	<i>Lasts.</i>
	Sub (1,3) into $y=f(x)$, $f(1)=3$.	
	Hence $f(x) = xf(1) = 3x$ for all $x \in \mathbb{Q}$.	

Q9	Solutions	Comments
(i)	$2L = L \int_{1}^{1} 2t^{n} t^{n-1} dt$	Many students
	$2I_{n+1} - I_n = \int_0^{\infty} \frac{(t+1)^{n+1}}{(t+1)^{n+1}} - \frac{(t+1)^n}{(t+1)^n} dt$	skipped this
	(l+1) $(l+1)$	question (possibly
	$-\int_{-1}^{1} 2t^{n} - t^{n-1}(t+1) dt - \int_{-1}^{1} t^{n} - t^{n-1} dt$	due to lack of
	$-\int_{0}^{1} \frac{(t+1)^{n+1}}{(t+1)^{n+1}} dt - \int_{0}^{1} \frac{(t+1)^{n+1}}{(t+1)^{n+1}} dt$	time). Instead of
	(1 + 1) = (1 +	skipping the
	Since $0 \le l \le 1$, $l - l = l (l-1) \le 0$, therefore,	question
	$f(t) = t^n - t^{n-1} \leq 0$ Hence $2L = L \leq 0$ and $L \leq 1$	completely,
	$I(t) = \frac{1}{(t+1)^{n+1}} \le 0$. Hence $2I_{n+1} - I_n \le 0$, and $I_{n+1} \le \frac{1}{2}I_n$.	students should
	() to mating a lution	attempt the easier
		integration by
	$I_{-1} = \int_{-1}^{1} \frac{t^n}{t^n} dt = \int_{-1}^{1} \frac{t}{t^n} \cdot \frac{t^{n-1}}{t^n} dt$	nitegration by
	$J_0^{n+1} = J_0 (t+1)^{n+1} = J_0^n t+1 (t+1)^n$	MOD
	$t = 1$ $\tau = 0$ $\tau = 1$	
	Let $f(t) = \frac{1}{t+1} = 1 - \frac{1}{t+1}$. For $0 \le t \le 1$, $f'(t) = \frac{1}{(t+1)^2} > 0$.	
	Therefore, f is strictly increasing for $0 \le t \le 1$ and	
	$\frac{t}{t+1} = f(t) \le f(1) = \frac{1}{2} \text{ for } 0 \le t \le 1. \text{ Hence,}$	
	$I_{n+1} = \int_0^1 \frac{t}{t+1} \cdot \frac{t^{n-1}}{\left(t+1\right)^n} \mathrm{d}t \le \frac{1}{2} \int_0^1 \frac{t^{n-1}}{\left(t+1\right)^n} \mathrm{d}t = \frac{1}{2} I_n.$	
(ii)	Using integration by parts,	
	$I_{n+1} = \int_0^1 \frac{t^n}{(t+1)^{n+1}} \mathrm{d}t = \int_0^1 t^n (t+1)^{-n-1} \mathrm{d}t$	
	$= \left[t^{n} \frac{(t+1)^{-n}}{-n}\right]_{0}^{1} - \int_{0}^{1} nt^{n-1} \frac{(t+1)^{-n}}{-n} dt$	
	$= -\frac{1}{n2^{n}} + \int_{0}^{1} \frac{t^{n-1}}{(t+1)^{n}} dt = -\frac{1}{n2^{n}} + I_{n}$	
	From (i), $-\frac{1}{n2^n} + I_n = I_{n+1} \le \frac{1}{2}I_n$. Hence	
	$\frac{1}{2}I_n \le \frac{1}{n2^n}$	
	$I_n \le \frac{1}{n2^{n-1}}$	
(iii)	From $I_{n+1} = -\frac{1}{n2^n} + I_n$, we have $\frac{1}{n2^n} = I_n - I_{n+1}$. Therefore,	

	$\sum_{r=1}^{n} \frac{1}{r2^{r}} = \sum_{r=1}^{n} (I_{r} - I_{r+1})$ $= I_{1} - I_{2}$ $+ I_{2} - I_{3}$ $+ \dots$ $+ I_{n} - I_{n+1}$ $= I_{1} - I_{n+1}$ Note that $I_{1} = \int_{0}^{1} \frac{t^{1-1}}{(t+1)^{1}} dt = \int_{0}^{1} \frac{1}{t+1} dt = \left[\ln t+1 \right]_{0}^{1} = \ln 2.$ Therefore, $\sum_{r=1}^{n} \frac{1}{r2^{r}} = \ln 2 - I_{n+1}$ and we obtain $\ln 2 = \sum_{r=1}^{n} \frac{1}{r2^{r}} + I_{n+1}.$	
(iv)	Since $I_{n+1} \ge 0$, from (iii), we have $\ln 2 \ge \sum_{r=1}^{n} \frac{1}{r2^r}$.	This part is poorly done. The essence is to obtain a lower bound and an upper
	On the other hand, $\ln 2 = \sum_{r=1}^{n} \frac{1}{r2^r} + I_{n+1} \le \sum_{r=1}^{n} \frac{1}{r2^r} + \frac{1}{(n+1)2^n}$ from (ii) and (iii). Together, $\sum_{r=1}^{n} \frac{1}{r2^r} \le \ln 2 \le \sum_{r=1}^{n} \frac{1}{r2^r} + \frac{1}{(n+1)2^n}$	bound for ln2 using (ii) and (iii) and then choose a suitable value for <i>n</i> to approximate ln2.
	Choosing $n = 4$, we have $0.68854 \le \ln 2 \le 0.69479$ $\approx 0.69 \le \ln 2 \le 0.69$ (corrected to 2 d.p. within the inequalities).	

Q10	Solutions	Comments
(i)	$15 = 3 \times 5$	The whole question is
	$f(15) = 15 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -8 \end{pmatrix} = 8$	generally well
	$1(13) = 13 \left(\frac{1-3}{3} \right) \left(\frac{1-5}{5} \right) = 8$	attempted.
	$180 = 2^2 \times 3^2 \times 5$	
	f(180) = 180(1 - 1)(1 - 1)(1 - 1) = 48	
	$1(180) = 180\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{5}\right) = 48$	
(ii)	For any positive integer N, let $N = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ be its unique	
	prime factorisation $k \in \mathbb{Z}^+$	
	prime factorisation, $\kappa_i \in \mathbb{Z}$.	
	Thus	
	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$	
	$f(N) = N \left 1 - \frac{1}{n} \right \left 1 - \frac{1}{n} \right \dots \left 1 - \frac{1}{n} \right $	
	$(P_1)(P_2)(P_1)$	
	$= \left(p_1^{k_1} p_2^{k_2} \dots p_l^{k_l} \right) \left(\frac{p_1 - 1}{p_1 - 1} \right) \left(\frac{p_2 - 1}{p_2 - 1} \right) \dots \left(\frac{p_l - 1}{p_l - 1} \right)$	
	$\begin{pmatrix} r_1 & r_2 & \cdots & r_l \end{pmatrix} \begin{pmatrix} p_1 & p_2 \end{pmatrix} \begin{pmatrix} p_2 & p_l \end{pmatrix}$	
	$= (p_1^{k_1-1}p_2^{k_2-1}\dots p_l^{k_l-1})(p_1-1)(p_2-1)\dots(p_l-1)$	
	where $k_i - 1$ is an integer greater than or equals to zero, and	
	$(p_i - 1)$ is an integer. Hence $f(N)$ is an integer.	
(iii)(a)	f(15)f(12)	
	$=8 \times 12 \left[1 - \frac{1}{2} \right] \left[1 - \frac{1}{2} \right]$	
	(2)(3)	
	- 32	
	-32	
	\neq 46	
	= f(180)	
	Hence statement is not true.	This is the next which
(111)(0)	(IF) Let a and b be coprime to each other.	most students lost
	Let $a = n^{a_1} n^{a_2}$ n^{a_m} and $b = a^{b_1} a^{b_2}$ a^{b_n} be the prime	marks because they
	factorizations of a and b respectively. Since a and b are continue to	only showed one
	each other $p \neq q$ for all $1 \le i \le m$ $1 \le i \le n$. We also note that	direction.
	$a_1 = a_2$ $a_m = b_1 = b_2$ $b_m = a_m = a_{m-1} = a_$	
	$p_1 \cdot p_2 \cdot \dots \cdot p_m \cdot q_1 \cdot q_2 \cdot \dots \cdot q_n \cdot r$ is a prime factorization of <i>ab</i> . Since	
	prime factorizations are unique, it must be the only one. Hence	
	$p_1, \ldots, p_m, q_1, q_2, \ldots, q_n$ are the prime factors of <i>ab</i> . Thus,	

$$\begin{aligned} f(ab) &= ab \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{q_1}\right) \left(1 - \frac{1}{q_2}\right) \dots \left(1 - \frac{1}{q_n}\right) \\ &= a \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_m}\right) b \left(1 - \frac{1}{q_1}\right) \left(1 - \frac{1}{q_2}\right) \dots \left(1 - \frac{1}{q_n}\right) \\ &= f(a) f(b) \end{aligned}$$

$$\begin{aligned} \text{ONLY IF) Let } f(ab) &= f(a) f(b). \end{aligned}$$
Some of the students who attempted to prove this direction suppose *a* and *b* are not coprime to each other. Thus, let *r_1, r_2, \\ \dots, r_c be all the prime factors common to both *a* and *b*. \end{aligned}
Hence we will have the prime factorization of *a* and *b* as
$$a &= p_1^{-a_1} p_2^{-a_2} \dots p_m^{-a_m} \dots r_1^{-a_{mint}} r_2^{-a_{mint}} \dots r_c^{-a_{mint}}, \\ b &= q_1^{-b_1} q_2^{-b_2} \dots q_n^{-b_n} r_1^{b_{n+1}} r_2^{b_{n+2}} \dots r_c^{-b_{n+c}}, \\ \text{where } p_i \neq q_j \text{ for all } 1 \leq i \leq m, 1 \leq j \leq n. \text{ By recycling the proof in the (IF) part, we know that $p_1, p_2, \dots, p_m, q_1, q_2, \dots, q_n, r_1, \dots, r_c \text{ are all the prime factors of ab. So f(ab) = f(a)f(b) \\ \Rightarrow ab \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{q_1}\right) \left(1 - \frac{1}{q_2}\right) \dots \left(1 - \frac{1}{q_m}\right) \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{q_2}\right) \dots \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_m}\right) \times \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_m}\right) \times \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_m}\right) \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_m}\right) \dots \left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_m}\right) \times \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_m}\right) \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_m}\right) \dots \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_m}\right) \times \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_m}\right) \times \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_m}\right) \dots \left(1 - \frac{1}{p_m}\right) \times \left(1 - \frac{1}{p_m}\right) = a \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_m}\right) (1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_m}\right) = a \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_m}\right) = a \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_m}\right) = a \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_m}\right) = a \left(1 - \frac{1}{p_m}\right) \left(1 - \frac{1}{p_m}\right) = a \left(1 -$$$*

(iv)
$$f(p^{k}) = p^{k} \left(1 - \frac{1}{p}\right) = p^{k-1} (p-1)$$

Note that 1 is coprime to any positive integer.
Since p is prime, the integers less than or equal to p^{k} that are not coprime to p^{k} are of the form mp , where m is a positive integer such that $1 \le m \le p^{k-1}$. Hence there are p^{k-1} integers that are not coprime to p^{k} .
Hence the number of positive integers that are less than or equal to p^{k} is $p^{k} - p^{k-1}$.