
2023 H2 Physics Preliminary Examination Paper 3 Suggested Solutions

1	(a)		work done per unit mass, by an external force, in bringing a small test mass infinity to that point, without any change in kinetic energy.	B1
	(b)	(i)	As the satellite goes to a higher orbit, gravitational potential energy, $U = -\frac{GMm}{R}$ will become less negative as <i>R</i> increases, hence the gravitational potential energy of the satellite increases.	B1
		(ii)	The gravitational force between the Earth and the satellite provides for the centripetal force that keeps the satellite of mass <i>m</i> in its circular orbit. $\frac{GMm}{R^2} = \frac{mv^2}{R}$ $v = \sqrt{\frac{GM}{R}}$	B1
			$v = \sqrt{\frac{m}{R}}$	A0
		(iii)	Since <i>G</i> and <i>M</i> are constant, it follows from part (ii) that $v \propto \sqrt{\frac{1}{R}}$ Hence,	
			$v_{\text{new}} = \sqrt{\frac{R_{\text{old}}}{R_{\text{new}}}} v_{\text{old}} = \sqrt{\left(\frac{6610 \times 10^3 \text{m}}{6890 \times 10^3 \text{m}}\right)} (7780) \text{m s}^{-1}$	M1
			$= 7620 \text{ m s}^{-1}$	A0
		(iv)	1. (Change in kinetic energy) = (final kinetic energy) – (initial kinetic energy) = $\frac{1}{2}$ (120) 7620 ² – $\frac{1}{2}$ (120) 7780 ² = -1.48 x 10 ⁸ J	M1 A1
			2. Let KE be the kinetic energy, GPE the gravitational potential energy, and TE the total energy. Using part (ii), we have	
			$KE = \frac{1}{2}mv^{2} = \frac{1}{2}\frac{GMm}{R}$ Furthermore, we have GPE = $-\frac{GMm}{R}$	
			Hence,	
			$TE = KE + GPE = \frac{1}{2} \frac{GMm}{R} + \left(-\frac{GMm}{R}\right) = -\frac{1}{2} \frac{GMm}{R}$	M1
			Since TE = -KE (needs to be derived), (change in total energy) = (negative of change in kinetic energy) = $+1.48 \times 10^8 \text{ J}$	A1
			Total:	8

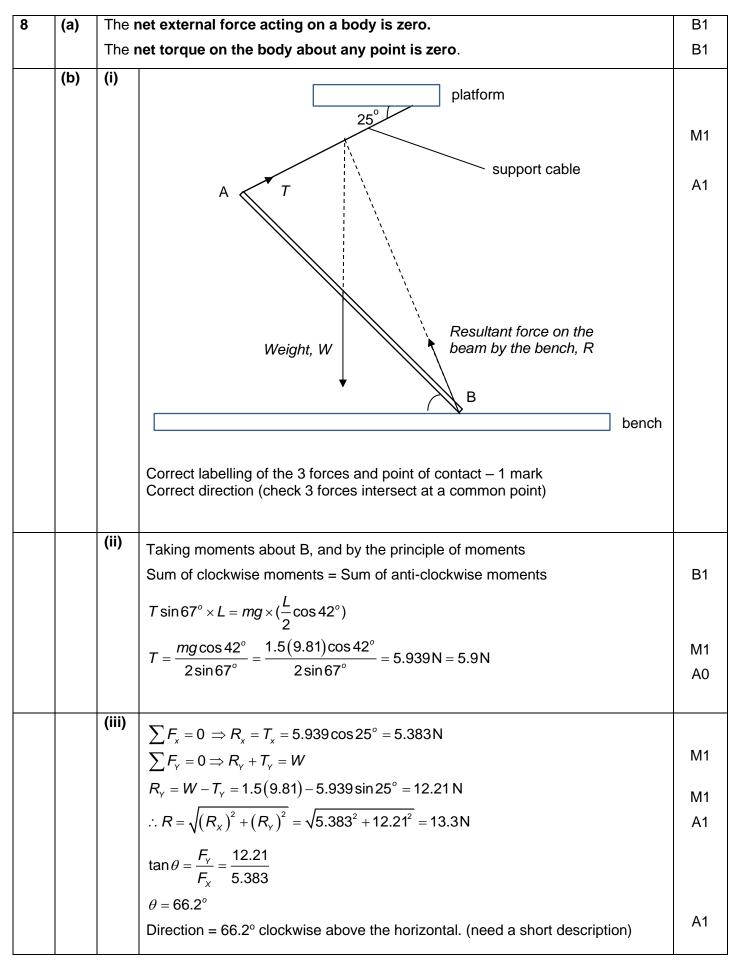
	2	0
(,	/
	-	-

		(1)		
2	(a)	(i)	<i>N</i> : the number of molecules in the ideal gas	
			<i>m</i> : the mass of an ideal gas molecule.	B2
			<i>V</i> : the volume of the ideal gas or volume occupied by the ideal gas (molecules) Note: volume of the container (holding the gas) is accepted, but discouraged, since the question does not mention any container for the ideal gas.	
			$\left< m{c}^2 \right>$: mean square speed of the ideal gas molecules.	
			"Average of the squared velocities" is accepted	
			(-1 for each mistake, max -2 marks.)	
			molecules/ particles/ atoms are all accepted but make sure it is used consistently throughout.	
		(ii)	$p = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle \Longrightarrow pV = \frac{1}{3} Nm \langle c^2 \rangle (1)$	
			Substitute $pV = NkT$ into (1): $\frac{1}{3}Nm\langle c^2 \rangle = NkT$	
			$\frac{3}{2} \times \frac{1}{3} m \langle c^2 \rangle = \frac{3}{2} kT$	
			mean kinetic energy of a molecule $\langle E_k \rangle = \frac{1}{2}m\langle c^2 \rangle = \frac{3}{2}kT$	B1
			Internal energy of the ideal gas, $U = \text{total KE of ideal gas} = N\langle E_k \rangle = \frac{3}{2}NkT$	B1
			OR:	
			$p = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle (1)$	
			pV = NkT(2)	
			Internal energy of the ideal gas,	
			U = total KE of ideal gas = $N\langle E_k \rangle = \frac{1}{2}Nm\langle c^2 \rangle = \frac{3}{2}pV = \frac{3}{2}NkT$	
	(b)	(i)	From Formula list, OR:	
			$\langle E_k \rangle = \frac{3}{2} kT$ $\langle E_k \rangle = \frac{3}{2} kT$	
			$\left \frac{1}{2}m\langle c^2 \rangle = \frac{3}{2}kT \qquad \qquad \frac{1}{2}m\langle c^2 \rangle = \frac{3}{2}kT$	
				B1
			$T = \frac{m\langle c^2 \rangle}{3k} \qquad \qquad \frac{1}{2}m_R \langle c^2 \rangle = \frac{3}{2}RT, \text{ where } m_R = \text{ molar mass}$	
			$=\frac{40u\langle c^2\rangle}{3k} \qquad \qquad T=\frac{m_R\langle c^2\rangle}{3R}$	
			$T = \frac{(40 \times 1.66 \times 10^{-27})(2380)^2}{3(1.38 \times 10^{-23})} = \frac{0.040 \langle c^2 \rangle}{3R} = \frac{(0.040)(2380)^2}{3(8.31)}$	
			T = 9080 K = 9090 K	B1

		(mass of the argon atom is approximately the same as mass of the argon nucleus, it does not matter whether you take into account the mass of electrons)	
	(ii)	Argon-40 is highly likely that the argon formed from the nuclear decays will be present in the Moon's atmosphere,	
		since the temperature on the surface of the Moon is much lower than temperature calculated in (b)(i),	B1
		the majority of argon-40 atoms would have speeds lower than the escape speed from Moon, and are unable to escape from the surface of the Moon.	B1
		Total	8

(d)	$-\frac{x_0}{\sqrt{2}}$	$=-x_0\cos(\phi) \rightarrow \cos(\phi) = \frac{1}{\sqrt{2}}$	M1
	$\phi = \frac{\pi}{4}$	rad or 0.785 rad	A1
		Total:	9

4	(a)	one	images are just resolved or distinguishable when the central maximum of diffraction pattern coincides with the first minimum of the diffraction ern of the other.	B1 B1
	(b)	Apply	ying Rayleigh criterion,	
			$\frac{\lambda}{b} = \frac{600 \times 10^{-9}}{20.0 \times 10^{-2}} = 3.00 \times 10^{-6} \text{ rad}$ $8.14 \times 10^{16} \times \tan(3.00 \times 10^{-6}) = 2.44 \times 10^{11} \text{ m}$	M1 A1
	(c)	(i)	For second order maxima, $d\sin\theta = 2\lambda \Rightarrow \theta = \sin^{-1}\left(\frac{2\lambda}{d}\right)$	
			when $\lambda = 400$ nm, $\theta = \sin^{-1} \frac{2(400 \times 10^{-9})}{10^{-3} \div 500} = 23.578^{\circ}$	M1
			when $\lambda = 700$ nm, $\theta = \sin^{-1} \frac{2(700 \times 10^{-9})}{10^{-3} \div 500} = 44.427^{\circ}$	M1 A1
			Angular spread $\Delta \theta = 48.590^{\circ} - 23.578^{\circ} = 20.84^{\circ}$	
		(ii)	Advantage: θ is larger, so for the same $\Delta \theta$, the fractional uncertainty / percentage uncertainty in θ is smaller.	B1
			Total:	8

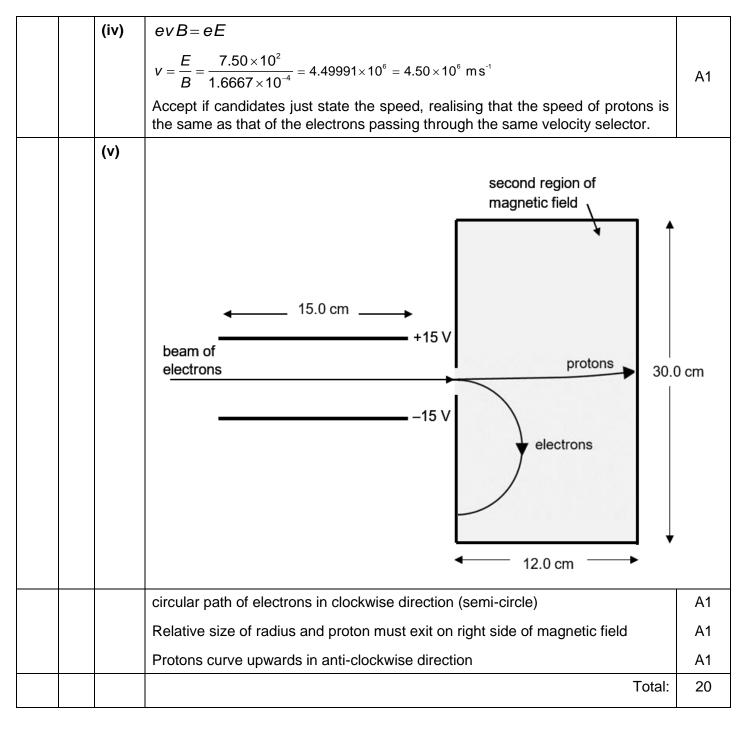

C2

^		\sim
C	,	2

5	(a)	(i)	Resistance of thermistor is given by the ratio of p.d. across thermistor, V to current through thermistor, I . In Fig. 5.2, the ratio of V/I decreases as current or voltage increases.	B1
			As current or voltage increases, the thermistor will heat up. Thus, the thermistor's resistance decreases with increasing temperature indicating that it is a ntc thermistor.	B1
			Alternatively,	Or
			Resistance of thermistor is given by the ratio of p.d. across thermistor, V to current through thermistor, I . In Fig. 5.2, the gradient of the straight line that joins the origin to a point on the I -V graph of thermistor increases, the reciprocal of this gradient gives the ratio of V/I, i.e. V/I decreases as current or voltage increases.	B1
			As current or voltage increases, the thermistor will heat up. Thus, the thermistor's resistance decreases with increasing temperature indicating that it is a ntc thermistor.	B1
		(ii)	From the graph, when current through battery is 8.0 A,	
			1. the current through the filament bulb = 5.5 A	A1
			2. the current through the thermistor = 2.5 A	A1
			3. the e.m.f. of the battery = 8.0 V	A1
	(b)	(i)	Correct sketch of a straight line passing through the origin with gradient = 1/2.5 = 0.4. Straight line pass through (2.5, 1.0) and (10, 4).	A1
		(ii)	the current through the filament bulb = 4.0 A	A1
		(iii)	the potential difference across the resistor = $4.0 \times 2.5 = 10 \text{ V}$	A1
			Total marks	8

		$\frac{V_{\rm S}}{V_{\rm P}} = \frac{N_{\rm S}}{N_{\rm P}} \to V_{\rm S,peak} = 170 \left(\frac{3500}{2000}\right) = 297.5 \text{ V}$ $V_{\rm S,rms} = \frac{297.5}{\sqrt{2}} = 210 \text{ V}$	M1 A1
	(ii)	$V_{S,ms} = I_{S,ms} R \rightarrow I_{S,ms} = \frac{210}{130} = 1.62 \text{ A}$ mean power output $= \langle P \rangle_{output} = V_{S,ms} I_{S,ms} = (210)(1.62) = 340 \text{ W}$ Power input = Power output (ideal transformer) peak power input = $2 \times \langle P \rangle_{output}$	M1
		$V_{P,peak}I_{P,peak} = 2 \times 340 \Longrightarrow I_{P,peak} = \frac{(2 \times 340)}{170} = 4.00 \text{ A}$	M1 A1
(b)	numb	e number of turns in the secondary coil is halved while input voltage and ber of turns in the primary coil remain the same, the induced voltage in the ndary coil is halved.	B1
	The p	oower output is proportional to the square of the voltage.	
	The r	esistance of the heater is unchanged, so the new mean power dissipated is $\frac{1}{4}P$.	A1
		Total:	7

7	(a)		n the energy level of atom or system (not electron) at $(n = \infty)$ is 0 eV, this is where from just breaks free from the atom.	B1
			n the atom is at energy level (n < ∞), its electron is bounded to the nucleus by tric attractive force since the nucleus and the electron are of oppositely charged.	
		The	atom needs to gain energy to cause electron to break free from it.	B1
		OR		
			n the atom is at energy level (n < ∞), its electron is bounded to the nucleus by tric attractive force since the nucleus and the electron are of oppositely charged.	
		Posit	tive work is done by external agent when the electron breaks free from it.	
		-	onservation of energy, energy level of atom at $(n < \infty)$ is less than the energy level $= \infty$); i.e. energy level at $(n < \infty)$ is of negative value.	B1
	(b)	Tran	sition A.	A1
	(c)	ΔE_{A}	=-0.54-(-13.6)=13.06 eV	
			= $13.06 \times 1.60 \times 10^{-19} = 2.0896 \times 10^{-18} \text{ J}$	M1
			$6.63 \times 10^{-34} \times 3 \times 10^8$	
		λ_{A}	$=\frac{6.63\times10^{-34}\times3\times10^8}{2.0896\times10^{-18}}=9.52\times10^{-8}\mathrm{m}=95.2\mathrm{nm}~(\mathrm{e.c.f.})$	A1
		UV r	egion. (e.c.f. is based on student's calculated wavelength)	A1
	(d)	(i)	The incoming electron can give up a fraction of its energy to excite the atom to energy levels $(n = 3)$ or $(n = 2)$.	B1
			After which, atom can de-excite from energy levels $(n = 3)$ to $(n = 2)$, followed by $(n = 2)$ to $(n = 1)$, or $(n = 3)$ to $(n = 1)$, or $(n = 2)$ to $(n = 1)$.	A1
		(ii)	No possible transition.	A1
			since photon energy does not correspond exactly to the energy interval / difference / gap between (n>1) and (n=1) .	B1
	(e)		emission spectrum can be used to <u>determine the composition of a material</u> in atomic sion spectroscopy.	A1
		It car	n helps to create special advertisement lightings or entertainment lightings.	
		OR a	any plausible applications	
			Total:	12



(c)	(i)	By Newton's 2^{nd} law, $F_{net} = ma$	
		$mg\sin\theta = ma$	M1
		$a = g \sin \theta = 9.81 \sin 42^\circ = 6.56 \mathrm{m s^{-2}}$	A1
	(ii)	Acceleration of the ball remains the same	B1
		as it is independent of mass or weight as shown in the equation in (c)(i).	B1
	(iii)	From start to top of circular track,	
		Loss in GPE = Gain in KE	
		$mg(0.58\sin 42^{\circ} - 0.34) = \frac{1}{2}mv_{top}^{2} - 0$	M1
		$v_{top} = \sqrt{2(9.81)(0.58\sin 42^\circ - 0.34)}$	
		$= 0.9714 = 0.971 m s^{-1}$	
		Consider the forces acting on the ball at the top of the circular track,	A1
		$mg + N = rac{mv^2}{r}$	
		To find the minimum speed at the top of the circular track, consider N \rightarrow 0,	
		$v_{\rm min} = \sqrt{rg} = \sqrt{0.17(9.81)} = 1.29 \ m {\rm s}^{-1}$	A1
		Since $v_{top} < v_{min}$, the ball is unable to make a complete loop around the circular track.	A1
	(iv)	The ball will remain in contact with the circular track at least clearing half of the height of the circular track or 1/4 of the circular track	B1
		and then move in a parabolic path when it leaves the tracks.	B1
		Total:	20

9	(a)	and th	agnetic flux linkage is defined as the product of the number of turns of the coil the component of magnetic flux density passing perpendicularly through a sectional area of the coil.	B1 B1
	(b)	(i)	Magnetic flux density at the centre of the solenoid,	
			$B = \mu_o nI = \left(4\pi \times 10^{-7}\right) \left(\frac{900}{30.0 \times 10^{-2}}\right) (2.0)$	M1
			$= 7.54 \times 10^{-3} \text{ T}$	M1
			Magnetic flux through flat coil = magnetic flux through solenoid	A0
			$\phi = BA = (7.54 \times 10^{-3})(3.2 \times 10^{-4}) = 2.41 \times 10^{-6}$ Wb	70
		(ii)1.	Magnitude of e.m.f. $\varepsilon = N \frac{d\phi}{dt} \approx N \frac{\Delta\phi}{\Delta t} = (250) \left(\frac{2.41 \times 10^{-6}}{0.45} \right)$	M1
			$= 1.34 \times 10^{-3}$ V	A1
		(ii)2.	charge = current x time	
			$=\frac{\varepsilon}{R}\times t=\left(\frac{1.338\times10^{-3}}{35.0}\right)(0.45)$	M1
			= 1.72 × 10 ⁻⁵ C	A1
		(ii)3.	charge = (average current) x (time) = $\left(\frac{1}{2}I\right)(t) = \left(\frac{2.0}{2}\right)(0.45)$	M1
			= 0.45 C	A1
	(c)	(i)	evB=eE	
			$B = \frac{E}{v} = \frac{\Delta V}{dv} = \frac{(15 - (-15))}{0.040(4.5 \times 10^6)}$	M1
			$v dv 0.040(4.5 \times 10^6)$	A1
			$= 1.67 \times 10^{-4} \text{ T}$	
		(ii)	The electrons experienced a constant magnetic force always perpendicular to its direction of motion/velocity.	B1
			This force does zero work on the electrons hence the speed remains constant . Hence the magnetic force provides the centripetal force for circular motion.	B1
		(iii)	The centripetal force is provided by the magnetic force.	
			$e v B = \frac{m v^2}{r}$	M1
			$r = \frac{mv^2}{evB} = \frac{mv}{eB} = \frac{(9.11 \times 10^{-31})(4.50 \times 10^6)}{(1.6 \times 10^{-19})(0.50 \times 10^{-3})}$	
			$= 0.0512 \mathrm{m}$ (1.6×10 ⁻¹)(0.50×10 ⁻¹)	A1

2023

HWA CHONG INSTITUTION (COLLEGE SECTION)

