

TAMPINES MERIDIAN JUNIOR COLLEGE

JC1 PROMOTIONAL EXAMINATION

H2 MATHEMATICS

9758 3 hours

Additional materials: Printed Answer Booklet

List of Formulae and Results (MF27)

READ THESE INSTRUCTIONS FIRST

Answer **all** the questions.

Write your answers on the Printed Answer Booklet. Follow the instructions on the front cover of the answer booklet.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphing calculator are **not** allowed in a question, you must present the mathematical steps using mathematical notations and not calculator commands.

You must show all necessary working clearly.

The number of marks is given in brackets [] at the end of each question or part question.

1 It is given that $f(x) = ax^3 + bx^2 + cx + d$, where *a*, *b*, *c* and *d* are non-zero real constants. The graph of y = f(x) passes through the points (0,3) and (-2,1). It is also known that one of the stationary points of y = f(x) is (-3,3). Find the values of *a*, *b*, *c* and *d*. [4]

2 (a) State a sequence of three transformations that will transform the curve with equation

y = f(x) onto the curve with equation y = 2f(-x+3). [3]

(b) Without using a calculator, solve exactly the inequality

$$\frac{x^2 - 2x + 2}{2x + 1} > 1.$$
(a)

$$y = f(x)$$

$$\downarrow \text{ Replace x by x + 3}$$

$$y = f(x + 3)$$

$$\downarrow \text{ Replace y by } \frac{y}{2}$$

$$\frac{y}{2} = f(-x + 3)$$

$$\Rightarrow y = 2f(-x + 3)$$
The sequence of 3 transformations are as follows:
I. Translation of 3 units in the negative x-direction.
II. Reflection in the y-axis.
HI. Stretch by factor 2 parallel to the y-axis.
Alternative Method

$$y = f(x)$$

$$\downarrow \text{ Replace x by } x - 3$$

$$y = f(-(x - 3))$$

$$\Rightarrow y = f(-(x + 3)$$

$$\downarrow \text{ Replace x by } x - 3$$

$$y = f(-(x - 3))$$

$$\Rightarrow y = f(-(x + 3)$$

$$\downarrow \text{ Replace y by } \frac{y}{2}$$

$$\frac{y}{2} = f(-x + 3)$$
The sequence of 3 transformations are as follows:
I. Reflection in the y-axis.
II. Reflection in the y-axis.
II. Reflection in the y-axis.
II. Translation of 3 units in the positive x-direction.
II. Stretch by factor 2 parallel to the y-axis.
II. Translation of 3 units in the positive x-direction.
II. Stretch by factor 2 parallel to the y-axis.

(b) Without using a calculator, solve exactly the inequality

$$\frac{x^2 - 2x + 2}{2x + 1} > 1.$$
 [4]

(b)

$$\frac{x^{2}-2x+2}{2x+1} > 1, \quad x \neq -\frac{1}{2}$$
We do not cross multiply when we are not sure how the inequality sign should change. So for this question, we cannot cross multiply by $2x+1$ since it could be negative or positive.

$$\frac{x^{2}-2x+2-2x-1}{2x+1} > 0$$
Method 1: Completing the Square

$$\frac{(x-2)^{2}-3}{2x+1} > 0$$

$$\frac{(x-2+\sqrt{3})(x-2-\sqrt{3})}{2x+1} > 0$$

$$\frac{(x-2+\sqrt{3})(x-(2+\sqrt{3}))}{2x+1} > 0$$

$$\frac{(x-(2-\sqrt{3}))(x-(2+\sqrt{3}))}{2x+1} > 0$$

$$\frac{-4x+1}{-\frac{1}{2}-2-\sqrt{3}} + \frac{-4x+1}{2x+3}$$
Method 2: Quadratic Formula
Consider $x^{2}-4x+1 = 0$
 $x^{2}-4x+1$
 $x = \frac{-(-4)\pm\sqrt{(-4)^{2}-4(1)(1)}}{2(1)}$

$$= \frac{4\pm\sqrt{12}}{2} = \frac{4\pm2\sqrt{3}}{2} = 2\pm\sqrt{3}$$

$$\frac{(x-(2-\sqrt{3}))(x-(2+\sqrt{3}))}{2x+1} > 0$$

$$\frac{-4x+1}{-\frac{1}{2}-2-\sqrt{3}} + \frac{-4x+1}{2x+3}$$

3 The curve C_1 has equation $y = 2x + 3 + \frac{12}{x-2}, x \neq 2$.

- (a) Sketch C₁, showing clearly the equations of asymptotes, the coordinates of the axial intercepts and the turning points, if any. [4]
- (b) By completing the square for both x and y, give a geometrical interpretation of the curve C_2 with equation $x^2 4x + y^2 + 6y 3 = 0$.

Hence write down the number of real roots for the equation

$$\left(x-2\right)^{2} + \left(2x+6+\frac{12}{x-2}\right)^{2} = 4^{2}.$$
 [3]

(b) By completing the square for both x and y, give a geometrical interpretation of the curve C_2 with equation $x^2 - 4x + y^2 + 6y - 3 = 0$.

Hence write down the number of real roots for the equation

$$\left(x-2\right)^{2} + \left(2x+6+\frac{12}{x-2}\right)^{2} = 4^{2}.$$
[3]

- A manufacturer designs a rectangular tank. The base of the tank is a rectangle with adjacent sides of x metres by y metres and **fixed** diagonal length of D metres, where D is a real constant. The area of the base of the tank is denoted by A metres².
 - (a) Express A^2 in terms of x and D. [2]
 - (b) By differentiation, show that as x varies, the largest area of the base is achieved

when
$$x = \frac{D}{\sqrt{2}}$$
. [4]

The manufacturer designs another type of water tank. Water is poured at a constant rate of 10 metres³ per minute into the tank. The volume of the water, *V* metres³, in the tank at time *t* minutes, is defined by $V = \frac{1}{9}\pi H^3$, where *H* metres is the height of the water in the tank at time *t* minutes.

(c) Find the rate of change of the height of the water in the tank in terms of π , when H = 3. [3]

(a)	A = xy
	$D^2 = x^2 + y^2 \Longrightarrow y^2 = D^2 - x^2$
	$A^2 = x^2 y^2$
	$=x^2\left(D^2-x^2\right)$
	$=D^2x^2-x^4$

4

	when $x = \frac{D}{\sqrt{2}}$.	[4]
(b)	$A^{2} = D^{2}x^{2} - x^{4}$ It is Differentiate wrt x: $A = 2A\frac{dA}{dx} = 2D^{2}x - 4x^{3}$ due to differentiate $A\frac{dA}{dx} = D^{2}x - 2x^{3}$ When area is the largest, $\frac{dA}{dx} = 0$	not advisable to use the form $\sqrt{D^2 x^2 - x^4}$ to find $\frac{dA}{dx}$ (and $\frac{d^2A}{dx^2}$ later on) to the complicated expression. Using implicit erentiation is much easier for this question. As a "show" question, you need to work towards $x = \frac{D}{\sqrt{2}}$ by solving for $\frac{dA}{dx} = 0$.
	$D^{2}x - 2x^{3} = 0$ $x \left(D^{2} - 2x^{2}\right) = 0$ $x = 0 \text{ or } x = \frac{D}{\sqrt{2}} \text{ or } x = -\frac{D}{\sqrt{2}}$ Since $x > 0$, $x = \frac{D}{\sqrt{2}}$. (shown) Differentiate wrt x , $\left(\frac{dA}{dx}\right)^{2} + A\frac{d^{2}A}{dx^{2}} = D^{2} - 6x^{2}$ When $x = \frac{D}{\sqrt{2}}$, $\frac{dA}{dx} = 0$,	Do not merely verify the result by substituting $x = \frac{D}{\sqrt{2}}$ onto $\frac{dA}{dx}$. As a "show" question, you need to state the reason for rejecting $x = 0$ and $x = -\frac{D}{\sqrt{2}}$.
	$\frac{d^{2}A}{dx^{2}} = \frac{D^{2} - 6\left(\frac{D}{\sqrt{2}}\right)^{2}}{A}$ $= -\frac{2D^{2}}{A}$ Since $A > 0$, $D > 0$, $\frac{d^{2}A}{dx^{2}} = -\frac{2D^{2}}{A} <$ Hence, the cross-sectional area of the	To use the second derivate test, you need to substitute $x = \frac{D}{\sqrt{2}}$ into $\frac{d^2 A}{dx^2}$ and simplify it sufficiently before concluding that $\frac{d^2 A}{dx^2} < 0$.

8

(b) By differentiation, show that as x varies, the largest area of the base is achieved

The manufacturer designs another type of water tank. Water is poured at a constant rate of 10 metres³ per minute into the tank. The volume of the water, V metres³, in the tank at time t minutes, is defined by $V = \frac{1}{9}\pi H^3$, where H metres is the height of the water in the tank at time t minutes.

(c) Find the rate of change of the height of the water in the tank in terms of π , when H = 3. [3]

(c)	$V = \frac{1}{9}\pi H^{3}$ $\frac{dV}{dH} = \frac{1}{3}\pi H^{2}$ When $H = 3$, $\frac{dV}{dH} = 3\pi$	Use chain rule to connect the given rate of change in the question, $\frac{dV}{dt} = 10$, and the rate of change we want to find, $\frac{dH}{dt}$.
	$\frac{dV}{dt} = \frac{dV}{dH} \times \frac{dH}{dt}$ $\frac{dH}{dt} = \frac{10}{3\pi}$ metres per minute	Be careful, $\frac{10}{3\pi} \neq \frac{10}{3}\pi$.

5 (a) By using the standard series from List of Formulae (MF27), find the series expansion of $e^{x^2}(\sqrt{1+2x})$, up to and including the term in x^2 . [3]

(b) Given that
$$y = \sin^{-1} x$$
, show that $\frac{d^2 y}{dx^2} = x \left(\frac{dy}{dx}\right)^3$.

Hence, by further differentiation, find the Maclaurin series for $\sin^{-1} x$ in ascending powers of x up to and including the term in x^3 . [5]

(a)
$$e^{x^2} (\sqrt{1+2x}) = e^{x^2} (1+2x)^{\frac{1}{2}}$$
 Use MF 27 Standard Series for e^x and replace x by x^2
 $= (1+x^2+\cdots) \left(1+\frac{1}{2}(2x)+\frac{\frac{1}{2}(-\frac{1}{2})}{2!}(2x)^2+\cdots\right)$
 $= (1+x^2+\cdots) (1+x-\frac{1}{2}x^2+\cdots)$ Use MF 27 Standard Series for $(1+x)^n$
 $= 1+x+\frac{1}{2}x^2+\cdots$ (up to x^2) Use MF 27 Standard Series for $(1+x)^n$
and replace n by $\frac{1}{2}$ and x by $2x$

(b) Given that
$$y = \sin^{-1} x$$
, show that $\frac{d^2 y}{dx^2} = x \left(\frac{dy}{dx}\right)^3$.

Hence, by further differentiation, find the Maclaurin series for $\sin^{-1} x$ in ascending powers of x up to and including the term in x^3 . [5]

(b)	$y = \sin^{-1} x$
	$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} = \left(1 - x^2\right)^{-\frac{1}{2}}$
	$\frac{d^2 y}{dx^2} = \left(-\frac{1}{2}\right) \left(1 - x^2\right)^{-\frac{3}{2}} \left(-2x\right)$
	$=x(1-x^2)^{-\frac{3}{2}}$
	$= x \left(\frac{dy}{dx}\right)^{3}$ (Shown) Remember to apply product rule here. Also, it is highly recommended to further differentiate from the "Shown" result, rether then wince your composition on
	$\frac{d^3 y}{dx^3} = \left(\frac{dy}{dx}\right)^3 + 3x \left(\frac{dy}{dx}\right)^2 \left(\frac{d^2 y}{dx^2}\right)$ rather than unsg your own expression of the previous un-simplified expression.
	when $r = 0$
	$dv = d^2 v = d^3 v$
	$y=0, \ \frac{dy}{dx}=1, \ \frac{dy}{dx^2}=0, \ \frac{dy}{dx^3}=1.$
	$\sin^{-1} x = x + \frac{1}{3!}x^3 + \cdots$
	$= x + \frac{1}{6}x^3 + \cdots (\text{up to } x^3)$

6 (a) The points A, B and C have position vectors $\begin{pmatrix} 1 \\ 3 \\ -7 \end{pmatrix}$, $\begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -9 \\ 8 \\ -27 \end{pmatrix}$, with respect

to the origin O.

- (i) Show that the points *A*, *B* and *C* are collinear. [2]
- (ii) Find the exact area of the triangle *OAB*. [3]
- (b) The vectors \mathbf{u} , \mathbf{v} and \mathbf{w} are defined such that $|\mathbf{u}| = 1$, $|\mathbf{v}| = 2$ and $|\mathbf{w}| = 3$.
 - (i) Suppose that u + v = w. With the aid of a diagram, or otherwise, explain why
 u is a unit vector that is parallel to w. [2]
 - (ii) Given instead that each of the three vectors is perpendicular to the sum of the other two vectors, find the exact value of $|\mathbf{u} + \mathbf{v} + \mathbf{w}|$. [4]

(ii) Find the exact area of the triangle *OAB*.

(ii)	Area of triangle OAB
	$=\frac{1}{2}\left \overrightarrow{OA}\times\overrightarrow{OB}\right $
	$=\frac{1}{2} \begin{vmatrix} 1\\3\\-7 \end{vmatrix} \times \begin{pmatrix} 5\\1\\1 \end{vmatrix}$
	$=\frac{1}{2} \begin{vmatrix} 10\\ -36\\ -14 \end{vmatrix}$
	$=\sqrt{398}$

- (b) The vectors \mathbf{u} , \mathbf{v} and \mathbf{w} are defined such that $|\mathbf{u}| = 1$, $|\mathbf{v}| = 2$ and $|\mathbf{w}| = 3$.
 - (i) Suppose that u + v = w. With the aid of a diagram, or otherwise, explain why u is a unit vector that is parallel to w. [2]

(b)(i)	Since $\mathbf{u} + \mathbf{v} = \mathbf{w}$, and $ \mathbf{u} = 1$, $ \mathbf{v} = 2$ a	and $ \mathbf{w} = 3$, u and v must both be parallel to w , as
	seen in the diagram.	Draw diagram with clear indication of the fact
	$ \mathbf{u} = 1$ $ \mathbf{v} = 2$	that $ \mathbf{u} = 1$ and $ \mathbf{v} = 2$ add up to $ \mathbf{w} = 3$.
		For $\mathbf{u} + \mathbf{v} = \mathbf{w}$, due to their lengths, \mathbf{u} and \mathbf{v} must both be parallel to \mathbf{w} .
	$ \mathbf{w} = 3$	
	Since $ \mathbf{u} = 1$, \mathbf{u} is a unit vector paral	lel to \mathbf{w} . Explain clearly why \mathbf{u} is a unit vector.

[3]

(ii) Given instead that each of the three vectors is perpendicular to the sum of the other two vectors, find the exact value of $|\mathbf{u} + \mathbf{v} + \mathbf{w}|$. [4]

(ii)	Since each of the three vectors is perpendicular to the sum of the other two vectors,
	$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = 0$ The dot products of the 2 perpendicular vectors equals 0.
	$\mathbf{v} \cdot (\mathbf{u} + \mathbf{w}) = 0$ The assignment of the 2 perpendicular vectors equals of
	$\mathbf{w} \cdot (\mathbf{v} + \mathbf{u}) = 0$
	$ \mathbf{u} + \mathbf{v} + \mathbf{w} ^2 = (\mathbf{u} + \mathbf{v} + \mathbf{w}) \cdot (\mathbf{u} + \mathbf{v} + \mathbf{w})$
	$= \mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) + \mathbf{v} \cdot \mathbf{v} + \mathbf{v} \cdot (\mathbf{u} + \mathbf{w}) + \mathbf{w} \cdot \mathbf{w} + \mathbf{w} \cdot (\mathbf{v} + \mathbf{u})$
	$= \mathbf{u} ^2 + \mathbf{v} ^2 + \mathbf{w} ^2$
	$=1^{2}+2^{2}+3^{2}$ u · (v + w) = 0
	= 14 Note: $ \mathbf{a} ^2 = \mathbf{a} \cdot \mathbf{a}$ $ \mathbf{v} \cdot (\mathbf{u} + \mathbf{w}) = 0$
	$\mathbf{w} \cdot (\mathbf{v} + \mathbf{u}) = 0$
	Since $ \mathbf{u} + \mathbf{v} + \mathbf{w} > 0$, $ \mathbf{u} + \mathbf{v} + \mathbf{w} = \sqrt{14}$

14

7 (a) Find
$$\int \frac{1}{\sqrt{4-x^2}} \, dx$$
. [1]

(b) Find
$$\int \cos^2 x \, dx$$
. [2]

(c) Using integration by parts, find $\int \tan^{-1} x \, dx$. [3]

(d) Use the substitution $u = \sqrt{x-2}$ to find the exact value of $\int_{2}^{4} \frac{x+1}{x\sqrt{x-2}} dx$. [4]

(a)
$$\int \frac{1}{\sqrt{4 - x^2}} dx = \int \frac{1}{\sqrt{2^2 - x^2}} dx$$
$$= \sin^{-1}\left(\frac{x}{2}\right) + C$$

(b)
$$\int \cos^2 x \, dx = \frac{1}{2} \int (1 + \cos 2x) \, dx$$
Remember to apply
Golden Rule!

$$= \frac{1}{2} \left(x + \frac{\sin 2x}{2} \right) + C$$
Golden Rule!
(c)
$$\int \tan^{-1} x \, dx$$
$$\int \tan^{-1} x \, dx = \int (1) (\tan^{-1} x) \, dx$$
Keep, Differentiate " $\tan^{-1} x$ ".
Integrate "1".

$$= x \tan^{-1} x - \frac{1}{2} \int \frac{2x}{1 + x^2} \, dx$$
$$= x \tan^{-1} x - \frac{1}{2} \ln |1 + x^2| + C$$
$$= x \tan^{-1} x - \frac{1}{2} \ln (1 + x^2) + C, \text{ since } 1 + x^2 > 0$$

	(d)	$\int_{-\infty}^{4} \frac{x+1}{2} dx$			$u = \sqrt{x - 2}$
Ren to c the too!	nember hange limits	$\int_{2}^{2} x\sqrt{x-2} du$ $= \int_{0}^{\sqrt{2}} \frac{\left(u^{2}+2\right)+1}{\left(u^{2}+2\right)u} 2u du$ $= 2 \int_{0}^{\sqrt{2}} \frac{\left(u^{2}+2\right)+1}{\left(u^{2}+2\right)} du$	Ensur substi comp reduc	re that all itutions are leted in 1 step to e careless mistakes.	$u^{2} = x - 2$ Differentiating with respect to x, $2u \frac{du}{dx} = 1$ When $x = 4$, $u = \sqrt{4 - 2} = \sqrt{2}$, When $x = 2$, $u = \sqrt{2 - 2} = 0$,
		$= 2\int_{0}^{\sqrt{2}} 1 + \frac{1}{\left(u^{2} + \sqrt{2}^{2}\right)} d$ $= 2\left[u + \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{u}{\sqrt{2}}\right)\right]$ $= 2\left[\sqrt{2} + \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{\sqrt{2}}{\sqrt{2}}\right)\right]$ $= 2\left[\sqrt{2} + \frac{1}{\sqrt{2}}\left(\frac{\pi}{4}\right)\right]$ $= \sqrt{2}\left(2 + \frac{\pi}{4}\right)$	$\begin{bmatrix} u \\ 0 \\ \frac{1}{2} \end{bmatrix}_{0}^{\sqrt{2}} = 0$	It is recommended to the integral in standar first before applying I integration formula. T usually reduces the ch making careless mista	express rd form MF27 This hance of akes.

(d) Use the substitution $u = \sqrt{x-2}$ to find the exact value of $\int_{2}^{4} \frac{x+1}{x\sqrt{x-2}} dx$. [4]

8 A curve C has parametric equations

$$x = 2t - \sin 2t$$
, $y = 1 - \cos 2t$, where $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$.

- (a) Sketch the curve *C*.
- (b) The point *P* on *C* has coordinates $(2p \sin 2p, 1 \cos 2p)$. Show that the equation of the tangent at *P* is $y = x \cot p 2p \cot p + 2$. [4]

The tangent to C at point Q, where $t = \frac{\pi}{4}$, meets the y-axis at the point L. The tangent

- to *C* at point *R*, where $t = -\frac{\pi}{4}$, also meets the *y*-axis at the point *L*.
- (c) Explain why ∠QLR is a right angle. Hence draw the triangle QLR on the same diagram as curve C in part (a). [4]

[2]

(b) The point *P* on *C* has coordinates $(2p - \sin 2p, 1 - \cos 2p)$. Show that the equation of the tangent at *P* is $y = x \cot p - 2p \cot p + 2$. [4]

(b)	$x = 2t - \sin 2t$	$y = 1 - \cos 2t$	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2 - 2\cos 2t$	$\frac{\mathrm{d}y}{\mathrm{d}t} = 2\sin 2t$	
	$\frac{dy}{dx} = \frac{2\sin 2t}{2 - 2\cos 2t}$ $= \frac{\sin 2t}{1 - \cos 2t}$ $= \frac{2\sin t \cos t}{1 - (1 - 2\sin^2 t)}$ $= \frac{2\sin t \cos t}{2\sin^2 t}$ $= \cot t$ At point P, $t = p \Rightarrow \frac{dy}{1} = \cot p$	0	
	Equation of tangent at point P $y - (1 - \cos 2p) = \cot p (x - (2p))$ $y = x \cot p - 2p \cot p + \cot p \sin p$	is $(p-\sin 2p)$ $(n 2p + 1 - \cos 2p)$	Use of double angle formula is expected in order to simplify to the required form.
	$y = x \cot p - 2p \cot p + \frac{\cos p}{\sin p} \left(\frac{y}{y} = x \cot p - 2p \cot p + 2\cos^2 p + 2\cos^2 p + 2 \cot p + 2 \cosh^2 p + 2 \sin^2 p + 2 \sin^2$	$\frac{2\sin p\cos p}{\cos p} + 1$ $\frac{p}{2} + 2\sin^2 p$ $\frac{p}{2}$	$1 - \left(1 - 2\sin^2 p\right)$ Do not skip steps as this is a showing question.

The tangent to C at point Q, where $t = \frac{\pi}{4}$, meets the y-axis at the point L. The tangent

- to *C* at point *R*, where $t = -\frac{\pi}{4}$, also meets the *y*-axis at the point *L*.
- (c) Explain why $\angle QLR$ is a right angle. Hence draw the triangle QLR on the same diagram as curve C in part (a). [4]

9 The plane *p* has equation $\mathbf{r} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} m \\ 1 \\ 0 \end{pmatrix}$, where *m* is a real constant and

s and *t* are real parameters. The line ℓ_1 passes through the point A(1,-1,2) and is parallel to the vector $3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

(a) In the case where
$$\ell_1$$
 and p do not intersect, find the value of m . [3]

- For the rest of the question, the plane p has equation x y + z = 10.
- (b) Find the position vector of the foot of the perpendicular from A to p. [3]

The line ℓ_2 passes through A and has the equation $\frac{x-1}{3} = \frac{y+1}{-1} = \frac{z-2}{2}$.

- (c) Find the coordinates of the point of intersection between ℓ_2 and p. [3]
- (d) By considering parts (b) and (c), find an equation of the line of reflection of ℓ_2 in p. [3]

(a)	$\mathbf{n} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \times \begin{pmatrix} m\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\-m\\1 \end{pmatrix}$	
	Since ℓ_1 and p do not in direction vector of ℓ_1 is	ntersect at all, they are parallel to each other which means that the perpendicular to the normal vector of p .
	$\begin{pmatrix} 3\\1\\-2 \end{pmatrix} \cdot \begin{pmatrix} 1\\-m\\1 \end{pmatrix} = 0$ $3 - m - 2 = 0$	Notice that there is no need to find the equations of ℓ_1 and p , since we only need to compare the respective direction and normal vectors.
	m = 1	

For the rest of the question, the plane p has equation x - y + z = 10.

(b) Find the position vector of the foot of the perpendicular from A to p.

[3]

The line ℓ_2 passes through A and has the equation $\frac{x-1}{3} = \frac{y+1}{-1} = \frac{z-2}{2}$.

(c) Find the coordinates of the point of intersection between ℓ_2 and p.

[3]

(d) By considering parts (b) and (c), find an equation of the line of reflection of ℓ_2 in p. [3] **10** The function f is defined by

f:
$$x \mapsto \begin{cases} x\sqrt{8-x^2}, & 0 < x \le 2, \\ 8-2x, & 2 < x \le 4. \end{cases}$$

and f(x) = f(x+4) for all real values of *x*.

- (a) Find the values of f(-1) and f(6). [2]
- (b) Sketch the graph of y = f(x) for $-1 \le x \le 6$. [4]
- (c) Hence find the area under the curve y = f(x) for $-1 \le x \le 6$, giving your answer correct to 3 significant figures. [3]

(a)	f(-1) = f(3)
	=-2(3)+8
	= 2
	f(6) = f(2)
	$=2\sqrt{8-2^{2}}$
	=4

(c) Hence find the area under the curve y = f(x) for $-1 \le x \le 6$, giving your answer

11 A company is launching a new limited-edition watch, L-Watch. The profit, p thousand dollars, will be a function of the selling price, s thousand dollars, of each L-Watch. One of the business analysts in the company predicts that the profit function can be represented by

$$p: s \mapsto -\frac{1}{2}(s-4)^2 + 3, \ s > 0$$

- (a) (i) Explain why the inverse function p^{-1} does not exist. [1]
 - (ii) The function p^{-1} exists if the domain of p is restricted to $0 < s \le k$, where $k \in \mathbb{R}$. State the largest value of k. [1]
 - (iii) Using the domain defined in part (a)(ii), find $p^{-1}(x)$ and state the domain of p^{-1} . [4]

For the rest of the question, the domain of *p* is as originally defined.

Based on past market trends, the company adjusts the selling price of the L-watch periodically. The business analysts proposes that the selling price, s thousand dollars, of the L-Watch at time t months after the launch of the L-Watch can be modelled by the function

$$s:t\mapsto \frac{2t+5}{t+1},\ t\ge 0$$

- (b) Show that the composite function *ps* exists. [2]
- (c) Find ps(2) and give an interpretation of ps(2) in context. [3]
- (d) Find the range of *ps*. [2]

11 A company is launching a new limited-edition watch, L-Watch. The profit, p thousand dollars, will be a function of the selling price, s thousand dollars, of each L-Watch. One of the business analysts in the company predicts that the profit function can be represented by

$$p: s \mapsto -\frac{1}{2}(s-4)^2 + 3, \ s > 0.$$

(ii) The function p^{-1} exists if the domain of p is restricted to $0 < s \le k$, where $k \in \mathbb{R}$. State the largest value of k. [1]

(a)(ii) Largest value of $k = 4$

(iii) Using the domain defined in part (a)(ii), find $p^{-1}(x)$ and state the domain

	of p^{-1} .		[4]
(a)(iii)	$y = -\frac{1}{2}(s-4)^2 + 3$	Must take note that	
Answer to the question. Ensure	$(s-4)^{2} = 6-2y$ $s = 4 \pm \sqrt{6-2y}$	$(s-4)^2 = 6 - 2y$ $s-4 = \pm\sqrt{6-2y}$	Explain which expression is chosen based on the domain of <i>p</i> .
variable throughout.	$= 4 - \sqrt{6 - 2y}$ $p^{-1}(x) = 4 - \sqrt{6 - 2x}$ $D_{p^{-1}} = R_{p} = (-5, 3]$	(since $s \le 4$) If question asks for range the answer must be given notation (such as interval	or domain, in set notation).

For the rest of the question, the domain of p is as originally defined.

Based on past market trends, the company adjusts the selling price of the L-watch periodically. The business analysts proposes that the selling price, s thousand dollars, of the L-Watch at time t months after the launch of the L-Watch can be modelled by the function

$$s:t\mapsto \frac{2t+5}{t+1},\ t\ge 0.$$

(b) Show that the composite function *ps* exists.

(c) Find ps(2) and give an interpretation of ps(2) in context. [3]

(c)

$$ps(2) = p\left(\frac{2(2)+5}{(2)+1}\right)$$

$$= p(3)$$

$$= -\frac{1}{2}(3-4)^{2}+3$$

$$= 2.5$$
Since question asks for "in context", you have to refer to the question and answer in context as best as you can.

$$ps(2) = 2.5 \text{ is the profit, in thousands of dollars, for each L-watch 2 months after launch.$$

[2]

(d) Find the range of *ps*.

[2]