Anglo - Chinese School

(Independent)

FINAL EXAMINATION 2017

YEAR 3 INTEGRATED PROGRAMME

CORE MATHEMATICS PAPER 2

MONDAY

9th October 2017

1 hour 30 minutes

INSTRUCTIONS TO STUDENTS

Do not open this examination paper until instructed to do so. A calculator is required for this paper.

Answer all the questions on the answer sheets provided.

At the end of the examination, fasten the answer sheets together.

Unless otherwise stated in the question, all numerical answers must be given exactly

or correct to three significant figures. Answers in degrees are to be given to one decimal place.

INFORMATION FOR STUDENTS

The maximum mark for this paper is 80.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all the questions on the answer sheets provided. Begin each question on a new page.

- **1** [Maximum mark: 10]
 - (a) It is given that $s = ut + \frac{1}{2}at^2$.
 - (i) Express a in terms of s, u and t.
 - (ii) Find the value of a when s = 12.4, u = 0.256 and t = 0.25, leaving your answer corrected to the nearest whole number.

(b) Solve the equation
$$\frac{4}{y-1} = \frac{y-1}{8}$$
, leaving your answers in the simplest surds.

(c) A man bought m pencils at r dollars per dozen. He sold them for k cents each. Find an expression, in terms of m, r and k, for the profit, in cents, that he made.

[3]

[2]

[2]

[3]

2 [Maximum mark: 6]

Find the value(s) of k for which the line x + y = k is a tangent to the curve $x^2 - 3x + y^2 = 5$. [6]

3 [Maximum mark: 11]

Solve the following equations:

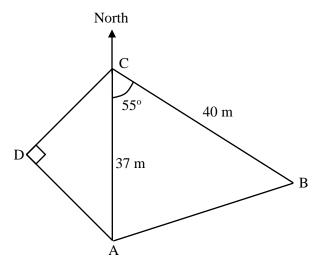
(a)
$$2^{x+3} \times 8^{2x-3} = 64^{x+7}$$

(b)
$$\log_2 x + \log_8 2x = 2\frac{1}{3}$$

(c) Solve the equation $e^{1-t} + 2 = \frac{7}{e^t}$, giving your answer correct to 2 decimal places.

[4]

[3]

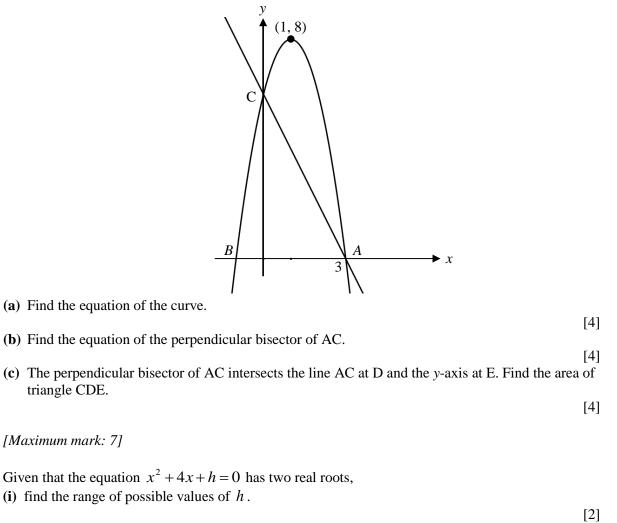

[4]

- 4 [Maximum mark: 7]
 - (a) The sum *S* of the first *n* integers is given by the formula $S = \frac{1}{2}n(n+1)$. What is the minimum number of integers required in order for the sum to exceed 325? [3]

(**b**) Find the values of the integers
$$a$$
 and b such that $\frac{a+b\sqrt{5}}{5+2\sqrt{5}} = \frac{5+2\sqrt{5}}{2+\sqrt{5}}$.
[4]

5 [Maximum mark: 10]

In the diagram, the points A, B, C and D are on level ground. The point D is equidistant from A and C and $\angle ADC = 90^{\circ}$. C is due north of A, AC = 37 m, BC = 40 m and $\angle BCA = 55^{\circ}$.


Calculate

- (a) the area of $\triangle ABC$,
- [2] (b) *∡CBA*,
- (c) the distance AD, [4]
- [2] (d) the bearing of A from B.
 - [2]

6 [Maximum mark: 12]

7

The diagram below shows the curve of a quadratic function that cuts the *y*-axis at C and the *x*-axis at B and A where x = 3. It has a maximum point at (1, 8). A straight line passes through C and A.

(ii) find the value of h if the two roots are α and β where $\alpha - \beta = 4\sqrt{3}$.

[5]

8 [*Maximum mark: 13*]

A closed rectangular box of height *h* cm has a horizontal rectangular base of sides 3x cm and 2x cm, where $1 \le x \le 6$.

(a) If the volume of the box is 200 cm³, express h in terms of x and show that the total surface area,

A cm², of the box is given by
$$A = 12x^2 + \frac{1000}{3x}$$

The table below shows some values of x & the corresponding values of A (correct to the nearest integer).

X	1	2	3	4	5	6
Α	345	215	а	275	367	488

- (**b**) Calculate the value of *a*.
- (c) Taking 2 cm to represent 1 unit on the horizontal axis and 2 cm to represent 50 units on the vertical axis, draw the graph of $A = 12x^2 + \frac{1000}{3x}$ for $1 \le x \le 6$.
- (d) From the graph, estimate
 - (i) the minimum value of A, and the corresponding height of the box,
 - (ii) the range of values of x for which $A \le 300$.

9 [Maximum mark: 4]

The roots, α and β , of the equation $ax^2 + bx + c = 0$ are in the ratio 1 : *n*. Show that $(1+n)^2 ac = nb^2$.

[4]

-----END OF PAPER-----

[4]

[4]

[4]

[1]

1ai)	1 2	
	$s = ut + \frac{1}{2}at^2$	
	$s - ut = \frac{1}{2}at^2$	
	3^{3} $uu = 2^{uu}$	
	$2s - 2ut = at^2$	
	$a = \frac{2s - 2ut}{t^2} = \frac{2(s - ut)}{t^2}$	
1aii)	$a = \frac{2(12.4) - 2(0.256)(0.25)}{0.25^2}$	
	$u = 0.25^2$	
1b)	$\frac{a = 395}{\frac{4}{y-1} = \frac{y-1}{8}}$	
10)	$\frac{1}{y-1} = \frac{y-1}{8}$	
	$(y-1)^2 = 32$	
	$y - 1 = \pm 4\sqrt{2}$	
1c)	$y = 1 \pm 4\sqrt{2}$ Cost of each pencil = $\frac{mr_{100}}{12}$	
	$\frac{12}{12}$	
	Selling price $= mk$	
	Profit = $mk - \frac{mr_{100}}{12} = m(k - \frac{25}{3}r)$	
2)	x = k - y	
	$(k - y)^2 - 3(k - y) + y^2 = 5$	
	$k^2 - 2ky + y^2 - 3k + 3y + y^2 - 5 = 0$	
	$2y^2 + 3y - 2ky - 5 - 3k + k^2 = 0$	
	$2y^2 + (3 - 2k)y - 5 - 3k + k^2 = 0$	
	$(3-2k)^2 - 4(2)(k^2 - 3k - 5) = 0$	
	$9 - 12k + 4k^2 - 8k^2 + 24k + 40 = 0$	
	$-4k^2 + 12k + 49 = 0$	
	$4k^2 - 12k - 49 = 0$	
	k = 5.31 or k = -2.31	
3a)	$2^{x+3} \times 2^{6x-9} = 2^{6x+42}$	
	$2^{7x-6} = 2^{6x+42}$	

	7x - 6 = 6x + 42	
	x = 48	
3b)	$\log_2 x + \log_8 2x = 2\frac{1}{3}$	
	$\log_8 x^3 + \log_8 2x = 2\frac{1}{3}$	
	$\log_8 2x^4 = 2\frac{1}{3}$	
	$2x^4 = 128$	
	$x^4 = 64$	
	x = 2.83	
3c)	$x = 2.83$ $e^{1-t} + 2 = \frac{7}{e^t}$	
	$\frac{e}{e^t} + 2 = \frac{7}{e^t}$	
	$e + 2e^t = 7$	
	$e^t = \frac{7-e}{2}$	
	$\ln e^t = \ln \left(\frac{7-e}{2}\right)$	
	t = 0.761	
4a)	$\frac{1}{2}n(n+1) > 325$	
	$n^2 + n - 650 > 0$	
	(n-25)(n+26) > 0	
	n < -26 or $n > 25$	
	Hence, minimum number of integers = 26	
4b)	$\frac{a+b\sqrt{5}}{5+2\sqrt{5}} = \frac{5+2\sqrt{5}}{2+\sqrt{5}}$	
	$a + b\sqrt{5} = \frac{(5 + 2\sqrt{5})^2}{2 + \sqrt{5}}$	
	$a + b\sqrt{5} = \frac{45 + 20\sqrt{5}}{2 + \sqrt{5}}$	

	$a + b\sqrt{5} = \frac{45 + 20\sqrt{5}}{2 + \sqrt{5}} \times \frac{2 - \sqrt{5}}{2 - \sqrt{5}}$	
	$a + b\sqrt{5} = \frac{90 - 45\sqrt{5} + 40\sqrt{5} - 100}{-1}$	
	$a + b\sqrt{5} = 10 + 5\sqrt{5}$	
5a)	Area of triangle = $\frac{1}{2}ab\sin C$	
	Area of triangle = $\frac{1}{2}(37)(40) \sin 55$	
	Area of triangle = 606	
5b)	$AB^{2} = 37^{2} + 40^{2} - 2(37)(40) \cos 55$ $AB^{2} = 1271.213$ AB = 35.65	
	$\frac{\sin 55}{35.65} = \frac{\sin \angle CBA}{37}$ $\sin \angle CBA = 0.85017$ $\angle CBA = 58.2^{\circ}$	
5c)	$\cos 45^o = \frac{AD}{37}$	
5d)	AD = 26.2 Alternate Angle = 55 ^o	
	Bearing = $360 - 55 + 58.2$	
	Bearing = 246.8°	
7a)	$y = a(x-1)^2 + 8$	
	When $x = 3$ and $y = 0$,	
	$0 = a(3-1)^2 + 8$	
	-8 = 4a	
	a = -2	
	$y = -2(x-1)^2 + 8$	
7b)	When $x = 0$,	
	y = 6	
	Coordinate of C(0, 6)	

	Midpoint of AC = $\left(\frac{0+3}{2}, \frac{6+0}{2}\right)$	
	Midpoint of AC = $\left(\frac{3}{2}, 3\right)$	
	Gradient of AC = $-\frac{6}{3}$	
	Gradient of $AC = -2$	
	Gradient of perpendicular bisector $=\frac{1}{2}$	
	Equation is:	
	$y - 3 = \frac{1}{2}\left(x - \frac{3}{2}\right)$	
	$y = \frac{1}{2}x + \frac{9}{4}$	
7c)	$D\left(\frac{3}{2},3\right)$	
	When $x = 0$,	
	$y = \frac{9}{4}$	
	Area of triangle CDE = $\frac{1}{2}(6 - \frac{9}{4})(\frac{3}{2})$	
	Area of triangle $CDE = 2.81$	
8ai)	Area of triangle CDE = 2.81 $4^2 - 4(1)(h) > 0$	
	16 - 4h > 0 -4h > -16	
	h < 4	
8aii)	$\alpha + \beta = -4$	
	$\alpha \beta = h$ $\alpha \beta = h$ $\alpha^{2} + \beta^{2} + 2\alpha\beta = 16(1)$ $\alpha - \beta = 4\sqrt{3}$	
	$\alpha - \beta = \sqrt{(\alpha + \beta)^2} \cdot \frac{\alpha^2 + \beta^2 - 2\alpha\beta = 48 \dots (2)}{(1) - (2)} \cdot \frac{4\alpha\beta = -32}{4\alpha\beta = -32}$	
	$4\sqrt{3} = \sqrt{(-4)^2 - 4h} \qquad \qquad 4\alpha\beta = -32$ $\alpha\beta = -8$	
	16(3) = 16 - 4h	
	4h = -32	
	h = -8	
9a)	$3x \times 2x \times h = 200$	
	$h = \frac{200}{6x^2}$	
	Area = $2(3x)(2x) + 2(2x)(h) + 2(3x)(h)$	

ACS (Independent) Math Dept/Y3 IPC ore Math Paper 2/2017/Final Examination

	$Area = 12x^2 + 10xh$	
	Area = $12x^2 + 10x \left(\frac{200}{6x^2}\right)$	
	Area = $12x^2 + \frac{1000}{3x}$	
9b)	$a = 12(3)^2 + \frac{1000}{3(3)}$	
	a = 219	
9c)	(1.1) *Unsaved (1.1) (4.31, 300) (4.31, 300) (2.4, 208) (2.4, 208) (1.18, 300) (2.4, 208) (1.18, 300) (2.4, 208) (1.18, 300)	
9di)	Minimum Volume = 208	
	Corresponding height = $\frac{200}{6(2.4)^2}$	
	Corresponding height = 5.79	
9dii)	$1.18 \le x \le 4.31$	
10)	The roots are α and $n\alpha$	
	$\alpha + n\alpha = -\frac{b}{a}$	
	$\alpha(1+n) = -\frac{b}{a}$	
	$\alpha = -\frac{b}{a(1+n)}$	
	$(\alpha)(n\alpha) = \frac{c}{a}$	
	$n\alpha^2 = \frac{c}{a}$	

$$n\left(-\frac{b}{a(1+n)}\right)^{2} = \frac{c}{a}$$
$$\frac{nb^{2}}{a^{2}(1+n)^{2}} = \frac{c}{a}$$
$$\frac{nb^{2}}{a(1+n)^{2}} = c$$
$$nb^{2} = ac(1+n)^{2}$$