Lesson 17/

Recursion

Lesson Objectives

e understand the concept of recursion

* what is a base case

 avoid infinite recursion

 recursion with more than one base case
* recursion with non - numerics

PSSST,
DUDE,
ARE YOU
INTERESTED
IN RECURSION?

PERHAPS...

What is recursion ?

= Algorithmically: a way to design solutions to problems
by divide-and-conquer or decrease-and-conquer

> reduce a problem to simpler versions of the same
problem

= Semantically: a programming technique where a
function calls itself
° in programming, goal is to NOT have infinite recursion

o must have 1 or more base cases that are easy to solve

o must solve the same problem on some other input with the goal
of simplifying the larger problem input

Iteration so far. ..

" l[ooping constructs (while and for loops) lead to
iterative algorithms

= can capture computation in a set of state variables
that update on each iteration through loop

Multiplying using iteration

" “multiply a * b” is equivalent to “add a to itself b times”
= capture state by a+a+a+a+ .+ a

o aniteration number (1) startsat b m J J J
i € 1i-1andstop whenO fer G O

o a current value of computation (result)
result € result + a

. At
, (\O
o Tl dtesta. Bl Qut°

ey CO((\ A ‘o\e
result = 0 00 \060" e
while b > 0: i (eo‘\’a o .‘e(’é‘\o

result += a S 0(\‘\.\0% W &\

A\t (o)
b -=1 ° 0((6(\‘\‘
C

return result

Multiplying using recursion

" recursive step atb =at+tatatat.ta
+ think h d N o
think how to reduce 0
problem toa.simpler/ —atatatat.ta X{_\«\e‘a
smaller version of s T o
‘W
same problem o o0
= a +|la * (b-1) ‘(eg,oc
= base case
* keep reducing def mult(a, b): s
problem until reach a T = 1 b,dc,ec .
; == 1: i
simple case that can @0“5\
be solved directly return a xe®
* whenb=1,a*b=a else:
return a + mult(a, b-1)

Example : Factorial — Demo First

n! = n*(n-1)*(n-2)*(n-3)* ... * 1

=" for what n do we know the factorial?

n=1 -2 ifF o == 1o @
N

return 1

= how to reduce problem? Rewrite in terms of
something simpler to reach base case
n*(n-1)! - else:

return n*factorial (n-1)

def fact(n):
1f n ==

Factorial — Tracing it out return 1

else:
return n*fact (n-1)

print (fact (4))

Global scope fact scope fact scope fact scope fact scope
(call w/ n=4) (call w/ n=3) (call w/ n=2) (call w/ n=1)

fact Some

Important to note . . .

Ys -
2% &’060%
2
o, 54, S
s . (/f(‘ /77@
' : . 79 9,

= each recursive call to a function creates its Vots S et
own scope/environment %, e,

= bindings of variables in a scope are not
changed by recursive call

= flow of control passes back to previous
scope once function call returns value

lteration VS Recursion

gel ractorial aber(nj :

prod = 1

def factorial (n):

1f n ==

for 1 An ¥ange(l,n+l) ¢

prod *= 1

return prod

return 1

else:

We will talk more about
efficiency in the topic of
searching and sorting.

return n*factorial (n-1)

= recursion may be simpler, more intuitive
= recursion may be efficient from programmer POV
= recursion may not be efficient from computer POV

Tower of Hanoi

1. Our goal 1s to move the entire tower to the middle peg.

2. We can only move one disk at a time.

3. We can never place a larger disk on a smaller one.

* Difficult to solve through Iteration
* Easy when Recursion is used
* Try it yourself : https://www.mathsisfun.com/games/towerofhanoi.html

https://www.mathsisfun.com/games/towerofhanoi.html

Think Recursively

Tower of Hanoi : the code

def printMove (fr, to):
print ('move from ' + str(fr) + '
def Towers(n, fr, to, spare):
1f n == 1:
printMove (fr, to)
else:
Towers (n-1, fr, spare, to)
Towers(l, fr, to, spare)
Towers (n-1, spare, to, fr)

Invest time to really digest
and understand this code !

to ' + str(to))
>>> Towers(4,1,2,3)
move 1 to 3
move 1 to 2
move 3 to 2
move 1 to 3
move 2 to 1
move 2 to 3
move 1 to 3
move 1 to 2
move 3 to 2
move 3 to 1
move 2 to 1
move 3 to 2
move 1 to 3
move 1 to 2
move 3 to 2

Example : Fibonacci Number

= Fibonacci numbers
> Leonardo of Pisa (aka Fibonacci) modeled the following
challenge
Newborn pair of rabbits (one female, one male) are put in a pen
Rabbits mate at age of one month

®)

O

@)

Rabbits have a one month gestation period

Assume rabbits never die, that female always produces one new
pair (one male, one female) every month from its second month
on.

O

> How many female rabbits are there at the end of one year?

ar i

Crge

Yy

at &

at &

Tk

ar T

ar 1o

/ﬁéf&

at &

Y

at &

Y

ar 1o

at &

4R

%é\

at i

Al T

Consolidating the idea

After one month (call it 0) — 1 female

After second month —still 1 female (now
pregnant)

After third month — two females, one pregnant,
one not

In general, females(n) = females(n-1) +
females(n-2)

o Every female alive at month n-2 will produce one
female in month n;

o These can be added those alive in month n-1 to
get total alive in month n

ldea of code

= Base cases:
> Females(0) =1
> Females(1) =1

= Recursive case
> Females(n) = Females(n-1) + Females(n-2)

Recursion with non-numerics :
The Problem . ..

" how to check if a string of characters is a palindrome, i.e.,
reads the same forwards and backwards

o “Able was |, ere | saw Elba” — attributed to Napoleon

o “Are we not drawn onward, we few, drawn onward to new era?” —
attributed to Anne Michaels

think recursively

= First, convert the string to just characters, by stripping
out punctuation, and converting upper case to lower
case

®* Then
> Base case: a string of length 0 or 1 is a palindrome

o Recursive case:

o |f first character matches last character, then is a palindrome if
middle section is a palindrome

idea of code

=‘Able was |, ere | saw Elba’ = ‘ablewasiereisawleba’

"isPalindrome (lewa81erelsawle)
IS same as Y
o == @ and
isPalindrome(\blewasiereisawleb/)
|

The code

def isPalindrome (S) :

def toChars (s) :
s = s.lower ()
ansg = *1
EOE € LI S
1f ¢ 1n 'abcdefghijklmnopgrstuvwxyz':
ans = ans + cC
return ans

def isPal (s) :
1f len(s) <= 1:
return True
else:
return s[0] == s[-1] and isPal(s[1l:-11])

return 1isPal (toChars(s))

takeaway . ..

= an example of a “divide and conquer” algorithm

= solve a hard problem by breaking it into a set of sub-
problems such that:

> sub-problems are easier to solve than the original

o solutions of the sub-problems can be combined to solve
the original

PROBLEMS

Work to do . . .

*14 - Recursion
* Programming Assignment 14

