Basic Mastery Questions

2.
$$2x^2 - 3xy + y^2 = 5$$
.

Differentiate implicitly wrt *x*, we get:

$$4x-3y-3x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$$
$$\frac{dy}{dx}(2y-3x) = 3y-4x$$
$$\frac{dy}{dx} = \frac{3y-4x}{2y-3x}.$$

At (4, 3), gradient of tangent is

$$\frac{dy}{dx} = \frac{3(3) - 4(4)}{2(3) - 3(4)} = \frac{7}{6}.$$

Hence equation of tangent is:

$$y-3 = \frac{7}{6}(x-4)$$
$$y = \frac{7}{6}x - \frac{5}{3}.$$

Gradient of normal,
$$-\frac{1}{\frac{dy}{dx}} = -\frac{6}{7}$$
.

Hence equation of normal is:

$$y-3 = -\frac{6}{7}(x-4)$$
$$y = -\frac{6}{7}x + \frac{45}{7}.$$

3.
$$x^2 - 8x + y^2 - 4y + 6xy + 4 = 0$$
.

Differentiate implicitly wrt to x, we get:

$$2x-8+2y\frac{dy}{dx}-4\frac{dy}{dx}+6y+6x\frac{dy}{dx}=0$$

$$\Rightarrow \frac{dy}{dx}(6x+2y-4)=6x+2y-4$$

$$\Rightarrow \frac{dy}{dx}=\frac{8-2x-6y}{6x+2y-4}.$$

For tangent to be parallel to *x*-axis,

$$\frac{dy}{dx} = 0$$

$$\frac{8 - 2x - 6y}{6x + 2y - 4} = 0$$

$$8 - 2x - 6y = 0$$

$$x = 4 - 3y. \qquad (1)$$

Substituting (1) into

$$x^{2}-8x+y^{2}-4y+6xy+4=0$$
,

$$(4-3y)^2 - 8(4-3y) + y^2 - 4y$$

+6(4-3y)y+4=0

$$(4-3y)(4-3y-8+6y)$$

$$+y^2-4y+4=0$$

$$(4-3y)(-4+3y) + (y-2)^2 = 0$$

$$(y-2)^2 - (3y-4)^2 = 0$$

$$(y-2-3y+4)(y-2+3y-4)=0$$

$$(-2y+2)(2y-3) = 0$$

$$\Rightarrow$$
 y = 1 or y = $\frac{3}{2}$

$$\Rightarrow x = 1 \text{ or } y = \frac{1}{2} \text{ respectively.}$$

Hence coordinates of the points are (1,1) and $\left(-\frac{1}{2},\frac{3}{2}\right)$.

4.
$$x = 5a \sec \theta$$
, $y = 3a \tan \theta$ where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

$$\frac{dx}{d\theta} = 5a \sec \theta \tan \theta$$
, $\frac{dy}{d\theta} = 3a \sec^2 \theta$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\left[\frac{\mathrm{d}y}{\mathrm{d}\theta}\right]}{\left[\frac{\mathrm{d}x}{\mathrm{d}\theta}\right]} = \frac{3a\sec^2\theta}{5a\sec\theta\tan\theta} = \frac{3}{5\sin\theta}.$$

When the normal is parallel to y = x,

$$-\frac{1}{\frac{dy}{dx}} = 1$$

$$\frac{dy}{dx} = -1$$

$$\frac{3}{5\sin\theta} = -1$$

$$\theta = \sin^{-1}\left(-\frac{3}{5}\right).$$

Hence,

$$x = 5a \sec \left[\sin^{-1} \left(-\frac{3}{5} \right) \right] = \frac{25}{4} a,$$
$$y = 3a \tan \left[\sin^{-1} \left(-\frac{3}{5} \right) \right] = -\frac{9}{4} a.$$

The point on the curve where the normal is parallel to the line $y = x \operatorname{is} \left(\frac{25}{4} a, -\frac{9}{4} a \right)$.

Practice Questions

5.
$$x^3 + xy + 2y^3 = k$$
. --- (1)

Differentiate implicitly wrt x, we get:

$$3x^{2} + y + x\frac{dy}{dx} + 6y^{2}\frac{dy}{dx} = 0$$
$$\left(x + 6y^{2}\right)\frac{dy}{dx} = -\left(3x^{2} + y\right)$$
$$\frac{dy}{dx} = -\frac{3x^{2} + y}{x + 6y^{2}}.$$

Since *C* has a tangent which is parallel to the *y*-axis, the normal at the point of contact of the tangent with C is parallel to the *x*-axis, i.e.

$$-\frac{1}{\frac{dy}{dx}} = 0$$

$$\frac{x + 6y^2}{3x^2 + y} = 0$$

$$x = -6y^2.$$

Substitute $x = -6y^2$ into (1), we get:

$$(-6y^{2})^{3} + (-6y^{2})y + 2y^{3} = k$$

$$-216y^{6} - 6y^{3} + 2y^{3} = k$$

$$216y^{6} + 4y^{3} + k = 0 \text{ (shown)}.$$

Hence

$$y^{3} = \frac{-4 \pm \sqrt{(4)^{2} - 4(216)k}}{2(216)}.$$

For real values of y^3 ,

$$(4)^2 - 4(216)k \ge 0$$

$$k \le \frac{1}{54}$$
 (shown).

When
$$x = -6$$
,

$$-6y^{2} = -6$$
$$y^{2} = 1$$
$$y = 1 \text{ or } -1.$$

Hence from (1), when y = 1,

$$k = (-6)^3 + (-6)(1) + 2(1)^3 = -220,$$

And when y = -1,

$$k = (-6)^3 + (-6)(-1) + 2(-1)^3 = -212.$$

6.
$$x = t^{2}, y = t^{3}.$$

$$\frac{dx}{dt} = 2t, \frac{dy}{dt} = 3t^{2}.$$

$$\frac{dy}{dx} = \frac{\left[\frac{dy}{dt}\right]}{\left[\frac{dx}{dt}\right]} = \frac{3t^{2}}{2t} = \frac{3t}{2}.$$

Then equation of tangent is

$$y - t^{3} = \frac{3t}{2} (x - t^{2})$$

$$2y - 2t^{3} = 3tx - 3t^{3}$$

$$2y - 3tx + t^{3} = 0 \text{ (proven).} ----(1)$$

(i) For tangents that pass through $(X, Y), 2Y - 3tX + t^3 = 0.$

Since the equation of the tangent passing through (X, Y) is a cubic equation in t, there are at most only 3 real roots for t, hence there cannot be more than 3 tangents passing through (X, Y).

[Note that each value of *t* results in one tangent equation when substituted into (1).]

(ii) Equation of tangent at t = 2: $2y - 3(2)x + (2)^3 = 0$

$$2y - 6x + 8 = 0$$

$$y - 3x + 4 = 0$$
.

Since the tangent meets the curve again at t = u, substitute $x = u^2$ and $y = u^3$ into y - 3x + 4 = 0,

$$u^3 - 3u^2 + 4 = 0$$

$$(u+1)(u^2-4u+4)=0$$

$$(u+1)(u-2)^2=0$$

Hence u = -1.

7(i)
$$x = 2t - 1, y = \frac{1}{2t + 1}$$
.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{2}{(2t+1)^2}.$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\left[\frac{\mathrm{d}y}{\mathrm{d}t}\right]}{\left[\frac{\mathrm{d}x}{\mathrm{d}t}\right]} = -\frac{1}{\left(2t+1\right)^2} < 0.$$

Therefore curve shows a decreasing function.

(ii) At
$$t = -1$$
, $x = -3$ and $y = -1$.
At $t = \frac{5}{8}$, $x = \frac{1}{4}$ and $y = \frac{4}{9}$.

Hence,

gradient of chord =
$$\frac{\frac{4}{9} - (-1)}{\frac{1}{4} - (-3)} = \frac{4}{9}.$$

For tangent to be parallel to chord,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{9}$$
$$-\frac{1}{(2t+1)^2} = \frac{4}{9} \Longrightarrow (2t+1)^2 = -\frac{9}{4}$$

Since $(2t+1)^2 > 0$, *t* is undefined, and hence there is no tangent to the curve parallel to the chord.

(iii) Gradient of normal to the curve is given by:

$$-\frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}} = \left(2t+1\right)^2$$

At
$$t = \frac{1}{2}$$
, $x = 0$, $y = \frac{1}{2}$, $-\frac{1}{\frac{dy}{dx}} = 4$.

Hence equation of normal to the

curve at $t = \frac{1}{2}$ is:

$$y - \frac{1}{2} = 4\left(x - 0\right)$$

$$2y = 8x + 1$$
.

Since the normal meets the curve again,

$$2\left(\frac{1}{2t+1}\right) = 8(2t-1)+1$$

$$2 = 8(4t^2-1)+(2t+1)$$

$$32t^2+2t-9=0$$

$$\left(t-\frac{1}{2}\right)\left(t+\frac{9}{16}\right) = 0$$

$$t = \frac{1}{2} \text{ or } t = -\frac{9}{16}.$$

At
$$t = -\frac{9}{16}$$
, $x = -\frac{17}{8}$ and $y = -8$.

Hence the normal to the curve at $t = \frac{1}{2}$ meets the curve again at $\left(-\frac{17}{8}, -8\right)$.

(iv)
$$4x + \frac{1}{4} = 0$$
$$\Rightarrow x = -\frac{1}{8}.$$

Coordinates of *P* are $\left(-\frac{1}{8}, 0\right)$.

Therefore area of triangle *OPQ* is

$$\left(\frac{1}{8} \times \frac{1}{2}\right) \times \frac{1}{2} = \frac{1}{32} .$$