Searching and Sorting
algorithmes

Lesson 3

SEARCHING ALGORITHMS

" |linear search
* brute force search (aka British Museum algorithm)

* |ist does not have to be sorted

= bisection search
* |list MUST be sorted to give correct answer
* saw two different implementations of the algorithm

LINEAR SEARCH
ON UNSORTED LIST: RECAP

def linear search(L, e):
found = False

for 1 i1n range(len(L)): 'ﬂﬁﬁiégﬂ
if e == L[i]:) ﬁﬁﬁéﬂﬁf‘-
found = True Hﬁg{'ﬂiﬁhﬂiﬁﬁ? 252
return found tzﬁiaziﬂ.“ﬁﬂﬁi
P

* must look through all elements to decide it's not there

,c_?-ﬂ
= O(len(L)) for the loop *|O(1) to test if e == L[i] ﬁmﬁﬂ;ﬁ;ﬁmﬂi
IF"‘E"EI '-..'EE ,-_;.;_Eb
= overall complexity is O(n) — where n is len(L) ,-Leti"fi-\fﬂ“ﬁ
5]

LINEAR SEARCH
ON SORTED LIST: RECAP

def search(L, e):
for 1 in range(len(L)):
if L[1i] == e:
return True
1if L[1] > e:
return False
return False

" must only look until reach a number greater than e
= O(len(L)) for the loop * O(1) to test if e == L][i]

= overall complexity is O(n) — where n is len(L)

USE BISECTION SEARCH:
RECAP

Pick an index, i, that divides list in half
Askif L[1] == e

If not, askif L[1] islarger or smaller than e

ol N

Depending on answer, search left or right halfof L fore

A new version of a divide-and-conquer algorithm

" Break into smaller version of problem (smaller list), plus
some simple operations

" Answer to smaller version is answer to original problem

BISECTION SEARCH
IMPLEMENTATION: RECAP

def bisect search2(L, e):
def bisect search helper(L, e, low, high):
1if high = low:

return L[low] == e
mid = (low + high)//2
1f L[mid] == e:

return True
elif L{mid] > e:
1f low == mid: #nothing left to search
return False
else:

return (bisect search helper(L, e, low, mid - 1)

else:
return| bisect search helper(L, e, mid + 1, high)
1f len(L) == 0=
return False
else:
return bisect search helper(L, e, 0, len(L) - 1)

COMPLEXITY OF BISECTION
SEARCH: RECAP

= hbisect_search2 and its helper
* O(log n) bisection search calls

* reduce size of problem by factor of 2 on each step
» pass list and indices as parameters
* |list never copied, just re-passed as pointer

* constant work inside function
+ 2 0Oflog n)

SEARCHING A SORTED LIST
—-nis len(L)

* using linear search, search for an element is O(n)

= using binary search, can search for an element in O(log n)
* assumes the list is sorted!

* when does it make sense to sort first then search?
* SORT+0O(log n)<0O(n) 2 SORT<0O(n)-0(log n)
* when sorting is less than O(n)

* NEVER TRUE!

* to sort a collection of n elements must look at each one at
least once!

AMORTIZED COST
- nis len(L)

= why bother sorting first?

" in some cases, may sort a list once then do many
searches

= AMORTIZE cost of the sort over many searches
= SORT + K*O(log n)<K*O(n)

— for large K, SORT time becomes irrelevant, if
cost of sorting is small enough

SORT ALGORITHMS

= Want to efficiently sort a list of entries (typically
numbers)

= Will see a range of methods, including one that is
quite efficient

MONKEY SORT

= aka bogosort, stupid

sort, slowsort,
permutation sort,

shotgun sort

= to sort a deck of cards
* throw them in the air

* pick them up
* are they sorted?
* repeat if not sorted

COMPLEXITY OF BOGO SORT

def bogo sort(L):
while not 1s sorted(L):
random.shuffle(L)

= best case: O(n) where n is len(L) to check if sorted

= worst case: O(?) it is unbounded if really unlucky

BUBBLE SORT

" compare consecutive pairs
of elements

" swap elements in pair such
that smaller is first

" when reach end of list,
start over again

" stop when no more swaps
have been made

" |argest unsorted element
always at end after pass, so
at most n passes

COMPLEXITY OF BUBBLE SORT

deft bubble sort(L):

swap = False Qﬁ
: \e
while not swap: o\
swap = True ﬁﬁﬁ
for j in range(l, len(L)): oNe
if L[j-1] > L[]]:
swap = False
temp = L[]]
L[J] = L[J-1]
L[j-1] = temp

" inner for loop is for doing the comparisons

" outer while loop is for doing multiple passes until no more
swaps

" O(n?) where n is len(L)
to do len(L)-1 comparisons and len(L)-1 passes

SELECTION SORT

= first step
* extract minimum element

* swap it with element at index 0

= subsequent step
* in remaining sublist, extract minimum element
* swap it with the element at index 1

= keep the |left portion of the list sorted
» ati'th step, first i elements in list are sorted
» all other elements are bigger than first i elements

ANALYZING SELECTION SORT

= [oop invariant

= given prefix of list L[0:i] and suffix L[i+1:len(L)], then
prefix is sorted and no element in prefix is larger than
smallest element in suffix

1. base case: prefix empty, suffix whole list — invariant
true

2. induction step: move minimum element from suffix
to end of prefix. Since invariant true before move,
prefix sorted after append

3. when exit, prefix is entire list, suffix empty, so sorted

COMPLEXITY OF SELECTION
SORT

def selection_sort(L):

©
pr

. .:{".E'
suffixsSt = 0 f‘.@f:‘ f;@"’n ﬁme'ﬁ-
] . N Un:}'?- _ 1531
while suffixst != len(L): 2 o
. : RN
for 1 1n range(suffixst, len(L)): wﬁﬁhﬂﬂﬁ

if L[i] < L[suffixst]: -
L[suffixst], L[i] = L[1], L[suffixst]
suffixst += 1

» outer loop executes len(L) times

* inner loop executes len(L) — i times

= complexity of selection sort is O(n?) where n is len(L)

MERGE SORT

= yse a divide-and-conquer approach:
1. iflistis of length O or 1, already sorted

2. if list has more than one element, split into two lists,
and sort each
3. merge sorted sublists

1. look at first element of each, move smaller to end of the
result

2. when one list empty, just copy rest of other list

MERGE SORT

= divide and conquer

unsorted
unsorted unsorted
unsorted unsorted unsorted unsorted
unsor unsor unsor | [unsor unsor UNsor Unsor Unsor
ted terd ted ted ted ted ted ted
merge Merge merge merge merge merge merge merge

= split list in half until have sublists of only 1 element

MERGE SORT

= divide and conquer

unsorted
unsorted unsorted
unsorted unsorted unsorted unsorted
sort sort sort sort sort sort sart sort
A L __;'"
merge merge merge Merge

= merge such that sublists will be sorted after merge

MERGE SORT

= divide and conquer

unsorted

unsorted

unsorted

sorted sorted

sorted

sorted

merge

= merge sorted sublists

= sublists will be sorted after merge

merge

MERGE SORT

= divide and conquer

unsorted

sorted sorted

merge

= merge sorted sublists

= sublists will be sorted after merge

MERGE SORT

= divide and conquer — done!

sorted

EXAMPLE OF MERGING

Leftin list 1
[1)5,12,18,19,20]
[512,18,19,20
5,12,18,19,20]
[5,12,18,19,20
[5,12,18,19,20
[12,18,19,20]
[18,19,20]
[18,19,20]
(]

Left in list 2
(2)3,4,17]

(2)3,4,17]
[3)4,17]
[4,17]
[17]
[17
[17

[]
[]

Compare Result
L2—0
52—

5,3} 115210

5,4 1,2,3]

o, 17 [1,2,3,4]

12,17 1,2,3,4,5]

18, 17 [1,2,3,4,5,12]
18, — [1,2,3,4,5,12,17]

[1,2,3,4,5,12,17,18,19,20]

MERGING SUBLISTS STEP

- XD
def merge(left, right): gﬁﬁﬁ'
result = [] z {\%‘Tﬁ
j—rj — ﬂfﬂ' ﬁ‘ﬂ-ﬂ E‘[!_".l- :iuﬂ'i'
: : : _ At o
while 1 < len(left) and 7 < 1en{r1ght}:*\"ﬁﬂﬂie"ﬁ_ﬁ@{ﬁﬁ &{\‘%Gﬁgﬁi
1f Ieft[1] < right[]]: AN A
result.append({left[1]) B
1 += 1 r:,‘-..'!'- .\L‘;‘q:-.,c-"ﬂ E}"E‘:{H
else: qﬁkﬁﬁﬁﬁ
" - - W
result.append(right[]]) 2
j += 1 \:ﬁ_
- - ; A
while (1 < len(left)): Tﬁﬁﬂ%agﬁﬂq
result.append(left[1]) *;ﬁpﬁj
1 4+=1
: : : W ™
while (7 < len(right)): Tﬁpﬁyaaﬁ@
result.append(right[]]) W Tﬁ#ﬁ
3 4= 1 o

return result

COMPLEXITY OF
MERGING SUBLISTS STEP

= go through two lists, only one pass

= compare only smallest elements in each sublist

* O(len(left) + len(right)) copied elements

* O(len(longer list)) comparisons

"= linear in length of the lists

MERGE SORT ALGORITHM
-- RECURSIVE

def merge sort(L):
if len(L) < 2: =

return L[:]

elce:
middle = len(L)//2

left = merge sort(L[:middle]) ﬁﬂﬁﬁ
right = merge sort(L[middle:]) iﬁﬁPE?
et
return merge(left, right) dzﬁ;gﬂFH
e

= divide list successively into halves

= depth-first such that conquer smallest pieces down
one branch first before moving to larger pieces

84165920

base
case

Merge
Ve 1468 &0259 N
E/ff 01245689 HMHHHﬁ*
Merge Merge
48 &16 59 &02
1468 0259 \
8la "~ 1]6 5lo "~ 2o
F A Mﬁ 1
Merge Merge Merge Merge
48 16 59 02
~ 1 G 5 9 2 0
base base base | base base base base
case case case | case case case case

COMPLEXITY OF MERGE SORT

= at first recursion level
* n/2 elements in each list
* O(n) + O(n) =0(n) where nis len(L)

= at second recursion level
* n/4 elements in each list

* two merges = O(n) where n is len(L)
= each recursion level is O(n) where n is len(L)

= dividing list in half with each recursive call
* O(log(n)) where nis len(L)

= overall complexity is O(n log(n)) where n is len(L)

SORTING SUMMARY
- nis len(L)
= bogo sort

* randomness, unbounded O()

= bubble sort
. {:‘;[nil

= selection sort
* O(n?)
* guaranteed the first i elements were sorted

" merge sort
* O(n log(n))

* O(n log(n)) is the fastest a sort can be

Exercise

Ql

Q2

Q3

Use merge_sort to sort a list of tuples of integers. The sorting
order should be determined by the sum of the integers in the

tuple.
For example, (5, 2) should precede (1, 8) and follow (1, 2, 3).

What is a stable sort? Is merge_sort a stable sort?

Find out more about other sorting algorithms. (Possible finding)
Heap sort, Quick sort, Radix sort, Tim sort, Pigeonhole sort

