2022 JC1 H2 MA Promo

1	Solution [5] System of linear equations	
	Sub (1, 2):	Generally well done.
	a+b+c=2(1)	
	Sub (-1, 0):	
	-a+b+c=0	
	a - b - c = 0(2)	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2bx - \frac{a}{x^2}$	
	When $x = 0.5, 2b(0.5) - \frac{a}{(0.25)} = -1$ b = 4a = -1 (3)	Some students make mistakes in arithmetic manipulation when sub
	Using GC $a = 1 h = 3 c = -2$	values into the differential
	$\therefore y = \frac{1}{x} + 3x^2 - 2$	equation, and couldn't get eqn (3).

2	Solution [6] Transformation	
(i)	$y = f(x) \rightarrow y = f(2x)$	A few mis-read the
	$(2a,0) \rightarrow (a,0)$	questions:
	$\begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} a & b \end{pmatrix}$	- it is not about writing
	$\left(0,\frac{-}{2}\right) \rightarrow \left(0,\frac{-}{2}\right)$	or not
		- only required to write
		down the coordinates of the
		axial intercepts.
		Generally well done.
(ii)	$y = f(x) \rightarrow y = f(x+1)$	Generally well done.
	$(2a,0) \rightarrow (2a-1,0)$	
(iii)	$y = f(x) \rightarrow y = f(x+1) \rightarrow y = f(2x+1)$	Need to revise on the
	$(2a, 0) \rightarrow (2a-1, 0) \rightarrow \left(a - \frac{1}{2}, 0\right)$	correct sequence of
	(2u, 0) $(2u - 1, 0)$ $(u - 2, 0)$	effect the desired change
(iv)	$y = f(x) \rightarrow y = 2f(x) - 1$	Generally well done.
	$\left(0,\frac{b}{2}\right) \rightarrow \left(0,b\right) \rightarrow \left(0,b-1\right)$	
(v)	$y = f^{-1}(x)$	Many are unaware if the
	$(2a,0) \rightarrow (0,2a)$	point (x, y) lies on the
	$\begin{pmatrix} b \end{pmatrix}$ $\begin{pmatrix} b \end{pmatrix}$	curve of $y = f(x)$, then the
	$\left(0,\frac{5}{2}\right) \rightarrow \left(\frac{5}{2},0\right)$	point (y, x) lies on the
		curve of $y = f^{-1}(x)$.
		Some students mistook
		$y = f^{-1}(x)$ as $y = \frac{1}{f(x)}$
		Note that
		$\frac{1}{f(x)} = \left[f(x) \right]^{-1}$

3	Solution [7] AP GP	
(i)	Let b and d be the first term and common difference of the	
	AP respectively.	
	$ar^{n-1} = b + 11d\cdots(1)$	
	$ar^n = b + 7d \cdots (2)$	Many candidates are unable to set up (1), (2) and
	$ar^{n+1} = b + 4d \cdots (3)$	(3) and work with it
	Equation $(1)-(2)$ gives	meaningfully.
	$ar^{n-1} - ar^n = 4d$	
	$\frac{ar^{n-1}-ar^n}{4}=d$	
	Equation $(2)-(3)$ gives	
	$ar^n - ar^{n+1} = 3d$	
	$ar^n - ar^{n+1} - d$	
	Hence $\frac{ar^{n} - ar^{n+1}}{3} = \frac{ar^{n-1} - ar^{n}}{4}$	
	$4(ar^{n} - ar^{n+1}) = 3(ar^{n-1} - ar^{n})$	
	$4ar^{n+1} - 7ar^n + 3ar^{n-1} = 0$	
	$ar^{n-1}(4r^2-7r+3)=0$	
	(4r-3)(r-1)=0 since <i>a</i> and <i>r</i> are non-zero.	
	$r = \frac{3}{4}$ or $r = 1$	
	Reject $r=1$ since the GP a converging GP where $-1 < r < 1$.	Need to explain the reason for $r \neq 1$
	Therefore $r = \frac{3}{4}$	
	Alternatively $ar^{n-1} = b + 11d\dots(1)$	
	$a^{n} = b + 1 a^{n} $ (1)	
	$ar^{n} = b + /d \cdots (2)$	
	$ar^{n+1} = b + 4d \cdots (3)$	
	(2) ÷(1) : $\frac{ar^n}{ar^{n-1}} = \frac{b+7d}{b+11d} \Longrightarrow r = \frac{b+7d}{b+11d}(4)$	

$$\begin{array}{l} (3) + (2): \frac{ar^{s^{-1}}}{ar^{s}} = \frac{b+4d}{b+7d} \Rightarrow r = \frac{b+4d}{b+7d} \cdots (5) \\ \frac{b+7d}{b+11d} = \frac{b+4d}{b+7d} \\ (b+7d)^{2} = (b+4d)(b+11d) \\ b^{2} + 14bd + 49d^{2} = b^{2} + 15bd + 44d^{2} \\ bd - 5d^{2} = 0 \\ d(b-5d) = 0 \\ d = 0 \text{ or } b = 5d \\ \text{Reject } d = 0 \text{ since } d = 0 \Rightarrow r = 1 \text{ but GP a converging GP} \\ \text{where } -1 < r < 1. \\ \text{Therefore } b = 5d \\ \text{Sub } b = 5d \text{ into } (4): \\ r = \frac{b+7d}{b+11d} = \frac{5d+7d}{5d+11d} = \frac{3}{4} \\ \text{For students who obtain} \\ r = \frac{4}{3}, \text{ they need to realize that } -1 < r < 1. \\ \end{array}$$
(ii)
$$\left| \frac{a(1-r^{s})}{1-r} - \frac{a}{1-r} \right| < 0.004 \left(\frac{a}{1-r}\right) \\ - 0.004 \left(\frac{a}{1-r}\right) < \frac{a(1-r^{s})}{1-r} - \frac{a}{1-r} < 0.004 \left(\frac{a}{1-r}\right) \\ \text{Note that } a > 0 \text{ and } -1 < r < 1, \text{ then } \frac{a}{1-r} > 0 \\ \end{array} \right|$$
Divide throughout by $\frac{a}{1-r}, \\ - 0.004 < \left(\frac{3}{4}\right)^{s} < 0.004 \\ - 0.004 < \left(\frac{3}{4}\right)^{s} < 0.004 \\ \text{Note that } \left(\frac{3}{4}\right)^{s} < 0 > -0.004 \text{ for all } n. \\ \left(\frac{3}{4}\right)^{s} < 0.004 \dots (*) \\ \end{array}$

$$n > \frac{\ln(0.004)}{\ln\left(\frac{3}{4}\right)} \quad \text{Note that } \ln\left(\frac{3}{4}\right) < 0.$$

$$n > 19.19$$
Hence least *n* is 20.
Alternatively,
$$S_x - S_n < 0.004S_x$$

$$\frac{a}{1-r} - \frac{a(1-r^n)}{1-r} < 0.004\left(\frac{a}{1-r}\right) \text{ (Since } S_n > S_n \text{ as } a \text{ and } r$$
are positive.)
$$\left(\frac{3}{4}\right)^n < 0.004 \dots (*)$$

$$n > 19.19$$
Hence least *n* is 20.
Note:
$$n > 19.19$$
Hence least *n* is 20.
Note:
For those who starts with
$$S_n - S_x < 0.004S_x$$

$$\frac{a(1-r^n)}{1-r} - \frac{a}{1-r} < 0.004\left(\frac{a}{1-r}\right)$$
This is **INCORRECT** because $S_x > S_n$ as *a* and *r* are positive.)
Students who work with equality,
$$\frac{a(1-r^n)}{1-r} - \frac{a(1-r^n)}{1-r} = 0.004\left(\frac{a}{1-r}\right)$$
have to use a table of values to justify the minimum value of *n* is 20.

4	Solution [7] Inequality	
(i)	$\frac{2x^2 + 6x + 1}{1 - x} - (x + 1) \ge 0$ $\frac{2x^2 + 6x + 1 - (x + 1)(1 - x)}{1 - x} \ge 0$ $\frac{2x^2 + 6x + 1 - x + x^2 - 1 + x}{1 - x} \ge 0$	Comments: 1. Other than some careless algebraic mistakes made by some students, this part of the question is generally well done.
	$\frac{3x^2 + 6x}{1 - x} \ge 0 \dots (*)$ $\frac{x(x+2)}{1 - x} \ge 0$ $+ - + + + +2 \qquad 0 \qquad 1$ $\therefore x \le -2 \text{ or } 0 \le x < 1$	2. Several students solved the inequality in (*) of the workings by considering cases. Even though this is commendable and extremely useful for tougher order thinking questions, they should consider going for efficient method (number line) especially for this standard question.
		Common Mistakes: 1. Should not cross- multiply the denominator (1-x); can only be done if it is definitely positive which we are uncertain till <i>x</i> is solved.
		2. Some students do not know how to combine into a single fraction with the correct denominator, giving the following: $\frac{2x^2 + 6x + 1}{1 - x} - (x + 1) \ge 0$ $\Rightarrow \frac{2x^2 + 6x + 1}{(1 - x)(x + 1)} - \frac{(1 - x)(x + 1)}{(1 - x)(x + 1)} \ge 0$
(ii)	$ x +1 \le \frac{2x^2+6 x +1}{1- x }$ Replace x with $ x $	Comments: 1. Majority of students were able to see that this type of question requires the use of substitution. Unfortunately, many were

$\therefore x \le -2$ (No Solution)	not able to solve it properly
or $0 \le x < 1$	subsequently.
Taking intersection $-1 < x < 1$	Common Mistakes: 1. Students made mistakes in solving $ x \le -2$, writing
	out solution such as: (a) $x \ge 0$ (b) $-2 \le x \le 2$ Students needs to learn that for special inequality expression such as: (a) for $ x \le -2$; then there's
	no solution since $ x $ is never lesser than a negative value for all real values of <i>x</i> . Other examples are such as: (b) for $ x \ge -2$; then
	$x \in \mathbb{R}$. (c) for $e^x \ge -2$; then $x \in \mathbb{R}$, etc.
	2. Similarly, when solving $0 \le x < 1$, students could consider writing it as: $0 \le x $ and $ x < 1$ $x \in \mathbb{R}$ and $-1 < x < 1$
	Finding intersection, $-1 < x < 1$

5	Solution [9] Summation	
(i) (ii)	$\frac{4r+2}{r(r+1)(r+2)} = \frac{1}{r} + \frac{2}{r+1} - \frac{3}{r+2}$	Comments: Generally, well done. Though several students used a rather long approach to solve for this 1-mark question. Do consider using substituting special values of <i>r</i> at the stage where: 4r+2= A(r+1)(r+2)+Br(r+2)+Cr(r+1) so that the constants A, B and C can be solved faster, as opposed to comparing coefficients (which is generally more time- consuming).
(ii)	$\sum_{r=2}^{n} \frac{4r+2}{r(r+1)(r+2)}$ $= \sum_{r=2}^{n} \left(\frac{1}{r} + \frac{2}{r+1} - \frac{3}{r+2}\right)$ $= \left[\frac{1}{2} + \frac{2}{3} - \frac{3}{4}\right]$ $+ \frac{1}{3} + \frac{2}{4} - \frac{3}{5}$ $+ \frac{1}{4} + \frac{2}{5} - \frac{3}{6}$ $+ \frac{1}{r+2} + \frac{2}{n-1} - \frac{3}{n}$ $+ \frac{1}{n-2} + \frac{2}{n-1} - \frac{3}{n+1}$ $+ \frac{1}{n} + \frac{2}{n+1} - \frac{3}{n+2}$ $= \frac{1}{2} + \frac{2}{3} + \frac{1}{3} - \frac{3}{n+1} + \frac{2}{n+1} - \frac{3}{n+2}$	Comments: Most students knew that this is a question on Method of Differences. Other than some arithmetic error brought over from (i), many students presented it well enough. However, several students rewrite $\sum_{r=2}^{n} \frac{4r+2}{r(r+1)(r+2)} = \sum_{r=1}^{n} \frac{4r+2}{r(r+1)(r+2)} - \frac{4(1)+2}{(1)(2)(3)}$ before starting the M.O.D. process, which is really unnecessary. Students who did such workings probably thought that M.O.D. must start with <i>r</i> =1, which is NOT TRUE.
(iii)	As $n \to \infty, \frac{1}{n+1} \to 0, \frac{3}{n+2} \to 0$	Comments: 1. It is important that

$$\begin{array}{l} \therefore \frac{3}{2} - \frac{1}{n+1} - \frac{3}{n+2} \rightarrow \frac{3}{2} \\ \therefore \text{ the series converges and the value of the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the states in the sum to infinity is } \frac{3}{2} \\ \end{array}$$

$$\begin{array}{l} \text{subset states in the states in the states in the sum the subset states in the state state in the states in the state state state in the state state in the state state in the state state state in the state state state in the state state in the state state state in the states in the state in the state in the state in the states in th$$

		sequence/series.
		In fact, by listing out: $\sum_{r=2}^{\infty} \frac{4r+2}{r(r+1)(r+2)}$ $= \frac{6}{2(3)(4)} + \frac{10}{3(4)(5)} + \frac{14}{4(5)(6)} + \dots$ students could actually see that there's no common ratio and hence it's not a GP.
(iv)	$\sum_{r=2}^{n} \frac{4r+6}{(r+1)(r+2)(r+3)}$ Replace r with k-1 $\sum_{k=1=2}^{k-1} \frac{2(k-1)+6}{((k-1)+1)((k-1)+2)(((k-1)+3)}$ $= \sum_{r=3}^{n+1} \frac{4k+2}{k(k+1)(k+2)} - 2nd term \dots (*)$ $= \frac{3}{2} - \frac{1}{(n+1)+1} - \frac{3}{(n+1)+2} - \frac{4(2)+2}{(2)(2+1)(2+2)}$ $= \frac{3}{2} - \frac{1}{n+2} - \frac{3}{n+3} - \frac{10}{24}$ $= \frac{13}{12} - \frac{1}{n+2} - \frac{3}{n+3}$	Comments: Most students knew that this question involves replacing the variable <i>r</i> . More importantly, quite a number of students did not read the question carefully to see that the instruction is by "Using your result in part (ii),…", and went on performing another Method of Differences and thus will be marked down. Such instruction restricts students to use only the result, and not the method from previous part of the question. Common Mistakes: 1. For students who identified using replacement of variable, they weren't able to correctly work out the procedure, writing out mistakes such as: $\sum_{k=1}^{n-1} \frac{4k+2}{k(k+1)(k+2)}$, etc.

6	Solution [7] Maclaurin Series	
(i)	Given that $y = e^{-x} \sin x$, then $\frac{dy}{dx} = e^{-x} \cos x + (\sin x)(-e^{-x}) = e^{-x} \cos x - y$ $\frac{dy}{dx} + y = e^{-x} \cos x - \dots - (1)$ Then differentiating (1) wrt x again: $\frac{d^2 y}{dx^2} + \frac{dy}{dx} = e^{-x}(-\sin x) + (\cos x)(-e^{-x}) = -y - (y + \frac{dy}{dx})$ Hence, we have $2y + 2\frac{dy}{dx} + \frac{d^2 y}{dx^2} = 0 - \dots - (2)$ (shown)	Comments: Many students were able to do this part properly. In fact, many students found the first and second derivative and used the method of LHS = = RHS to show the necessary result. However, note that this particular method might not work well at times and Implicit Differentiation
		should then be considered.
(ii)	Differentiating (2) wrt x again: We have $2\frac{dy}{dx} + 2\frac{d^2y}{dx^2} + \frac{d^3y}{dx^3} = 0 (3)$ Then we subs $x = 0$ in $y = e^{-x} \sin x$, to get $y = e^0 \sin 0 = 0$ Next sub $x = 0$, $y = 0$ into (1) to get $\frac{dy}{dx} = -0 + e^0 \cos 0 = 1$	Comments: Interestingly, many students used the standard series of e^{-x} and $\sin x$ to solve the question, which is fine.
	dx Then for (2) $\frac{d^2 y}{dx^2} = -2y - 2\frac{dy}{dx} = -2(0) - 2(1) = -2$ And for (3) $\frac{d^3 y}{dx^3} = -2\frac{dy}{dx} - 2\frac{d^2 y}{dx^2} = -2(1) - 2(-2) = 2$ Thus, we have $f(0) = 0$, $f'(0) = 1$, $f''(0) = -2$, $f'''(0) = 2$ for Maclaurin series for y.	Do take note that some instructions or other questions force students to use the general series $f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots$ instead, so do watch out.
	So, we have $y = e^{-x} \sin x =$ = $f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots$ $y = 0 + 1x + \frac{(-2)}{2!}x^2 + \frac{2}{3!}x^3 = x - x^2 + \frac{1}{3}x^3$ (up to x^3 term)	A handful of students have no idea how to start this part of the question, suggesting the need to review this part of the topic again.
(iii)	For the series in part (ii), if we replace 'x' by ' $-x$ ':	Comments: Again, the instruction given is by "Using the result in part (ii)" to solve for the power series of

$$y = e^{-(-x)} \sin(-x) = \left((-x) - (-x)^2 + \frac{1}{3}(-x)^3\right)$$

$$\Rightarrow -e^x \sin x = \left(-x - x^2 - \frac{1}{3}x^3\right) \operatorname{since} \sin(-x) = -\sin x$$

$$\Rightarrow e^x \sin x = x + x^2 + \frac{1}{3}x^3 \text{ (up to } x^3 \text{ term)}$$

Student can check the correctness using available formulae
in MF26.
Using standard series in MF26
We have $e^x \sin x =$

$$= \left(1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + ...\right) \left(x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + ...\right)$$

$$= x + x^2 + \frac{1}{3}x^3 \text{ (up to } x^3 \text{ term)}$$

7	Solution [8] Graphing	
(i)	Given lines $x = -1$ and $y = x + 2$ are asymptotes	Generally well done for
	$k \rightarrow k$	students who are able to
	$y = x + 2 + \frac{1}{x + 1}$	construct an expression for
	(x+2)(x+1)+k	the function with the help
	$=\frac{r}{r+1}$	of observing the
	$r^{2} + 3r + (2 + k)$	who did my long division
	$=\frac{x+5x+(2+k)}{x+1}$	method were not able to
	x+1 Comparing $a-1, b-3$	solve this question due to
	Comparing, $u = 1, b = 5$	confusion of unknowns.
(ii)	dy (x+1)(0) - k	Generally badly done.
	$\frac{1}{dx} = 1 + \frac{1}{(x+1)^2}$	Students were not able to
	dy	differentiate the given
	Let $\frac{dy}{dx} = 0$	expression correctly due to
		the unknowns or have
	$\Rightarrow 1 - \frac{\kappa}{(x+1)^2} = 0$ when $x = \sqrt{2} - 1$	incorrectly
	(x+1)	meoneeuy.
	$\therefore \frac{k}{k} = 1$	
	2	
	k = 2	
	Since	
	c = K + 2	
	c = 4	
(iii)	From graph, A is the point $(-1, 1)$	First part is generally well
	Sub (-1, 1) into equation: BUS = m(-1) + (1 + m) - 1 - LUS	done; students were able to
	RHS = m(-1) + (1+m) = 1 = LHS	that it lies on the given line
		that it lies on the given line.
	$m \ge 1$	Range of values of <i>m</i> part
	Note: <i>m</i> is the gradient of the line $v = mx + (1+m)$ When	was badly done even
	m=1 the line $y = mr + (1+m)$ is $y = r+2$ which is the	though similar tutorial
	oblique asymptote of the curve the line $y = mr + (1 + m)$	question was given. Many
	which passes through the point (1, 1) passes to be	failed to realize that values
	either more gentle (with a positive gradient) or	of <i>m</i> have to be smaller or
	- takes on a non-positive gradient	equal to 1 rather than the
	if it is not to intersects the graph again.	omer way round.
	$\mathbf{O} \cdot \mathbf{I} = \mathbf{O} \cdot \mathbf{I}$	
	Therefore $m \leq 1$	

8	Solution [7] Integration	
(i)	$\int \cos 6x \cos 4x dx$ $= \frac{1}{2} \int \left(\cos 10x + \cos 2x \right) dx$ $= \frac{1}{2} \left[\frac{1}{10} \sin 10x + \frac{1}{2} \sin 2x \right] + c$	Generally averagely done. Many students were not able to use MF26 to help them to break down the given expression using factor formulae.
(ii)	$\int x \cos 4x \cos 6x dx$ Let $u = x, \frac{dv}{dx} = \cos 4x \cos 6x$ $\frac{du}{dx} = 1 \qquad v = \int \cos 4x \cos 6x dx$ $= \frac{1}{2} \left[\frac{1}{10} \sin 10x + \frac{1}{2} \sin 2x \right]$ $\therefore \int x \cos 4x \cos 6x dx$ $= \frac{x}{2} \left[\frac{1}{10} \sin 10x + \frac{1}{2} \sin 2x \right] - \int \frac{1}{2} \left[\frac{1}{10} \sin 10x + \frac{1}{2} \sin 2x \right] dx(*)$ $= \frac{x}{2} \left[\frac{1}{10} \sin 10x + \frac{1}{2} \sin 2x \right] - \left[-\frac{1}{200} \cos 10x - \frac{1}{8} \cos 2x \right] + c$ $= \frac{x}{2} \left[\frac{1}{10} \sin 10x + \frac{1}{2} \sin 2x \right] + \frac{1}{200} \cos 10x + \frac{1}{8} \cos 2x + c$	Badly done; students were not able to identify that this is a question to be solved using by parts. Many were not able to do the first part and hence many left this part empty. Some students who attempted this question were not able to simplify what is cos (-2x) for instance.

9	Solution [9] Functions	
(i)	$y = (x-1)^2 + 1 \Longrightarrow x = 1 \pm \sqrt{y-1}$	Badly done. Many students
	Since $0 \le x < 1$, $x = 1 - \sqrt{y - 1}$.	the correct expression for
	Thus $f^{-1}: x \mapsto 1 - \sqrt{x-1}$, $D = R_{x} = (1, 2)$	the inverse function and
	$f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f$	taking into consideration of
		the range of values of x .
		function is well done by
		many students.
(ii)	Note that $D_{f^{-1}f} = D_f = [0,1)$.	Badly done; many students
	у	were not able to indicate
	↓ ↑	question and hence it
	(0,2)	caused marks to be
	$\int_{\mathbf{f}} f^{\mathbf{f}^1}$	deducted. The line $y=x$
		graph to be drawn was
	(1,1)	students did not consider
		the domain for the graph.
	O (20) x	
	(2,0)	
(iii)	y	Generally well done for the
	Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î	graph though marks were
	(0,1)	who fail to recognize that
		the end points are
		excluded. Some students
		to the axes and hence was
	(1,0)	penalized.
	Since $y = g(x)$ is symmetrical about $y = x$, $g = g^{-1}$.	Reasoning given was
	(or g is a self-inverse function.)	used the term 'same'.
		which was not accepted
		mathematically. They need
		self-inverse function.
(iv)	$R_g = (0,1), D_f = [0,1)$	Many fail to recognize the
	Since $R_{e} \subseteq D_{f}$, fg exists.	condition to prove for
	$(0,1) \xrightarrow{g} (0,1) \xrightarrow{f} (1,2)$	function. Please remember

the correct method; Range
of composite function was
averagely done, definitely
an improvement from
common test. Many
students were not able to
use the mapping method;
they need to revise on the
method to obtain the
solution.

10	Solution [11] Integra	ation	
(a)	$\int (\cos x - x \sin x) (x \cos x) \mathrm{d}x$		Generally well done.
	$= \int u du$ $= \frac{1}{2}u^2 + c$ $= \frac{1}{2}x^2 \cos^2 x + c$	$u = x \cos x$ $\frac{\mathrm{d}u}{\mathrm{d}x} = \cos x - x \sin x$	 Common errors: Not able to simplify the substitution Not expressing the final answer in terms of <i>x</i> Omitting the constant of integration
(b) (i)	(-1, -1) •	(1, 1) C (1.304, 0) (0, -1.883)	Generally well done Common errors: - Incorrect domain for <i>t</i> . - Not labelling coordinates
(b) (ii)	$x = \cos t + t \sin t \implies$ $y = \cos t - t \sin t \implies$	$\frac{dx}{dt} = t \cos t$ $\frac{dy}{dt} = -2 \sin t - t \cos t$	Generally well done, but students were weak in algebraic manipulation and differentiation.
	$\frac{dy}{dx} = \frac{-2\sin t - t\cos t}{t\cos t}$ $\frac{dy}{dx}\Big _{t=\pi} = \frac{-2\sin \pi - \pi}{\pi\cos \pi}$ Therefore, gradient of When $t = \pi$. $P(-1, -1)$	$\frac{\cos \pi}{\tau} = -1$ of Normal to <i>C</i> at <i>P</i> = 1	Some candidates were able to use their GC to find the derivative, to their benefit.
	Therefore, equation	of Normal to <i>C</i> at <i>P</i> :	

Area =
$$\int_{-1}^{\frac{\pi}{2}} \left(\frac{(2-\pi)x - 2\pi}{2+\pi} \right) dx - \int_{-1}^{\frac{\pi}{2}} y dx$$

=
$$\int_{-1}^{\frac{\pi}{2}} \left(\frac{(2-\pi)x - 2\pi}{2+\pi} \right) dx - \int_{\pi}^{\frac{\pi}{2}} (\cos t - t \sin t) (t \cos t) dt$$

=
$$-3.304496877 - (-4.934802201)$$

=
$$1.6303 \text{ units}^{2}$$

11	Solution [12] Max/Min	
(i)	Floor area $xy = 40 \Rightarrow y = \frac{40}{x}$ Area $A = 2(4x) + 2x\sqrt{(0.01y^2)^2 + (\frac{y}{2})^2} \dots (*)$ $= 8x + 2x\sqrt{(\frac{1}{100} \cdot \frac{40^2}{x^2})^2 + (\frac{40}{2x})^2}$ $= 8x + 2x\sqrt{\frac{256}{x^4} + \frac{400}{x^2}} \dots (**)$	Moderately well done. Most students were able to see the relationship between x and y and form an expression for area. However, there were many mistakes in the algebraic manipulation. Students should be reminded to <u>neatly</u> present
	$= 8x + 2x\sqrt{\left(\frac{400}{x^2}\right)\left(1 + \frac{16}{25x^2}\right)}$ $= 8x + 40\sqrt{\frac{16}{25x^2} + 1}$	all their working, especially for "show" questions.
(ii)	$A = 8x + \sqrt{\frac{16}{25x^2}} + 1$ $\frac{dA}{dx} = 8 + 40 \left(\frac{1}{2}\right) \left(\frac{16}{25x^2} + 1\right)^{-1/2} \left(-\frac{32}{25x^3}\right)$ $\frac{dA}{dx} = 8 - \frac{128}{5x^3} \sqrt{\frac{16}{25x^2}} + 1$	Moderately well done. Most students were able to correctly differentiate the expression, although there were careless errors in doing so. Most were able to identify that the derivative was zero and attempted to solve.
	Let $\frac{dA}{dx} = 0$ $8 - \frac{128}{5x^3\sqrt{\frac{16}{25x^2} + 1}} = 0$ $\sqrt{\frac{16}{25x^2} + 1} = \frac{16}{5x^3}$	However, there were many mistakes in the subsequent algebraic manipulation.

	$\frac{16}{25x^2} + 1 = \frac{256}{25x^6}$ 25x ⁶ + 16x ⁴ - 256 = 0 (Shown)	
(iii)	Solving $25x^6 + 16x^4 - 256 = 0$ using GC Rejecting all negative and complex roots. x = 1.406342039	This question was a mixed bag. Very few students got full marks.
	Method 1: x 1.356 1.4063 1.456 dA -0.8431 0 0.7311 dx u u u	Many attempted to solve the hexic equation by hand rather than using GC. This was fruitless. Some incorrectly took the
	Method 2: Let $A(x) = 8x + (40)\sqrt{\frac{16}{25x^2} + 1}$ Using GC, $\frac{d^2A}{dx^2} = 15.67 > 0$ when $x = 140.6342$ Hence A is minimum when $x = 1.406342039$ Minimum Cost = $(3.10) \cdot A(1.406342039)$ = \$177.53	square root of all the terms, which led to incorrect answers.
		Many attempted to use the GC to solve the hexic equation, but still got incorrect answers.
		Very few attempted to check that the answer was a minimum point. Of those that did, most did not substitute in values, instead just stating that the sign of the derivative (or second derivative).
		Some students incorrectly assumed that $\frac{dA}{dx} = 25x^6 + 16x^4 - 256.$
		Some students incorrectly assumed that 3.10 was the minimum x value.
		Some students failed to correct substitute their values, and consequently got incorrect answers.

(iv) For sufficiently small θ , we have $\sin \theta \approx \theta$ Poorly done.	
$V = \frac{k \sin \theta}{5 + 5 \sin \theta}$ $= \frac{k}{5} \left(\frac{\sin \theta}{1 + \sin \theta} \right)$ $\approx \frac{k}{5} \left(\frac{\theta}{1 + \theta} \right)$ $= \frac{k}{5} \theta (1 + \theta)^{-1}$ $= \frac{k}{5} \theta (1 - \theta +)$ $\approx \frac{k}{5} \theta - \frac{k}{5} \theta^{2}$ Most students were substitute $\sin \theta \approx$ although some sw variable to x we explanation. Not all were able to need to apply the bis series to the receptor of the receptor.	able to $e \theta$, wapped without see the inomial esulting

12	Solution [12] Differential Equations	
(a)	$\frac{dx}{dt} \propto x$ $\frac{dx}{dt} = -k_1 x$ $\int \frac{1}{x} dx = \int -k_1 dt$ $\ln x = -k_1 t + c_1$ $x = A e^{-k_1 t}$ When $t = 0, x = 1$, thus $A = 1$ $x = e^{-k_1 t}$	The common error is missing the negative sign at the beginning of the DE; otherwise most students recognize the method of separable.
(ii)	$\frac{dy_{\text{produced}}}{dt} = -\frac{dx}{dt} = k_1 x$ $\frac{dy_{\text{decay}}}{dt} \propto y$ $\frac{dy_{\text{decay}}}{dt} = -k_2 y$ $\frac{dy}{dt} = \frac{d}{dt} \left(y_{\text{produced}} \right) - \frac{d}{dt} \left(y_{\text{decay}} \right)$ $\frac{dy}{dt} = k_1 x - k_2 y$ $= k_1 e^{-k_1 t} - k_2 y$ $\frac{dy}{dt} + k_2 y = k_1 e^{-k_1 t}$	This part is not so well- done as most students have difficulty explaining the DE; they tried to manipulate the terms around instead of explaining; some of them claimed $\frac{dy}{dt} = -k_2 y$ which is incorrect.
(iii)	$\frac{\mathrm{d}}{\mathrm{d}t} \left(\mathrm{e}^{k_2 t} y \right) = \mathrm{e}^{k_2 t} \frac{\mathrm{d}y}{\mathrm{d}t} + k_2 \mathrm{e}^{k_2 t} y$	Quite ok except missing the $\frac{dy}{dt}$
(iv)	$\frac{dy}{dt} + k_2 y = k_1 e^{-k_1 t}$ $e^{k_2 t} \frac{dy}{dt} + k_2 e^{k_2 t} y = k_1 e^{(k_2 - k_1)t}$ $\frac{d}{dt} (e^{k_2 t} y) = k_1 e^{(k_2 - k_1)t}$	Most students can follow the instruction by multiplying the term $e^{k_2 t}$; the better ones managed to recognize the link with (iii): the good ones

Integrating with respect to t, $e^{k_2t} y = \int k_1 e^{(k_2 - k_1)t} dt$ $e^{k_2t} y = \frac{k_1}{k_2 - k_1} e^{(k_2 - k_1)t} + c_2$ $y = \frac{k_1}{k_2 - k_1} e^{-k_1t} + c_2 e^{-k_2t}$ Since there is initially no element B present, when $t = 0, y = 0$.	(only a few) went on to integrate but failed to either include a new constant C or if they did, they did not solve for the particular solution.
Therefore, $y = \frac{k_1}{k_1 - k_1} e^{-k_1 t} - \frac{k_1}{k_1 - k_2} e^{-k_2 t}$	
$= \frac{k_1}{k_2 - k_1} \left(e^{-k_1 t} - e^{-k_2 t} \right)$	