

LOYANG VIEW SECONDARY SCHOOL

Preliminary Examination 2021 Secondary Four Express

CANDIDATE NAME

MARKING SCHEME

CLASS

CLASS INDEX NUMBER

ADDITIONAL MATHEMATICS

Paper 2

4049/02

1 SEP 2021

CLASS INDEX NUMBER

0 0

2 hours 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

For examiner's			
use only			
Question	Mark		
number			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
Total			

READ THESE INSTRUCTIONS FIRST

Write your Class, index number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** the questions. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angle in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 90.

Setter: Mr Sim LE

This document consists of 22 printed pages.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\cos \sec^2 A = 1 + \cot^2 A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \square \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \square \tan A \tan B}$$
$$\sin 2A = 2\sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$
$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for A4BC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

1	(i)	Show that the line $y = 3x - 2$ does not meet the curve $y = 3k^2x^2 + (k+3)x + 1$ for	E 4 1
		all real values of x.	[4]

(ii) If the roots of the equation $x^2 + 2x(1-k) + 3k - 5 = 0$ are real, show that k cannot lie between 2 and 3. [4]

[Turn Over

Q	Solutions	Mark	Remarks
'		S	
1	$3x - 2 = 3k^2x^2 + (3 + k)x + 1$		$\sqrt{M1}$ incorrect
(i)	$3x - 2 = 3k^2x^2 + (3 + k)x + 1$		
	$3k^2x^2 + kx + 3 = 0$	M1	
	$b^2 - 4ac$		
	$=(k)^{2}-4(3k^{2})(3)$	M1	
	$=-35k^{2}$		
	$k^2 > 0$ for all real values of k	M1	
	$\Rightarrow -35k^2 < 0$		
	$\Rightarrow b^2 - 4ac < 0 \Rightarrow$ no real roots		
	Hence, the line does not meet the curve.	A1	-
(ii)	$x^2 + 2x(1-k) + 3k - 5 = 0$		$\sqrt{M1}$ incorrect
	for real roots, $b^2 - 4ac \ge 0$		
	$(2-2k)^2 - 4(1)(3k-5) \ge 0$	M1	
	$4 - 8k + 4k^2 - 12k + 20 \ge 0$		
	$4k^2 - 20k + 24 \ge 0$		
	$4\left(k^2-5k+6\right) \ge 0$	M1	
	$4(k-2)(k-3) \ge 0 \qquad 2 \qquad 3$		
	$k \le 2$ or $k \ge 3$ for real roots	M1	
	Hence, <i>k</i> cannot lie between 2 and 3.	A1	

2 (a) Solve the equation
$$x\sqrt{30} = x\sqrt{3} + \sqrt{6}$$
. [3]
(b) 1 [5]

(b)
$$\frac{1}{\text{Solve the equation } \log_3 x - \log_3 2} = \log_9 (5x - 1)$$

Q	Solutions	Mark	Remarks
		s	
2	$x\sqrt{30} = x\sqrt{3} + \sqrt{6}$		$\sqrt{M1}$ incorrect
(1)	$x\left(\sqrt{30} - \sqrt{3}\right) = \sqrt{6}$		
	$x = \frac{\sqrt{6}}{\sqrt{30} - \sqrt{3}}$	M1	
	$x = \frac{\sqrt{6}}{\sqrt{30} - \sqrt{3}} \times \frac{\sqrt{30} + \sqrt{3}}{\sqrt{30} + \sqrt{3}}$	M1	
	$x = \frac{\sqrt{180 + \sqrt{18}}}{\left(\sqrt{30}\right)^2 - \left(\sqrt{3}\right)^2}$		
	$x = \frac{6\sqrt{5} + 3\sqrt{2}}{30 - 3} = \frac{6\sqrt{5} + 3\sqrt{2}}{27}$		
	$x = \frac{2\sqrt{5} + \sqrt{2}}{9}$	A1	
			$\sqrt{M1}$ incorrect
(ii)	1		
(11)	$\log_3 x - \log_3 2 = \log_9 (5x - 1)$		
	$\log_3 \frac{\begin{pmatrix} x \\ 1 \\ 2 \end{pmatrix}}{\log_3 (5x-1)} = \frac{\log_3 (5x-1)}{\log_3 9}$ $\log_3 (5x-1)$	M1 M1	quotient law change of base law
	$\log_3 2x = \frac{\log_3 3^2}{\log_3 (5x - 1)}$		
	$\log_3 2x = \frac{2}{1}$	M1	power law
	$\log_3 2x = \frac{2}{\log_3} (5x - 1)$		
	$\log_3 2x = \frac{\log_3 (5x-1)^2}{1}$		
	$2x = (5x-1)^*$		
	$(2x)^2 = 5x - 1$	M1	
	$4x^2 - 5x + 1 = 0$		

Loyang View Secondary School

Sec 4E Preliminary Examination Additional Mathematics 4049/2 [Turn Over]

(4x - 1)(x - 1) = 0	A1	
1		
x = 4 or x = 1		

3 The first four terms, in ascending powers of x, of $(2 + px)^n$ is $32 - 240x + 80p^2x^2 + qx^3$.

(i) Find the value of p, of n and of q.

[5]

(ii) Using your answer in (i), estimate, to 5 decimal places, the value of $(1.97)^{\circ}$. [3]

Q	Solutions	Mark	Remarks
		S	
3 (i)	$(2 + px)^n = 2^n + {n \choose 1} 2^{n-1} px + {n \choose 2} 2^{n-2} (px)^2 + {n \choose 3} 2^{n-1} (px)^3 + \dots$		$\sqrt{M1}$ incorrect
	$=2^{n}+n2^{n-1}\rho x+\frac{n(n-1)}{2!}2^{n-2}\rho^{2}x^{2}+\frac{n(n-1)(n-2)}{3!}2^{n-3}\rho^{3}x^{3}+\dots$		
	Equating terms,		
	$2^n = 32 \Longrightarrow 2^n = 2^5$	P 1	
	equating indices, $n = 5$	DI	
	$2^{n-1}np = -240$	M1	
	$2^4 \times 5 \times p = -240$		
	$p = -\frac{240}{80} = -3$	A1	
	$\frac{n(n-1)(n-2)}{3!}2^{n-3}p^3 = q$	M1	
	$\frac{5(5-1)(5-2)}{2}2^2(-3)^3 = q$		
	g = -1080	A1	
(ii)	$(2-3x)^{\circ} = 32-240x+720x^2-1080x^3$		$\sqrt{M1}$ incorrect
	2 - 3x = 1.97		
	$\Rightarrow x = \frac{2 - 1.97}{3} = 0.01$	M1	
	Substitute $x = 0.01$ into the expansion,		
	$(2-3 \times 0.01)^5 = 32 - 240(0.01) + 720(0.01)^2 - 1080(0.01)^3 +$	M1	
	$(1.97)^5 = 32 - 2.4 + 0.072 - 0.00108 +$		
	$(1.97)^5 = 29.67092$	A1	

Loyang View Secondary School

Sec 4E Preliminary Examination Additional Mathematics 4049/2

4	$f'(x) = \sin 3x - \cos \frac{x}{2}$ $f'(\frac{\pi}{3}) =$	= ()	
lt 1s	given that 2 . Given that $12f''(x) + 3f(x) = 35\cos 3x + 12f''(x) + 3f'(x) = 35\cos 3x + 12f''(x) = 35\cos 3x + 12f'''(x) = 35\cos 3x + 12f''''(x) = 35\cos 3x + 12f''''(x) = 35\cos 3x + 12f''''(x) = 35\cos 3x + 12f'''''(x) = 35\cos 3x + 12f''''''''''''''''''''''''''''''''''''$, show that	
	121 (x) · 51(x) - 556655x ·	<i></i>	[6]
Q	Solutions	Mark s	Remarks
4	$f'(x) = \sin 3x - \cos \frac{x}{2}$		
	$f(x) = \int \sin 3x - \cos \frac{x}{2} dx$		
	$f(x) = -\frac{\cos 3x}{3} - 2\sin \frac{x}{2} + C$	√M 1	$\sqrt{\mathrm{M1}}$ without "C"
	$0 = -\frac{\cos 3\left(\frac{\pi}{3}\right)}{3} - 2\sin\frac{\pi}{6} + C$		
	$0 = -\frac{\cos\pi}{3} - 2\sin\frac{\pi}{6} + C$		
	$0 = +\frac{1}{3} - 1 + C$		
	$C = \frac{2}{3}$	√M 1	
	$f(x) = -\frac{\cos 3x}{3} - 2\sin \frac{x}{2} + \frac{2}{3}$	√A1	
	$f^{*}(x) = 3\cos 3x + \frac{1}{2}\sin \frac{x}{2}$	√M 1	
	12f''(x) + 3f(x)		
	$= 36\cos 3x + 6\sin \frac{x}{2} - \frac{3\cos 3x}{3} - 6\sin \frac{x}{2} + 2$ $= 35\cos 3x + 2$	√M 1	$\sqrt{M1}$ due to imperfect answers from above
	(shown)	√AG 1	

Loyang View Secondary School

Sec 4E Preliminary Examination Additional Mathematics 4049/2
[Turn Over]

Commented [1]:

5 In the diagram, *O* is the centre of the circle *ABDE* with diameters *AD* and *BE*. *CD* is a tangent to the circle at *D*.

(i) Show that $\triangle CAD$ is similar to $\triangle BED$.

[2]

(ii) It can be proven that ΔDAB is congruent to ΔBED . Given that $\frac{CD}{BD} = \sqrt{2}$, show that CD = AD. [4]

Q	Solutions	Mark	Remarks
		s	
5	$\angle CAD = \angle BED$ (angles in the same segment)		$\sqrt{M1}$ incorrect
(i)	$\angle BDE = 90^{\circ}$ (right angle in semicircle)		
	$\angle CDA = 90^{\circ} \text{ (tangent } \perp \text{ radius)}$	M1	
	Hence $\triangle CAD$ is similar to $\triangle BED$ (AAA similarity)	A1	
	$\angle BAD = \angle BED$ (angles in the same segment)		
	$\angle DBA = \angle BDE = 90^{\circ}$ (right angle in semicircle)		for practice after exam
	AD = DE (diameter of sizele)		given in question
	AD = DE (diameter of circle)		
	Hence, ΔDAB is congruent to ΔBED (ASA)		

Loyang View Secondary School

Sec 4E Preliminary Examination Additional Mathematics 4049/2

(ii)	ΔCAD is similar to ΔBED		$\sqrt{M1}$ incorrect
	ΔDAB is congruent to ΔBED	M1	
	$\Rightarrow \Delta CAD$ is similar to ΔDAB		
	$\frac{CD}{DB} = \frac{CA}{DA} = \sqrt{2}$		
	$\frac{CA^2}{DA^2} = 2$	M1	
	$\rightarrow CA^2 = 2 AD^2$	IVII	
	$\Rightarrow CA = 2AD$ By Pythagoras' Theorem.		
	$CD^2 + AD^2 = CA^2$	MI	
	$CD^2 + AD^2 = 2AD^2$		
	$CD^2 = AD^2$	A1	
	\Rightarrow CD = AD (shown)		

Loyang View Secondary School

Sec 4E Preliminary Examination Additional Mathematics 4049/2 [Turn Over]

6 The diagram shows a container in the shape of an inverted pyramid. The top of the pyramid is a square base with an area of 64 cm^2 . The height of the container is 6 cm.

the empty space in the container is given by
$$V = \frac{16}{27} \left(216 - h^3 \right).$$
 [3]

(ii) Oil is poured into the container and the depth of the oil increases at a constant rate of 0.4 cm/s. Find the rate of decrease of the volume of the empty space in the container when the depth of the oil is 3 cm.

(i)

[4]

	$V = \frac{1}{3} \left(\frac{4}{3}\right)^2 h^3$		
	$V = \frac{1}{3} \left(\frac{16}{9} \right) h^3$		
	$V = \frac{16}{27}h^3$	M1	
	Volume of empty space		
	$=\frac{16}{27}(6^3-h^3)$		
	$=\frac{16}{27}(216-h^3)$	A1	
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}h} = -\frac{16}{9}h^2$	M1	$\sqrt{M1}$ incorrect
	$\frac{dh}{dt} = 0.4 \text{ cm/s}$		
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t}$		
	$\frac{\mathrm{d}V}{\mathrm{d}t} = -\frac{16}{9}h^2 \times \frac{2}{5} = -\frac{32}{45}h^2$	M1	
	when $h = 3$ cm,		
	$\frac{\mathrm{d}V}{\mathrm{d}t} = -\frac{32}{45}h^2$		
	$\frac{\mathrm{d}V}{\mathrm{d}t} = -\frac{32}{45}(3)^2 = -\frac{32}{5}$	M1	
	$\frac{\mathrm{d}V}{\mathrm{d}t} = -6.4 \mathrm{cm^3}/\mathrm{s}$		
	Rate of decrease of volume of the empty space in the container when the height is 3 cm is $6.4 \text{ cm}^3/\text{s}$.	A1	

Sec 4E Preliminary Examination Additional Mathematics 4049/2 [Turn Over]

(a)
$$y = \frac{1}{x \ln x}$$
 has no stationary point if $x > 1$.

(b) The curve $y = \ln(x-k)^3$ crosses the x-axis at x = 3. Find the value of k and the equation of the normal to the curve at this point. [5]

7 (a)	$y = \frac{1}{x \ln x}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{0 - \ln x - x \frac{1}{x}}{\left(x \ln x\right)^2}$	√M 1	quotient rule applied correctly $\sqrt{M1}$ for incorrect sign
	$\frac{dy}{dx} = \frac{-\ln x - 1}{(x \ln x)^2} \text{ or } -\frac{\ln x + 1}{(x \ln x)^2} \text{ or } -\frac{1 + \ln x}{(x \ln x)^2}$	√M 1	
(b)	If $x > 1$, $1 + \ln x > 0$ $x \ln x > 0$ $\therefore \frac{dy}{dx} \neq 0$ Hence, there is no stationary point. (shown) $y = \ln(x - k)^3$ at $x = 3$, $0 = \ln(3 - k)^3$ $e^0 = (3 - k)^3$ $1 = (3 - k)^3$ $\Rightarrow 3 - k = 1$ k = 2	√A1 √M1 √A1	concluding that first derivative not equal to 0 with explanation that $x \ln x > 0$. Substituting the value of x correct differentiation
		√M 1	

Loyang View Secondary School

7

Sec 4E Preliminary Examination Additional Mathematics 4049/2

[3]

8 The table shows experimental values of x and y. It is known that the true values of x and y are connected by the equation $y = x x^{4}$, where a and n are constants.

	•	-			
x	2	3	5	7	8
у	17	47	170	390	540

(i) On the grid below plot lg *y* against lg *x* and draw a straight line graph.

[2]

(ii)	Using (i)	above, find the value of a and of n.	
------	-----------	--------------------------------------	--

(iii) By drawing a suitable straight line on the same axes, solve the equation $ax^{n+2} = 100$

Q	Solutions							Mark	Remarks
								S	
8(i)							,		√M1 incorrect
	x	2	3	5	7	8			
	у	17	47	170	390	540			
	lg x	0.301	0.477	0.699	0.845	0.903			
	lg y	1.230	1.672	2.230	2.591	2.732			

Loyang View Secondary School

vination Additional Mathematics 4049/2

[4]

[3]

9 (i)
Given that
$$y = \ln(\sec x)$$
, show that $\frac{dy}{dx} = \tan x$ [2]
(ii)
Differentiate $x \tan x$ with respect to x. [1]
(iii) Using the results from part (i) and part (ii), show that [6]

Sec 4E Preliminary Examination Additional Mathematics 4049/2 [Turn Over

 $\int_{0}^{\frac{\pi}{4}} 2x \sec^2 x \, dx = \frac{\pi}{2} - \ln 2$

Q	Solutions		Mark	Remarks
			S	
9 (i)	$y = \ln\left(\sec x\right) = \ln\left(\frac{1}{\cos x}\right)$	Alternative:		$\sqrt{M1}$ incorrect
	$y = \ln 1 - \ln \cos x$			
	$y = -\ln \cos x$		M1	
	$\frac{dy}{dx} = -\frac{1}{\cos x}(-\sin x) = \tan x$ (shown))	A1	
(**)	u – stop s			(h (1)
(11)	$y = x \tan x$		D1	VM1 incorrect
	$\frac{dy}{dx} = \tan x + x \sec^2 x$		BI	

Sec 4E Preliminary Examination Additional Mathematics 4049/2

(iii) $\int_{0}^{\frac{\pi}{4}} x \sec^2 x + \tan x dx = [x \tan x]_{0}^{\frac{\pi}{4}}$	M1	
$\int_{0}^{\frac{\pi}{4}} x \sec^2 x dx = \left[x \tan x\right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \tan x dx$		
$\int_{0}^{\frac{\pi}{4}} x \sec^2 x dx = \left(\frac{\pi}{4} \tan \frac{\pi}{4} - 0\right) - \left[\ln \sec x\right]_{0}^{\frac{\pi}{4}}$		
$\int_{0}^{\frac{\pi}{4}} x \sec^2 x dx = \frac{\pi}{4} - \left[\ln \sec \frac{\pi}{4} - \ln \sec 0 \right]$	M1	
$\int_{0}^{\frac{\pi}{4}} x \sec^2 x dx = \frac{\pi}{4} - \left[\ln \frac{1}{\cos \frac{\pi}{4}} - \ln \frac{1}{\cos 0} \right]$		
$\int_{0}^{\frac{\pi}{4}} x \sec^2 x dx = \frac{\pi}{4} - \left[\ln\sqrt{2} - 0\right]$		
$\int_{0}^{\frac{\pi}{4}} x \sec^2 x dx = \frac{\pi}{4} - \ln \sqrt{2}$	M1	
$\int_{0}^{\frac{\pi}{4}} x \sec^2 x dx = \frac{\pi}{4} - \ln 2^{\frac{1}{2}}$	M1	
$\int_{0}^{\frac{\pi}{4}} x \sec^2 x dx = \frac{\pi}{4} - \frac{1}{2} \ln 2$	M1	
Hence, $\int_{0}^{\frac{\pi}{4}} 2x \sec^2 x dx = \frac{\pi}{2} - \ln 2 \text{ (shown)}$	A1	
0		

10
The diagram shows the graph of $y = a + b \cos cx$ for $0^{\circ} \le x \le 360^{\circ}$.Loyang View Secondary SchoolSec 4E Preliminary Examination Additional Mathematics 4049/2
[Turn Over]]

(iv)	Solve, algebraically,	$4 \tan x + 1 = 2(\sec x - 1)$, for $0^\circ \le x \le 360^\circ$. [3]
------	-----------------------	--	-------

Q	Solutions	Mark	Remarks
		S	
10	a = 2	B1	$\sqrt{M1}$ incorrect
(i)	b = -3	B1	
	<i>c</i> = 1	B1	
(ii)	$4 \tan x + 1 = 2(\sec x - 1)$		
	$\frac{4\sin x}{\cos x} + 1 = \frac{2}{\cos x} - 2$	M1	$\sqrt{\mathrm{M1}}$ their a, b , c
	$4\sin x + \cos x = 2 - 2\cos x$	A1	
	$4\sin x = 2 - 3\cos x$ (shown)		
(iii)			accept
		M1	

Sec 4E Preliminary Examination Additional Mathematics 4049/2

Sec 4E Preliminary Examination Additional Mathematics 4049/2 [Turn Over

- 11 A segment of a competition that you are participating in requires you to cross a river from point *A* to point *B* as shown in the diagram. You are to launch a boat from point *A* on a bank of the straight river, 1.5 km wide. The destination is the point *B*, 3.5 km downstream on the opposite bank. To reach your destination, you have three options:
 - Option 1 row the boat horizontally across the river to point *C* and then run to *B*
 - Option 2 row the boat directly to *B*
 - Option 3 row to some point *D* between *C* and *B* and then run to *B*

It is known that you can row at a speed of 6 km/h and run at a speed of 8 km/h.

(i) If the distance between *CD* is *x* km, show that the total time, *T*, in hours, taken to reach the destination by both rowing and running is given by the equation

$$T = \frac{\sqrt{9+4x^2}}{12} + \frac{7-2x}{16}$$
[2]

- (ii) By stating and substituting an appropriate value of x into the expression T found in (i) find the time taken if
 (a) option 1 is chosen,
 - (b) option 2 is chosen.

Loyang View Secondary School

Sec 4E Preliminary Examination Additional Mathematics 4049/2

2	1
4	T

(iii)	Show that if option 3 is used, to reach the destination, point <i>B</i> , as soon as $x = \frac{9\sqrt{7}}{14}$	[2]
	Hence, determine the total time taken, <i>T</i> hours, if this option is used. $\frac{d^2T}{d^2} = \frac{3}{d^2}$	[5]
	$\frac{dx^2}{dx^2} - \frac{1}{\left(9+4x^2\right)^{\frac{3}{2}}}$ Given:	[0]
(iv)	Hence, which option would you choose in order to reach point <i>B</i> from <i>A</i> as quickly as possible? Justify your answer.	[1]
(v)	State one assumption that you made in the calculations above.	[1]
) Se	olutions Mark Remarks	

Q	Solutions	Mark	Remarks
		S	
11 (i)	By Pythagoras' Theorem, $AD^{2} = \left(\frac{3}{2}\right)^{2} + x^{2}$ $AD = \sqrt{\frac{9+4x^{2}}{4}}$ time taken , <i>T</i> = time taken for rowing + time taken for running time taken, <i>T</i> , in hours $T = \frac{\sqrt{\frac{9+4x^{2}}{4}}}{6} + \frac{7}{2} - x}{8}$ $T = \frac{\sqrt{9+4x^{2}}}{12} + \frac{7-2x}{16} (\text{shown})$	M1 A1	√M1 incorrect
(ii)	(a) option 1 is when he rows to <i>C</i> , $x = 0$ $T = \frac{3}{12} + \frac{7}{16} = \frac{11}{16} = 0.6875$ hours (b) option 2 is when he rows all the way to <i>B</i> , $x = 3.5$	B1	√M1 incorrect
	$T = \frac{\sqrt{58}}{12} = 0.6346 = 0.635 \text{hours} (3 \text{ sf})$	В1	

Sec 4E Preliminary Examination Additional Mathematics 4049/2
[Turn Over]

Loyang View Secondary School

Sec 4E Preliminary Examination Additional Mathematics 4049/2

	$=\frac{\sqrt{9+4\left(\frac{9\sqrt{7}}{14}\right)^2}}{12}+\frac{7-2\left(\frac{9\sqrt{7}}{14}\right)}{16}$		
	$T = \frac{\sqrt{\frac{144}{7}}}{12} + \frac{7 - \left(\frac{9\sqrt{7}}{7}\right)}{16}$		
	T = 0.3780 + 0.2249		
	T = 0.6029	A1	
	T = 0.603 hours (3sf)		
(iv)	Option 1 takes 0.6875 hours		
	Option 2 takes 0.635 hours		
	Option 3 takes 0.603 hours		
	Therefore option 3 is the best option to from point A to		
	point <i>B</i> in the shortest possible time.	B1	
(v)	Assumptions		
	suggested answers:		
	- no wind to affect course of rowing		
	 no detours for any reason 		any one
	- the courses are all in a straight line		
	 constant rowing / running speeds 	B1	
	- the river banks on both sides are parallel (width of		
	river is consistent)		
	time in getting on and ott boat are negligible		

-END-

BLANK PAGE

Loyang View Secondary School

Sec 4E Preliminary Examination Additional Mathematics 4049/2
[Turn Over