A local wholesaler sells Pikachi plushies in two sizes, small and large. The number of 1 Pikachi plushies bought by three particular retailers and the total amount they paid are shown in the following table. Retailer Small Total Amount paid Large 30 50 \$1375 А В k 2k\$2704 С 2kk \$2522 Find the price of each small and each large Pikachi plushy and determine the value of k. [4] A right circular cone has base radius r cm and height h cm. As r and h vary, its curved 2 surface area, $\pi r \sqrt{\left(r^2 + h^2\right)}$ cm², remains constant. It is given that when $r = \sqrt{2}$ cm, the magnitude of the rate of change of h is 10 times the magnitude of the rate of change of r. Given also that h > r, find the height of the cone at this [4] instant. 3 Find $\int \frac{x+2}{\sqrt{(1-8x-4x^2)}} dx$. **(a)** [4] Use the substitution $x = 2 \sec \theta$ to find the exact value of $\int_{-\infty}^{4} \frac{1}{x} \sqrt{(x^2 - 4)} dx$. **(b)** [4] 4 A curve *C* has equation y = f(x), where $f(x) = \frac{a}{(x+b)^2} + cx,$ and a, b and c are constants. It is given that C has a vertical asymptote x = -1 and a minimum point at (0, 1). Find the values of *a*, *b* and *c*. (i) [4] Sketch the graph of y = f(|x|), stating the coordinates of any point(s) of intersection **(ii)** with the axes and the equation(s) of any asymptote(s). [3]

RI H2 Mathematics 2017 Prelim Exam Paper 1 Question

	(iii)	Hence, solve the inequality $f(x) - 4 > 0.$ [2]				
5		(-5, 4) $y = 0$ $(-4, 0)$ $y = f(x)$ $y = -x + 2$ $x = -3$				
	The	diagram shows the curve $y = f(x)$. The curve has maximum points at $(-5, 4)$ and the				
	orig	in, and crosses the x-axis at $(-4, 0)$. The lines $y = 0$, $x = -3$ and $y = -x + 2$ are the				
	hori	zontal, vertical and oblique asymptotes to the curve respectively.				
	On separate diagrams, draw sketches of the graphs of					
	(a)	$y = \frac{1}{f(x)},$ [3]				
	(b)	y = f'(x),				
	(c)	$y = f\left(\frac{x+1}{2}\right),$ [3]				
	labe turn	labelling clearly the equation(s) of any asymptote(s), coordinates of any axial intercept(s) and turning point(s) where applicable.				
6	(i)	Given that $y = \ln(1 + \sin 2x)$, show that $e^y \frac{d^2 y}{dx^2} + e^y \left(\frac{dy}{dx}\right)^2 = -4\sin 2x$.				
		Find the first three non-zero terms in the Maclaurin's series for <i>y</i> . [5				
	(ii)	It is given that the three terms found in part (i) are equal to the first three terms in the $(\mathbf{i} - \mathbf{i})$				
		series expansion of $ax(1+bx)^n$ for small x. Find the exact values of the constants a,				
		and <i>n</i> and use these values to find the coefficient of x^4 in the expansion of $ax(1+bx)^n$				
		giving your answer as a simplified rational number. [5				

L

7

Mr Tan is planning to set up a home theatre in his spacious rectangular living room. A projector screen with height a metres is to be positioned against one of the walls b metres above the eye level (see Fig. 1). He is trying to decide on the horizontal distance between the sofa and the screen so that the viewing angle α of the projection screen is as large as possible.

- (i) Show that $\alpha = \tan^{-1} \frac{a+b}{x} \tan^{-1} \frac{b}{x}$, where x is the horizontal distance between the sofa and the screen in metres. [1]
- (ii) Use differentiation to show that the value of x which gives the maximum value of α satisfies the equation

$$\frac{a+b}{x^2+(a+b)^2}=\frac{b}{x^2+b^2}.$$

[4]

Solve for *x* and leave your answer in terms of *a* and *b*. [It is not necessary to verify the nature of the maximum point in this part.]

Mrs Tan proposed an alternative way of arrangement. She proposed to place the sofa against the wall opposite the screen, which is *c* metres away, and to vary the vertical position of the screen placed *y* metres above the eye level in order to maximise the angle α (see Fig. 2).

	leav	ing your answer in terms of <i>a</i> . Interpret the answer in this context.	[5]			
8	A cu	A curve <i>C</i> has parametric equations				
	$x = \sin^2 t$, $y = 2 \cos t$, for $0 \le t \le \frac{\pi}{2}$.					
	(i)	Find a cartesian equation of <i>C</i> .	[2]			
	The tangent to the curve at the point <i>P</i> where $t = \frac{\pi}{3}$ is denoted by <i>l</i> .					
	(ii)	Find an equation of <i>l</i> .	[3]			
	(iii)	On the same diagram, sketch C and l , stating the coordinates of the axial interce the point of intersection.	epts and [3]			
	The region R is bounded by the curve C , the line l and the y-axis.					
	(iv)	Find the exact value of the volume of revolution formed when R is rotated con about the <i>x</i> -axis.	npletely [3]			
9	Doı	Do not use a calculator in answering this question.				
	(a)	One root of the equation $z^4 + 2z^3 + az^2 + bz + 50 = 0$, where <i>a</i> and <i>b</i> are real, is	z = 1 +			
	(i)	Show that $a = 7$ and $b = 30$ and find the other roots of the equation.	[5]			
	(ii)	Deduce the roots of the equation $w^4 - 2iw^3 - 7w^2 + 30iw + 50 = 0$.	[2]			
	(b)	Given that $p^* = \frac{\left(-\frac{1}{\sqrt{3}} + i\right)^5}{\left(1 - i\right)^4}$, by considering the modulus and argument of p	>*, find			
		the exact expression for p , in cartesian form $x + iy$.	[4]			
10	In a	model of forest fire investigation, the proportion of the total area of the forest wh	hich has			
	beer	h destroyed is denoted by x . The destruction rate of the fire is defined to be the	e rate of			
	change of x with respect to the time t , in hours, measured from the instant the fire is first noticed. A particular forest fire is initially noticed when 20% of the total area of the forest is					
	dest	destroyed.				
	(a)	One model of forest fire investigation shows that the destruction rate is modelled differential equation	d by the			
		$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{10} x(1-x) .$				

	$\left(\begin{array}{c}1\\0\end{array}\right)$ and $\left(\begin{array}{c}1\\0\end{array}\right)$	
vecto	for equation r . $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \alpha$ where $\alpha < -4$ (see diagram).	
(i)	Find a vector equation of the line depicting the path of the light ray from P to V in terms of h .	[2]
(ii)	Find an inequality between α and h so that the shadow of the pyramid cast on screen will not exceed the height of the screen.	the [3]
The perp	point light source is now replaced by a parallel light source whose light rays endicular to the screen and it is also given that $h = 10$.	are
(iii)	Find the exact length of the shadow cast by the edge VB on the screen.	[3]
A mi	irror is placed on the plane VBC to create a special effect during the display.	
(iv)	Find a vector equation of the plane <i>VBC</i> and hence find the angle of inclination made by the mirror with the ground.	le [4]