VICTORIA JUNIOR COLLEGE 2022 JC1 PROMOTIONAL EXAM H2 CHEMISTRY PAPER 1 ANSWERS

1	С	6	Α	11	в	16	в	21	С	26	С
2	в	7	в	12	в	17	Α	22	С	27	D
3	Α	8	в	13	Α	18	D	23	в	28	D
4	Α	9	С	14	С	19	Α	24	D	29	Α
5	Α	10	Α	15	D	20	в	25	С	30	D

1 C (1 and 3 only)

Option 1: Correct

Lv⁺ has 116 - 1=115 electrons while Fl^- has 114 + 1 = 115 electrons

Option 2: Wrong

Angle of deflection α |charge / mass| Angle of deflection of Lv³⁺ α |+3/292| = 0.0103 Angle of deflection of Fl²⁻ α |-2/289| = 0.00692 Option 2: Correct

Option 3: Correct

From the Data Booklet, Fl having 114 proton no. is in Group 14, Lv having 116 proton no. is in Group 16.

Hence, outer electronic configuration of Fl: ns^2np^2 ; Lv: ns^2np^4 ; Fl^{2-} : ns^2np^4

In addition, being in the same period, they have the same number of **core electrons**, similar to that of the noble gas at the end of the previous period.

Hence, one Lv atom has the same electronic configuration as one Fl^{2-} ion.

2 B

Large increase between the 2^{nd} and 3^{rd} IE \Rightarrow element **X** is in Group 2.

Hence, **X** forms the cation X^{2+} . To maintain overall charge neutrality, the formula of compound **Y** should thus be XO_2 .

3

The N atom in -CN group of NH₂CN has a **lone pair of electrons** for **donation**, while the B atom in BF₃ has a **vacant orbital** to **accept the lone pair of electrons**. This will allow the **formation of dative bond** when the shared pair of electrons is provided by only N.

4

Α

Option A: Correct	
POCl ₃ (4bp)	CCl ₄ (4bp)
Tetrahedral	Tetrahedral
109.5°	109.5°
Option B: Wrong	
AlCl ₃ (3bp)	NC <i>l</i> ₃ (3bp + 1lp)
Trigonal planar	Trigonal pyramidal
120°	107°
Option C: Wrong	
SO ₂ (2bp + 1lp)	CO ₂ (2bp)
Bent shape	Linear
118°	180°
Option D: Wrong	

C_lF_3 (3bp + 2lp)	SF ₄ (4bp + 1lp)
T-shaped	See-saw
90°	120º & 90º

Α

5

Option A: Correct

Both substances have intermolecular hydrogen bonding but the second substance has larger electron cloud size which is more easily polarised. Hence, there are stronger instantaneous dipoleinduced dipole (id-id) interactions between CH₃CH₂CH₂CH₂OH molecules. Hence, the first substance has a lower bp.

Option B: Wrong

I₂ is a solid whereas HC*l* is a gas. This indicates that I₂ has a higher bp. This is because I₂ has a much larger electron cloud size which is more easily polarised. Hence, larger amount of energy is required to overcome stronger id-id interactions between I₂ molecules than weaker permanent dipole-permanent dipole interactions between HC*l* molecules. Hence, the first substance has a higher bp.

Option C: Wrong

Larger amount of energy is required to overcome the stronger hydrogen bonding between CH₃CH₂NHCH₃ molecules than the weaker permanent dipole-permanent dipole interactions between CH₃CH₂OCH₃ molecules. Hence, first substance has a higher boiling point.

Option D: Wrong

CH₃COOH exists as **dimers**, whereby two CH₃COOH molecules bond to each other via intermolecular hydrogen bonds. As such, higher extent of hydrogen bonds is formed between CH₃COOH molecules than that between CH₃CH₂OH molecules. Hence, the first substance has a higher boiling point.

6 A

Since silicon carbide has a high mp, it should have a giant molecular structure \Rightarrow options A or C Since it is also hard, its structure is expected to represent the tetrahedral structure of diamond rather than the layer structure of graphite \Rightarrow option A

7 B

Let the percentage yield for each step be y%. For first step: Theoretical n_{Na2CO3} produced from Na₂S

= n_{Na2s} reacted

 $= (50 \times 1000) / 78.1 = 640 \text{ mol}$

Actual n_{Na2CO3} produced = y% x 640

= (y / 100) x 640

For second step: Theoretical n_{NaHCO3} produced from Na_2CO_3 = 2 x n_{Na2CO3} reacted = 2 x 6.40y = 12.8y mol Actual n_{NaHCO3} produced = y% x 12.8y= $(y / 100) \times 12.8y$ = $0.128y^2$ mol Hence, mass of $NaHCO_3 = 20.5 \times 1000$ = $0.128y^2 \times 84.0$ y = 43.7% 8 B $C_4H_{10} + 13/2O_2 \rightarrow 4CO_2 + 5H_2O$ 3/4w (13/2)(3/4)w

 $C_4H_{10} + 9/2O_2 \rightarrow 4CO + 5H_2O$ 1/4w (9/2)(1/4)w

Vol. of
$$O_2 = (13/2)(3/4)w + (9/2)(1/4)w$$

= (48/8)w
= 6w dm³

9 C

Replacing all the alcohol groups bonded directly to the ring carbon atoms with chlorine gives the structure

Molecular formula of the product = $C_6H_8Cl_4O_2$. Dividing by 2 gives the empirical formula $C_3H_4Cl_2O$.

10 A

 $\begin{array}{l} Zn \rightarrow Zn^{2+} + 2e^{-} \\ Amt \ of \ Zn = 0.5/65.4 = 7.65 \ x \ 10^{-3} \ mol \\ Amt \ of \ e^{-} \ lost = 2 \ x \ 7.65 \ x \ 10^{-3} = 1.53 \ x \ 10^{-2} \ mol \\ = \ Amt \ of \ e^{-} \ gained \\ Amt \ of \ VO_{2}^{+} = 10.2/1000 \ x \ 0.500 \\ = 5.10 \ x \ 10^{-3} \ mol \\ \Rightarrow 1 \ mol \ VO_{2}^{+} \ will \ gain \ (1.53 \ x \ 10^{-2})/(5.10 \ x \ 10^{-3}) \\ = 3 \ mol \ e^{-} \ for \ reduction \\ \end{array}$

 \Rightarrow O.N. of V will decrease by 3 units from +5 in VO_2^+ to +2 in the reduced product

11 B

By Hess' law:

В

 $\Delta H_r = -283 + 2(-286) - (-715) = -140 \text{ kJ mol}^{-1}$

12

$$\begin{split} \Delta H_{sol} &= \Delta H_{hyd}(Mg^{2+}) + 2\Delta H_{hyd}(Cl^{-}) - LE(MgCl_2) \\ &= (-1890) + 2(-384) - (-2526) \\ &= -132 \text{ kJ mol}^{-1} \end{split}$$
 Amt of MgCl_2 = 2.00/95.3 = 0.0210 mol Assuming 100% heat transfer, heat gained by water = heat evolved in expt = 132 × 0.0210 = 2.77 kJ = 2770 J q = mc\Delta T $\Delta T = \frac{q}{mc} = \frac{(2770)}{(50 \times 4.18)} \\ &= +13.3 \text{ °C} \\ (exothermic reaction, \Delta T \text{ is positive}) \end{split}$

13 A (1, 2 and 3)

Option 1: Correct

 $\Delta H_{rxn} = \sum \Delta H_f(products) - \sum \Delta H_f(reactants)$

= +2807 kJ mol⁻¹

Option 2: Correct

The process has no change in number of particles of gases. However, comparing 6 mol of H₂O(I) reactant with 1 mol of C₆H₁₂O₆(s) product, the number of particles decreases and a liquid reactant is changed to a solid product with a more ordered structure. Hence, there is a decrease in overall entropy and ΔS has a negative sign (i.e. less disordered).

Option 3: Correct

Since $\Delta G = \Delta H$ (+ve) – T ΔS (–ve), the ΔG for the reaction will always be positive at all temperatures as ΔH and – T ΔS is always positive.

14 C

Vol. of KMnO₄ required α [H₂O₂] remaining Graph shows constant half-life of 14 min \Rightarrow Order of reaction wrt H₂O₂ is 1. [H₂O₂] in 10cm³ sample at 0 min = $(\frac{5}{2} \times \frac{30}{1000} \times 0.05) / (10 \times 10^{-3})$ = 0.375 mol dm⁻³ $3.00 \xrightarrow[t_{1/2}]{} 1.50 \xrightarrow[t_{1/2}]{} 0.75 \xrightarrow[t_{1/2}]{} 0.375$ Contamination period = $3t_{1/2} = 3 \times 14$ = 42 min

15 D (3 and 4 only)

From the Arrhenius equation, $k = Ae^{-\frac{Ea}{RT}}$, rate constant is affected only by temperature or catalyst. Hence, changing the concentration does not affect the rate constant.

 \Rightarrow Option 1 wrong, Option 3 correct

The amount of kinetic energy possessed by the reactant particles is affected by temperature only. Hence, increasing the temperature increases the proportion of particles having energy greater than the activation energy but increasing the concentration has no effect.

 \Rightarrow Option 2 wrong, Option 4 correct

16

В

Α

Based on Step II, the slow step, rate equation is rate = $k_1 [N_2O_2][H_2]$ However, N_2O_2 is an intermediate, not a reactant. Hence it will have to be re-expressed in terms of its reactants based on Step I: $[N_2O_2] \propto [NO]^2$ $\Rightarrow [N_2O_2] = k_2 [NO]^2$ Substituting, Rate = $k_1 k_2 [NO]^2 [H_2] = k [NO]^2 [H_2]$ (k = $k_1 \cdot k_2$)

17

Moles before opening = moles after opening $\frac{(1 \times 10^5) \times (\mathbf{V})}{R \times (273+25)} = \frac{(\mathbf{p}) \times (4\mathbf{V})}{R \times (273+100)}$ $\mathbf{p} = 3.13 \times 10^4 \text{ Pa}$

18 D

When pressure increases, position of equilibrium shifts right to favour the side with less number of moles of gas to reduce the pressure. Hence, more NH₃ is formed and yield increases.

19 A					
	$N_2O_4(g)$	11	2NO ₂ (g)		
Initial moles	1		0.2		
Change in mole	-0.24		+0.48		
Eqm moles	0.76		0.68		
$[NO_2]^2$ (0.68 / 4) ²					

$$K_c = \frac{[N_2O_4]}{[N_2O_4]} = \frac{(0.007 \text{ / })}{(0.76 \text{ / }4)} = 0.15 \text{ mol } \text{dm}^{-3}$$

20 B (1 and 2 only)

A Bronsted Lowry acid donates a proton to form its conjugate base, e.g. $HA \rightarrow H^+ + A^$ acid conjugate base **Option 1: Correct** $H_2O \rightarrow H^+ + OH^-$

acid conjugate base **Option 2: Correct**

 $H_2PO_4^- \rightarrow H^+ + HPO_4 \,{}^{2-}$

acid conjugate base

Option 3: Wrong

NaH is an ionic compound containing Na⁺ cation and H^- anion (which is not the same as H^+). Hence, NaH is not capable of acting as a proton donor and is not an acid.

21

 $n_{\text{NaOH}} = \frac{20}{1000} \times 0.500 = 0.0100 \text{ mol}$ $n_{CH_3CO_2H} = \frac{20}{1000} \times 1.00 = 0.0200 \text{ mol}$

CH₃CO₂H + NaOH → CH₃CO₂Na + H₂O
[CH₃CO₂H] =
$$\frac{0.0200 - 0.0100}{\frac{20 + 20}{1000}}$$
 = 0.250 mol dm⁻³
[CH₃CO₂Na] = $\frac{0.0100}{\frac{20 + 20}{1000}}$ = 0.250 mol dm⁻³
pH = pK_a + lg $\frac{[CH_3CO_2Na]}{[CH_3CO_2H]}$
= -lg(1.8×10⁻⁵) = 4.74

22

С

 $pK_a = 4.70 \Rightarrow K_a = 10^{-4.70}$. Since K_a is small, **G** is a weak acid.

NaOH is a strong base.

Since the titration is between a weak acid and a strong base, the pH at the equivalence point will be in the slightly basic region (about 8 to 9) as the conjugate base of G that is formed will undergo salt hydrolysis. Hence, cresolphthalein (rather than indigo carmine) will be the most suitable indicator.

23 B (1 and 2 only)

Option 1: Correct

The type of hybridization undergone by each carbon is shown below:

$$sp^{2} = sp^{2} = sp^{2} = sp^{2} = sp^{2} = sp^{2} = sp^{2} = sp^{3} = sp^{2} = sp^{3}$$

 $CH_{2} = CH_{2} = CH_{3} = CH_{3} = CH_{3}$
 $1 = 2 = 3 = 4 = 5$
 $C \equiv N$
 sp

Option 2: Correct

 π bond is always formed by the side-way overlap of p orbitals.

Option 3: Wrong

C1-C2 bond is formed from sp2-sp2 overlap whereas C4-C5 bond is formed from sp2-sp3 overlap. sp² orbital has a higher degree of s character than sp³ orbital and hence electrons in sp² orbital are closer to the nucleus. Bond formed from sp²-sp² is thus shorter than that formed from sp²-sp³.

24 D (2 and 4 only)

Molecular formula of the compound is of the form C_nH_{2n-2}O₂. Based on the C : H ratio, the compound has two pi bonds present.

Option 1: Can be present

One pi bond in C=C and one pi bond in $-CO_2H$. **Option 2: Cannot be present**

One pi bond in C=O but no pi bond in alcohol.

Option 3: Can be present

One pi bond in ketone and one pi bond in aldehyde.

Option 4: Cannot be present

One pi bond in C=C but no pi bond in alcohol.

25 С

26 С

3 different structures can be formed:

The 3rd structure has two chiral centres (marked with *), giving rise to $2^2 = 4$ stereoisomers. Hence the total number of isomers = 1 + 1 + 4 = 6

27

D

Observe that each propagation step lengthens the radical by introducing an additional CH₂CH₂O- unit. Hence the free radical formed in each propagation step will consist of n repeating units of -CH₂CH₂O- with the general formula •CH₂CH₂O(CH₂CH₂O)_{n-2}CH₂CH₂O•. The formula of the non-ionic detergent should therefore contain either (CH₂CH₂O)_n or (OCH₂CH₂)_n. For D: CH₃(CH₂)₁₀O(CH₂CH₂O)₁₀H

The part marked with the bracket corresponds to the free radical formed in the propagation stage and the remaining parts, CH₃(CH₂)₁₀O and H, when combined together, correspond to the formula of an alcohol.

For **A**, the repeating unit shown is wrong: $[CH_3(CH_2)_{10}O]_{10}CH_2CH_2OH$ 1

Wrong repeating unit

For B and C: $CH_3(CH_2)_{10}O(OCH_2CH_2)_{10}OH$

 $CH_3(CH_2)_{10}O(CH_2CH_2O)_{10}OH$

The parts marked with the bracket corresponds to the free radical formed in the propagation stage but the remaining parts of each formula, when combined together, do not correspond to the formula of an alcohol since there is an extra oxygen.

28

D

Fragments formed are

5 4 3 2 CH₃COCH₂CH₂CH₂CCOCOCH₂CO₂H and (CH₃)₂CO

29

Α

In D, the isomer that is formed, the Br atom is attached to the carbon with more hydrogen atoms. By Markonikov's rule, this means that Br is the electrophile that attacks the alkene group in the first step to form the more stable carbocation:

Similarly, CH₃CH=CHCH₃ is attacked by the Br electrophile to form the following intermediate:

D 30

X has 4 chiral centres marked with * below:

Option A: Wrong

Two -OH groups are added across the C=C group. The product formed has 5 chiral centres as shown below:

Option B: Wrong

Alcohol undergoes dehydration to form two possible alkenes. Either product has 3 chiral centres:

Option C: Wrong

Bromination takes place across the C=C group. Product formed has 5 chiral centres as shown below:

Option D: Correct

Hydrogenation takes place across the C=C group. Product formed still has 4 chiral centres as shown below:

