CATHOLIC JUNIOR COLLEGE

PRELIMINARY EXAM 2008

CHEMISTRY 9746/01 Higher 2

Paper 1 Multiple Choice

11 September 2008

1 hour

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil Data Booklet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Write your name, class and NRIC number on the Multiple Choice Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions in this paper. Answer **all** questions. For each question, there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Multiple Choice Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

Section A

For each question there are four possible answers, A, B, C and D. Choose the one you consider to be correct.

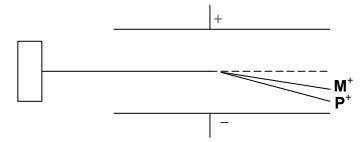
- 1 Which of the following expression correctly defines the term relative atomic mass of an element?
 - The mass of one atom of an element relative to the mass of one atom of ¹²C. Α
 - The mass of one mole of atoms of an element relative to the mass of one В atom of ¹²C
 - The mass of one mole of atoms of an element relative to the mass of one C mole of ¹²C atoms.
 - The mass of one mole of atoms of an element divided by Avogadro's D constant.
- How many atoms are there in 500 cm³ of carbon dioxide under room conditions? 2
 - 1.25×10^{22} Α
- **B** 1.34×10^{22} **C** 3.76×10^{22} **D** 9.0×10^{26}
- When 10 cm³ of a gaseous hydrocarbon **X** were burned in 70 cm³ of oxygen, the 3 final gaseous mixture contained 30 cm³ of carbon dioxide and 20 cm³ of unreacted oxygen. [All gaseous volumes measured under identical conditions.]

What is the formula of hydrocarbon **X**?

- Α C₂H₆
- В
 - C₃H₆ **C** C₃H₈
- D C₄H₁₀
- $20.0~\text{cm}^3$ of $0.02~\text{mol}~\text{dm}^{-3}~\text{bromate(V)}$, BrO_3^- , was found to react completely with $80.0~\text{cm}^3$ of $0.01~\text{mol}~\text{dm}^{-3}~\text{hydroxylamine}$, NH_2OH . BrO_3^- ions are reduced as 4 follows:

$$BrO_3^- + 6e^- + 6H^+ \rightarrow Br^- + 3H_2O$$

Which of the following could be the half-equation for the oxidation of hydroxylamine?


- $NH_2OH \rightarrow \frac{1}{2} N_2O + 2H^{\dagger} + \frac{1}{2} H_2O + 2e^{-}$ Α
- $NH_{2}OH + H_{2}O \rightarrow NO_{2}^{-} + 5H^{+} + 4e^{-}$ В
- $NH_2OH \rightarrow NO + 3H^{\dagger} + 3e^{-}$ C
- $NH_2OH + 2H_2O \rightarrow NO_3^- + 7H^+ + 6e^-$ D

The table below gives the successive ionisation energies, in kJ mol⁻¹, of an unknown element **X**.

	First	Second	Third	Fourth	Fifth	Sixth
Ionisation energy	800	1550	7700	10500	13600	18000

Which of the following statements about **X** is correct?

- **A** The aqueous ion X^+ is likely to be coloured.
- **B X** is a Group III element in the Periodic Table.
- **C X** is able to exhibit more than one oxidation state.
- **D** The oxide of **X** reacts readily with H⁺ to form a salt and water.
- In an experiment, an ore sample containing phosphorus and an unknown element **M** is vapourised, ionised and passed through an electric field.

Based on the diagram above, what is the likely identity of the unknown element M?

- **A** Sulphur
- **B** Silicon
- **C** Sodium
- D Nitrogen
- Which of the following best describes the geometry of the following chlorides formed by the elements AI, Si and P?

	AICI ₃	SiCl ₄	PCI ₃
Α	Trigonal planar	Square planar	Trigonal planar
В	Trigonal planar	Tetrahedral	Trigonal pyramidal
С	Trigonal planar	Tetrahedral	T-shaped
D	Trigonal pyramidal	Square planar	Distorted tetrahedral

8 The values of the ionic radii, in nm, of several ions are given below:

Li ⁺	0.060	F ⁻	0.136
Na⁺	0.095	CI -	0.181
Mg ²⁺	0.065	O^{2-}	0.140
Ca ²⁺	റ റമമ		

Which of the following compounds, all of which have the same crystal structure, has the greatest lattice energy?

A LiF B NaCl C MgO D CaO

9 When 0.2 mol of zinc dust was added to 250 cm³ of 1.0 mol dm⁻³ aqueous copper(II) sulphate (an excess), the temperature of the solution rose by 15 °C. The specific heat capacity of the final solution is 4.20 J g⁻¹ K⁻¹.

What is the enthalpy change for the reaction $Cu^{2+} + Zn \rightarrow Zn^{2+} + Cu$?

A -78.8 kJ mol⁻¹

C -15.8 kJ mol⁻¹

B -39.4 kJ mol⁻¹

- **D** -3.15 kJ mol⁻¹
- **10** Given the following enthalpy changes:

$$C_6H_4(OH)_2 (aq) \rightarrow C_6H_4O_2 (aq) + H_2 (g)$$

$$\Delta H^0 = +177 \text{ kJ mol}^{-1}$$

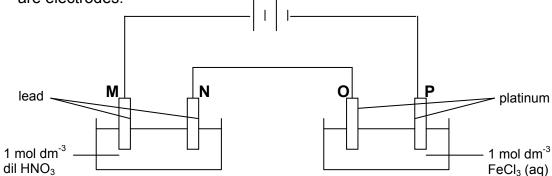
$$H_2O_2$$
 (aq) $\to H_2O$ (I) + $\frac{1}{2}O_2$ (g)

$$\Delta H^{\theta} = -95 \text{ kJ mol}^{-1}$$

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(l)$$

$$\Lambda H^0 = -286 \text{ kJ mol}^{-1}$$

What is the enthalpy change for the following reaction?

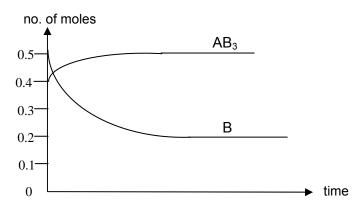

$$C_6H_4(OH)_2$$
 (aq) + H_2O_2 (aq) $\rightarrow C_6H_4O_2$ (aq) + $2H_2O$ (I)

A -490 kJ mol⁻¹

C -204 kJ mol⁻¹

B -368 kJ mol⁻¹

- **D** -82 kJ mol⁻¹
- 11 Which of the following reactions will have a negative ΔS value?
 - A $CO_2(g) + C(s) \rightarrow 2CO(g)$
 - **B** $NH_4NO_3(s) \rightarrow N_2O(g) + 2H_2O(g)$
 - **C** $2 H_2O_2(aq) \rightarrow 2 H_2O(l) + O_2(g)$
 - $\textbf{D} \qquad \text{PH}_3\left(g\right) \, + \, \, \text{HI}\left(g\right) \, \rightarrow \, \, \text{PH}_4\text{I}\left(s\right)$
- Two cells are connected in series as shown in the diagram where **M**, **N**, **O** and **P** are electrodes.


Which of the following correctly shows the products formed at each electrode?

	M	N	0	Р
Α	O_2	H_2	O_2	Fe ²⁺
В	O_2	Pb	Cl_2	H_2
С	Pb ²⁺	H_2	Cl_2	H_2
D	Pb ²⁺	H_2	O_2	Fe ²⁺

13 Consider the reversible reaction:

$$A(g) + 3B(g) \iff AB_3(g)$$

Equilibrium was established in a 0.2 dm³ vessel at a temperature of 900 K. The diagram below shows the change in number of moles of AB₃ and B with time. The initial number of moles of A was 0.2.

What is the equilibrium constant K_c for the reaction in mol⁻³ dm⁹?

A
$$\frac{0.5}{0.1 \text{x} (0.2)^3}$$

Silver chromate(VI), Ag₂CrO₄, is sparingly soluble in water. In its saturated solution, 14 the concentration of Ag₂CrO₄ is 6.5 x 10⁻⁵ mol dm⁻³. What is the numerical value of the K_{sp} of Ag₂CrO₄?

A 2.75×10^{-13} **B** 1.10×10^{-12} **C** 4.23×10^{-9} **D** 8.45×10^{-9}

15 In which of the following sequences is the value of pK_a decreasing?

 $C_6H_5OH > CH_3CH_2CHCIOH > CH_3CH_2CH_2CH_2OH > (CH_3)_3COH$ Α

(CH₃)₃COH > CH₃CH₂CH₂CH₂OH > CH₃CH₂CH₂CHCIOH > C₆H₅OH В

C $CH_3CH_2CH_2CH_2OH > (CH_3)_3COH > CH_3CH_2CH_2CHCIOH > C_6H_5OH$

D $CH_3CH_2CH_2CHCIOH > (CH_3)_3COH > CH_3CH_2CH_2CH_2OH > C_6H_5OH$

A piece of zinc foil dissolved completely in 20 cm³ of a dilute sulphuric acid solution 16 and the volume of hydrogen evolved was noted at equal, short time intervals. Another piece of zinc foil of the same surface area and mass was added to 40 cm³ of the same solution of sulphuric acid.

How will the initial rate of reaction and the total volume of hydrogen evolved in this second experiment compare to the first experiment?

initial rate of reaction total volume of hydrogen evolved Α no change decrease no change В no change C increase no change D increase increase

				6	i			
17	How (i)	do the followin	•	erties of Grou	•	•	own the	e group?
	(ii) (iii)		ation e	energy, 1 st I.E		/ M		
		$E^{\theta}{}_{M}{}^{2+}{}_{M}$		1 st I.E.		Electroneg	ativity	
	Α	more negativ	/e	decreases		decreases		
	В	less negative	Э	decreases		increases		
	С	more negative	/e	increases		decreases		
	D	more negative	/e	increases		increases		
18		lement Y has es of Y is not			-	on [Ar]3d ² 4s ² .	Which	n of the following
	Α	YO			С	YO_3^-		
	В	YO_2			D	Y_3O_5		
19	Whic	h of the followi	ing is le	east likely to a	act as a	ligand?		
	Α	CO			С	C_6H_5OH		
	В	CH ₃ CH ₃			D	NH ₂ NH ₂		
20	conta chron	ining iron(II) o	hloride	e were conne	cted in	series. 11.20	g of ir	n and the other on and 6.97 g of chromium in the
	A	+2	В	+3	С	+5	D	+6
21		oprene, which resence of nic			hown b	elow, is react	ed with	n hydrogen gas in
		H ₃ C C \	CH ₃	CH ₃ CH	C C	CH ₃ 0 C C C C C C C C C	C-C-	H ₃
	methoprene How many stereoisomers will the product have?							
	Α	2 ¹	В	2 ²	С	2^3	D	2 ⁴
		_	_	_		_	_	_
22		nple of ethene ving products i						(aq). Which of the
	Α	CH ₂ (OH)CH	₂ Br		С	CH ₂ (OH)CH	₂ CI	
	В	CH ₂ BrCH ₂ CI			D	CH ₂ BrCH ₂ B	r	

What will be observed when the following compounds are added to hot acidified potassium manganate(VII)?

Α	C ₆ H ₅ CH ₃ Solution turns colourless. No effervescence.	CH ₃ CH=CH ₂ Solution turns colourless. Effervescence occurs.	CH ₃ CH ₂ CH ₂ CI Solution remains purple. No effervescence.
В	Solution remains purple. No effervescence.	Solution turns colourless. Effervescence occurs.	Solution turns colourless. No effervescence.
С	Solution turns colourless. Effervescence occurs.	Solution remains purple. No effervescence.	Solution remains purple. Effervescence occurs.
D	Solution remains purple. Effervescence occurs.	Solution remains purple. Effervescence occurs.	Solution turns colourless. No effervescence.

Which of the following sets of reagent and conditions is used for the reaction scheme shown below?

Step I

KMnO₄, H⁺, heat

Step II

Aqueous Br₂

KMnO₄, H⁺, heat

Br₂, Ultraviolet light

C Aqueous Br₂

KMnO₄, H⁺, heat

KMnO₄, H⁺, heat

25 Compound **X**, C₄H₉Br, undergoes the following reactions:

$$C_4H_9Br$$

NaOH (aq)
heat

 $C_4H_{10}O$
 $Cr_2O_7^{2-}, H^+(aq)$
reflux

 C_4H_8O only

What is **X** likely to be?

A 1-bromobutane
 B 2-bromobutane
 C 1-bromo-2-methylpropane
 D 2-bromo-2-methylpropane

- Which of the following reactions does **not** occur when CH₃CH(OH)CH₃ is warmed with an alkaline solution of iodine?
 - A Oxidation
 - **B** Halogenation
 - C Condensation
 - **D** Precipitation

- Which of the following methods is most appropriate for preparing 3-oxo-butanoic acid, CH₃COCH₂CO₂H?
 - A CH₃CH₂CH(OH)CH₂OH refluxed with acidified potassium manganate(VII).
 - **B** CH₃CH(OH)COCH₂OH distilled with acidified potassium dichromate(VI).
 - C CH₂=C(CH₃)CH₂CH=CH₂ heated with acidified potassium manganate(VII).
 - f D CH₃COCH₂OCOCH₃ refluxed with aqueous sodium hydroxide followed by acidification.
- 28 What is the product formed when ethanoyl chloride reacts with CH₃NH OH?
 - A NHCOCH₃ C NHCOCH₃

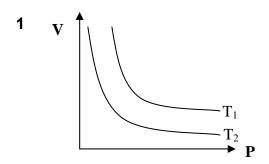
 CH₃NH \longrightarrow OH CH₃NH \longrightarrow OCOCH₃

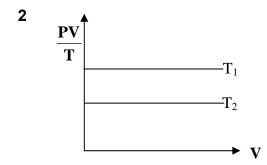
 B NH₂ D NHCOCH₃
- CH_3NH \longrightarrow OH $CH_3CON(CH_3)$ \longrightarrow $OCOCH_3$
- Compound **X** is an alkene containing the nitrile functional group. Upon heating with hydrogen in the presence of nickel, compound **Y**, CH₃CH₂CH₂NH₂, is formed. If **X** was hydrolysed in dilute hydrochloric acid and subsequently reacted with **Y**, what is the most likely product formed?
 - A CH₂=CHCONHCH₂CH₂CH₃
 - B CH₃CHClCONHCH₂CH₂CH₃
 - C (CH₃CHClCO₂)⁻(CH₃CH₂CH₂NH₃)⁺
 - $\mathbf{D} \qquad (CH_2 = CHCO_2)^{-}(CH_3CH_2CH_2NH_3)^{+}$
- 30 Glutamic acid and glutamine can react with each other to form amide linkages.

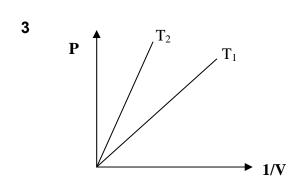
If one molecule of glutamic acid reacts with one molecule of glutamine, what is the maximum number of different compounds containing amide linkages that can be formed?

A 2 **B** 3 **C** 5 **D** 7

Section B

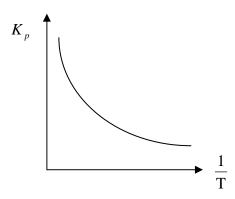

For each of the following questions in this section, one or more of the three numbered statements ${\bf 1}$ to ${\bf 3}$ may be correct. Decide whether each of the statements is or is not correct. The responses ${\bf A}$ to ${\bf D}$ should be selected on the basis of:


Α	В	С	D
1, 2 and 3	1 and 2 only	2 and 3 only	1 only is
are correct	are correct	are correct	correct


No other combination of statements is used as a correct response.

- 31 Which of the following statements about BCl₃ is true?
 - 1 It can form a dative bond with NH_{3.}
 - 2 It is planar in shape.
 - 3 It has more covalent character than B₂O₃.
- Which of the following graphs shows the behaviour of a fixed mass of an ideal gas at two constant temperatures, T_1 and T_2 where $T_1 > T_2$?

 (P = total pressure; V = volume of vessel; T = temperature)



Α	В	С	D
1, 2 and 3	1 and 2 only	2 and 3 only	1 only is
are correct	are correct	are correct	correct

- In which of the following pairs of compounds is the boiling point of the second compound higher than the first compound?
 - 1 NH₂CH₂CO₂H and CH₃CH₂CONH₂
 - 2 CH₃CHO and CH₃CH₂OH
 - trans-1,2-dichloroethene and cis-1,2-dichloroethene
- A voltaic cell is made up of Mg²⁺/Mg half-cell and the Fe³⁺/Fe²⁺ half-cell. Which of the following statements are correct?
 - 1 Addition of water to the Fe³⁺/Fe²⁺ half-cell has no effect on the cell e.m.f.
 - 2 Addition of aqueous sodium hydroxide to the Mg²⁺/Mg half-cell increases the cell e.m.f.
 - 3 Increasing temperature has no effect on the cell e.m.f.
- 35 The equilibrium constant K_p for the reaction

$$2X(g) + Y(g) \rightleftharpoons Z(g)$$

varies with temperature T as shown in the diagram below.

What conclusions can be drawn regarding the above reaction?

- 1 The equilibrium mixture contains a higher proportion of Z at lower temperatures.
- The equilibrium mixture contains a higher proportion of Z at higher pressures.
- **3** The reverse reaction is exothermic.
- The addition of which compound would lower the solubility of calcium carbonate?
 - 1 sodium carbonate
 - 2 calcium sulphate
 - 3 water

Α	В	С	D
1, 2 and 3	1 and 2 only	2 and 3 only	1 only is
are correct	are correct	are correct	correct

37 Bromine and methanoic acid react as follows.

$$Br_2(aq) + HCO_2H(aq) \longrightarrow 2Br^-(aq) + 2H^+(aq) + CO_2(g)$$

The rate of reaction is found to be first order with respect to both bromine and methanoic acid.

What deductions can be made for the above reaction?

- 1 Doubling the concentration of methanoic acid doubles the rate of evolution of gas.
- 2 Halving the concentration of both reactants simultaneously will halve the reaction rate.
- **3** The overall order of the reaction is one.
- Which of the following statements is true about the elements in Period 3 of the Periodic Table?
 - 1 Melting points generally decrease across the period.
 - **2** First ionisation energies generally increase across the period.
 - The chlorides of the elements change from ionic to covalent across the period.
- Which of the following chemical tests can distinguish between 1-chlorobutane and 2-chlorobutane?
 - 1 Heating with excess NaOH (aq), followed by adding aqueous iodine.
 - 2 Heating with limited NaOH (ag), followed by adding agueous silver nitrate.
 - 3 Heating with NaOH (aq), followed by refluxing with acidified aqueous potassium manganate(VII).
- Which pair of substances gives water as one of the products when reacted together?
 - 1 CH₃CH(OH)CH₃ and concentrated H₂SO₄

 $\begin{tabular}{c} \textbf{2} \\ \hline & \textbf{COOH} \\ \hline & and & CH_3CH_2OH \\ \hline \end{tabular}$

OH and CH₃CH₂CO₂H

END OF PAPER