Answers to 2021 JC2 Preliminary Examination Paper 2 (H2 Physics)

Suggested Solutions:

No.	Solution	Remarks
1(a)	$a = g \sin \theta$	[1] correct
	$=(9.81)\sin 30^{\circ}$	working
	= 4.905	shown
	$= 4.9 \text{ m s}^{-2}$ (shown)	
1(b)	$\sin 30^\circ = \frac{h}{d}$	[1] for correct
	$d = \frac{0.50}{\sin 30^\circ} = 1.0 \text{ m}$	[1] correct equation and
	$v^2 = u^2 + 2as$	substitution
	$v^2 = 2(4.905)(1.0)$	[1] correct
	$v = 3.13 \text{ m s}^{-1}$	answer
1(c)	$s = ut + \frac{1}{2}at^2$	[1] for correct equation and
	$2.0 = (3.13\sin 30)t + \frac{1}{2}(9.81)t^2$	[1] for correct
	<i>t</i> = 0.50 s	<i>t</i> [1] for correct
	horizontal distance = $3.13 \cos 30^{\circ} (0.50)$	distance
	=1.35 m	
1(d)(i)	In the system of object and trolley, there are <u>no external forces</u> acting on them in the horizontal direction. The only horizontal forces are contact forces (action-reaction pair) acting on each other when object hits the trolley. Hence, total momentum in the horizontal direction <u>remains constant (or is conserved)</u> .	[1] for explanation [1] for conclusion
1(d)(ii)	Applying conservation of momentum, rightward as +ve, $(0.35)(3.13\cos 30^\circ) + (1.2)(-4.0) = (1.2 + 0.35)v_f$ $v_f = -2.48 \text{ m s}^{-1}$ final speed = 2.48 m s ⁻¹ Direction is to the left	 [1] for correct equation and substitution [1] for correct answer [1] for correct direction
2(a)	1 / ->	
2(4)	From the given expression $p = \frac{1}{3}\rho \langle c^2 \rangle$, we have	
	$p = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle$ (1) (where <i>m</i> is the mass of 1 molecule)	
	Using the ideal gas equation $pV = NkT$, we have	
	$p = \frac{NkT}{V} \qquad (2)$	

No.	Solution	Remarks
	Equating (1) and (2), we have $\frac{1}{2} \frac{Nm}{NT} \langle c^2 \rangle = \frac{NkT}{NT}$	[1] for equating (1) and (2)
	$\begin{vmatrix} 3 & V & V \\ \frac{1}{3}m\langle c^2 \rangle = kT \\ \frac{1}{2}m\langle c^2 \rangle = \frac{3}{2}kT \end{vmatrix}$	[1] for correct derivation of expression
	Since <i>k</i> is the Boltzmann constant, the average kinetic energy $\frac{1}{2}m\langle c^2 \rangle$ of a molecule of mass <i>m</i> , is directly proportional to the thermodynamics temperature <i>T</i> . (shown)	[1] for the correct conclusion
2(b)(i)	Total pressure, $p_{\text{total}} = h\rho g + p_{\text{atm}}$ $= (15)(1.03 \times 10^3)(9.81) + 1.01 \times 10^5$ $= 2.526 \times 10^5$	[1] for correct method and numerical substitution
	≈ 2.53×10 ⁵ Pa	[1] for correct answer
2(b)(ii)	Using $pV = nRT$, $(p_2V_2)_{water} = (p_1V_1)_{tank}$ $V_2 = \frac{p_1}{p_2}V_1$ $= \frac{2.32 \times 10^7}{2.526 \times 10^5} \times 9.4 \times 10^3$ $= 8.633 \times 10^5$ $\approx 8.63 \times 10^5$ cm ³ Pressure at depth of 35 m	 [1] for correct expression and numerical substitution [1] for correct answer
2(0)	$p_{2} = h\rho g + p_{atm}$ $= (35)(1.03 \times 10^{3})(9.81) + 1.01 \times 10^{5}$ $= 4.547 \times 10^{5} \text{ Pa}$ Volume of air at depth of 35 m and temperature of 19 °C, $\left(\frac{p_{2}V_{2}}{T_{2}}\right)_{35m} = \left(\frac{p_{1}V_{1}}{T_{1}}\right)_{15m}$ $V_{2} = \frac{p_{1}}{p_{2}} \times \frac{T_{2}}{T_{1}} \times V_{1}$ $= 2.526 \times 10^{5} - 19 + 273.15$	[1] for correct method and numerical substitution
	$= \frac{2.526 \times 10^{\circ}}{4.547 \times 10^{5}} \times \frac{19 + 273.15}{24 + 273.15} \times 8.633 \times 10^{5}$ $= 4.715 \times 10^{5} \text{ cm}^{3}$	volume

2021/JPJC/Prelim/9749/02

No.	Solution	Remarks
	Duration of time the air will last for the diver	
	$t = \frac{4.715 \times 10^5}{2.222 \times 10^5} \times 45$	[1] for correct
	8.633×10°	answer
	= 24.30	
	≈ 24.0 11111	
3(a)	If path difference of the sound waves along XY is <u>odd-integer of</u> <u>half-wavelength</u> ,	[1]
		[1]
	and hence minimum intensity.	
3(b)(i)	$BR = \sqrt{12.00^2 + 5.50^2}$	[1]
	= 13.20 m	
0(1-)(!!)		[4]
3(D)(II)	R is first order maxima, path difference = 1λ $\lambda = BR - AR$	[1]
	= 13.20 - 12.50	[1]
	= 0.70 m	
2(b)(iii)		[4]
3(D)(III)	$V = I\lambda$ = 470×0.70	[1]
	$= 470 \times 0.70$ = 330 m s ⁻¹	
	- 550 m 3	
3(c)	Since $I \propto A^2$, for $I' = \frac{I}{3}$, the amplitude of the waves from B is	[1] amplitude of source B
	$\left \frac{1}{\sqrt{3}} A \right $	
	At Q, the resultant amplitude of the wave interfering destructively is	
	$A_{\text{resultant}} = A - \frac{1}{\sqrt{2}} A$	
	$A_{\text{constraint}} \approx 0.423A$	[1] resultant
	resultant	amplitude
	Hence, the resultant intensity is $I_{\text{resultant}} \propto (0.423A)^2 = 0.179I$	
		[1] answer
4(a)(i)	P = IV	[1] for
	36 = I(12)	substitution
	<i>I</i> = 3.0 A	[1] for correct
4(a)(ii)	Q = It	[1] for correct
	$=(3.0)(20\times 60)$	equation and
	= 3600 C	[1] for correct
		answer

No.	Solution	Remarks
4(a)(iii)	$E = Pt = (36)(20 \times 60) = 43200 \text{ J}$	[1] for equation, substitution and correct answer
4(a)(iv)	$R = \frac{V}{I}$ $= \frac{12}{3.0}$ $= 4.0 \ \Omega$	[1] for equation, substitution and correct answer
4(b)(i)	$\frac{1}{R_{eff}} = \frac{1}{4.0} \times 3$ $R_{eff} = 1.33 \Omega$ 12	[1] for correct <i>R</i> _{eff}
	$I = \frac{1}{1.33} = 9.0 \text{ A}$	current
4(b)(ii)1.	There is no change to the potential difference across the lamps since they are all connected in parallel to an ideal battery. With the same potential difference and resistance, the power dissipated and brightness remain unchanged.	[1] correctexplanation[1] correctconclusion
4(b)(ii)2.	Due to the internal resistance of the battery, the <u>potential difference</u> <u>across the lamps decreases</u> . Hence, the <u>brightness of the lamps</u> <u>decreases</u> .	[1] p.d.across lampsdecreases[1]brightnessdecreases
5(a)	$B = \mu_0 nI = 4\pi \times 10^{-7} \left(\frac{400}{1.6}\right) 3.8$ = 3.8 × 10 ⁻⁴ π = 1.19381 × 10 ⁻³ T $\Phi = NBA$ = 80 × $\left(3.8 \times 10^{-4} \pi\right) \times \pi \left(\frac{0.040}{2}\right)^2$	[1] [1] for correct
	$= 1.2 \times 10^{-4}$ Wb	SUDSTITUTION
5(b)	mean e.m.f. = $\left -\frac{\Delta \Phi}{\Delta t} \right $ = $\frac{2 \times 1.2 \times 10^{-4}}{0.30}$ = 8.0×10^{-4} V	[1] for correct substitution[1] for correct answer

No.	Solution	Remarks
5(c)		
	E/V 8.0 × 10 ⁻⁴	[1] <i>E</i> = 0 V from <i>t</i> = 0 s to 0.5 s and 0.8 s to 1.4 s
	0 –	[1] $E = 8.0 \times 10^{-4}$ V from t = 0.5 s to 0.8
	0	s [1] $E = -2.0$ × 10 ⁻⁴ V from t = 1.4 s to 2.0 s
5(d)	The iron core increases the magnetic flux density, resulting in a larger rate of change of flux linkage.	[1] for correct answer
	Hence, the mean e.m.f. induced in coil Y is larger.	
6(a)(i)	 Wave nature contradicts: Since energy is arriving in <u>continuous</u> <u>manner</u>, a certain time is needed for the electron to gather enough energy before it is ejected. Particulate nature supports: Energy of the incident photon will be <u>instantaneously transferred</u> to the absorbing electron in <u>a one-one</u> <u>interaction.</u> 	[1]
6(a)(ii)	Work function of a surface is the <u>minimum</u> energy required to liberate an electron from the surface.	[1]
6(a)(iii)	By Conservation of energy, Kinetic energy of electron = Energy of photon – Work done to emit an electron from the surface. But electrons can be ejected from <u>different layers of metal</u> , hence work done can vary, resulting in different KE. When the work done is minimum, KE will be maximum.	 [1] using conservation of energy or Einstein's photoelectric equation [1] for any correct explanation.
6(b)	Energy of photon, 350 nm $= \frac{hc}{\lambda}$ $= \frac{6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{350 \times 10^{-9}}$ $= 5.6829 \times 10^{-19} \text{ J}$ $= 3.55 \text{ eV}$	[2] for any correct calculations

No.	Solution	Remarks
	Energy of photon, 700 nm	
	$=\frac{nc}{\lambda}$	
	$6.63 \times 10^{-34} \times 3.00 \times 10^{8}$	
	=	
	$= 2.8414 \times 10^{-19} J$	
	=1.78 eV	
	To emit an electron, energy of photon must be greater than work	[1] for correct
	function.	conclusion
	nm.	
	-	
7(a)(i)	Energy density is the amount of <u>energy</u> that can be released <u>per unit mass</u> of fuel.	[1] for correct answer
7(a)(ii)	Rate of consumption of natural gas	
	total electrical power output	
	$=\frac{\text{energy of power stations}}{\text{energy density of natural gas}}$	
	12600×10 ⁶	
		[1] for correct
	56×10 ⁶	method and numerical
	$=\frac{12600}{0.27\times56}$	substitution
	= 833	[1] for correct
	≈ 830 kg s ⁻¹	answer
74.545		
7(b)(I)	Solar intensity incident on Earth radiant power of the Sun, P	
	$I = \frac{1}{\text{area of perpendicular surface, } A}$	[1] for correct
	3.90×10^{26}	expression
	$=\frac{1}{4\pi \times (1.50 \times 10^{11})^2}$	numerical
	=1379	substitution
	≈1400 W m ⁻²	answer
-4.5415		
(ii)(d) \	i ne Sun's energy is radiated/emitted uniformly in all directions.	[1] for correct answer
7(b)(iii)	1. Cloudy times / cloud cover / sun is not directly overhead all the	[1] for correct
	time 2 Absorption in atmosphere due to ozone, carbon dioxide and	answer [1] for correct
	water vapour/humidity	answer
	3. Distance between Earth and Sun is not constant.	
7(c)(i)	Connecting many PV cells in series increases the e.m.f. of the electrical supply (allow higher voltage).	[1] for correct answer

No.	Solution	Remarks
7(c)(ii)	Currents from each parallel section of PV cells add up at the junction to the external circuit to provide a useful current supply.	[1] for correct answer
	The output current of the PV cell array is increased.	[1] for correct
	If one PV cell is faulty the others still work and continue to supply energy.	answer
	Connecting many PV cells in parallel lowers total resistance of the PV cell array, in the same principle that resistors in parallel result in an equivalent resistance that is always lower than every individual resistor.	
7(d)	solar power output from 37 km ² of PV panels	
	total power output from power stations	[1] for correct
	$=\frac{780\times37\times10^6\times0.20}{2}$	numerical
	12600×10°	substitution
	~ 0.46	[1] for correct
	~ 0.10	answer
7(e)(i)1.	Power produced by the PV panel	[1] for correct
	\sim efficiency of PV panel	numerical
	$= 780 \times 1.50 \times 0.20$	substitution
	= 234 W	answer
	-	
7(e)(i)2.	Total number of sunshine hours in 2020 = 170 + 185 + 195 + 175 + 180 + 180	
	+190 + 180 + 155 + 155 + 130 + 135	
	= 2030 hours	
	Electrical energy produced by the PV panel in 2020	[1] for correct numerical
	$=\frac{-0.1}{1000} \times 2030$	Substitution
	= 475.02	[1] for correct
	≈ 475 kWh	answer
7(e)(ii)	Cost of saving in electricity per year = electrical energy produced by PV power × electricity tariff	[1] for cost savings
	= 475 × 0.23	_
	= \$109.25	
	Payback period or no. of years to recover the cost of installing the PV panel	

No.	Solution	Remarks
	$= \frac{750}{109.25}$ = 6.9 years It takes about 7 years for the payback period for the investment of the PV panel. This is about a third of the useful lifespan of 25 years for the PV panel. Hence, the calculations are for the use of solar power, in addition to the benefit of reducing the intensity of greenhouse gas emissions.	 [1] for payback period [1] for conclusion with valid explanation