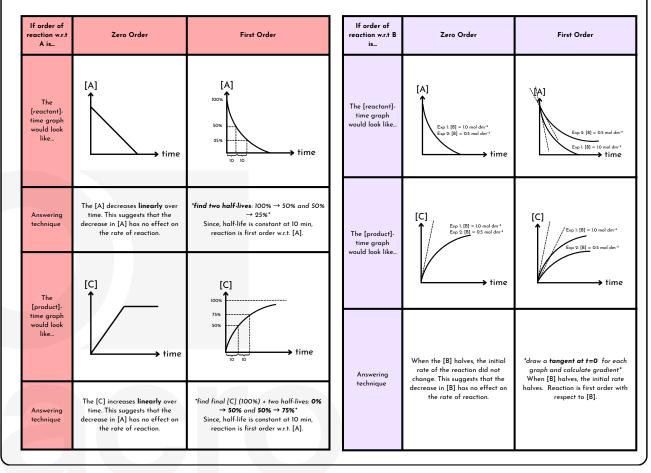


Kinetics

ORDERS OF REACTION


OBSERVATIONS	ORDER OF REACTION
When [A] is doubled, the rate of reaction doubles	Rate \curvearrowright [A] Reaction is first order with respect to [A]
When [A] is doubled, the rate of reaction quadruples	Rate \propto [A] ² Reaction is second order with respect to [A]
When [A] is doubled, the rate of reaction does not change	Rate ∝[A] ⁰ Reaction is zero order with respect to [A]

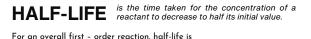
RATE EQUATION DEFINITIONS

TERM	DEFINITION
Rate equation	An experimentally-determined equation that relates the rate of reaction to the concentrations of the reactants raised to the appropriate orders.
Order of Reaction	The power on a reactant's concentration term in the rate equation. This power is determined experimentally.
Overall Order of Reaction	The sum of the individual orders.
k	The proportionality constant in the experimentally-determined rate equation.

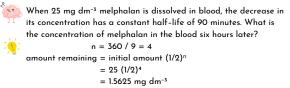
CONTINUOUS METHOD QUESTIONS

Question: Consider the reaction 2A + B \rightarrow C. A couple of experiments were conducted to study the reaction kinetics. B is kept in excess for all experiments. Find the order of reaction with respect to A and B.

INITIAL RATE METHOD QUESTIONS


Consider the reaction $2A + B \rightarrow C$.

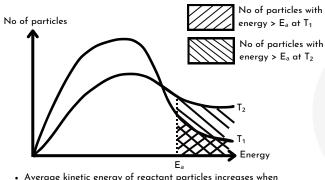
A couple of experiments were conducted to find the order of reaction with respect to A and B.

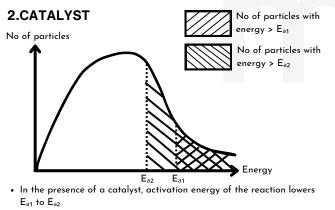

Exp	V of A /cm³	V of B /cm³	V of H2O/cm ³	Initial rate
1	5	5	10	1.0
2	5	10	5	2.0
3	10	10	0	8.0

- Why must water be added to experiments 1 and 2?
- This is to ensure that total volume remains constant. When total volume is constant, the concentration of reagents is proportional to volume ([A] ~ V of A. When volume doubles, concentration doubles).
- What is the rate equation?
 - Comparing experiments 1 and 2, where [A] is constant, when [B] doubles, the initial rate doubles. Therefore, reaction is first order with respect to [B].
 - Comparing experiments 2 and 3, where [B] is constant, when [A] doubles, the initial rate increases by 4 times. Therefore, reaction is second order with respect to [A].

Therefore, rate = k[A]²[B]

 $t_1/_2 = ln \; 2 \; / \; k, \; \text{where } k \; \text{is the rate constant} \\ \text{\% remaining} = (1/2)^n, \; \text{where } n \; \text{is the number of half-lives} \\$

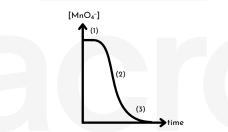



Kinetics

FACTORS AFFECTING RATE OF REACTION

1. TEMPERATURE

- Average kinetic energy of reactant particles increases when temperature increases T_1 to T_2
- More reactant particles possess energies greater than or equal to activation energy
- Frequency of effective collisions increases
- Rate of reaction increases

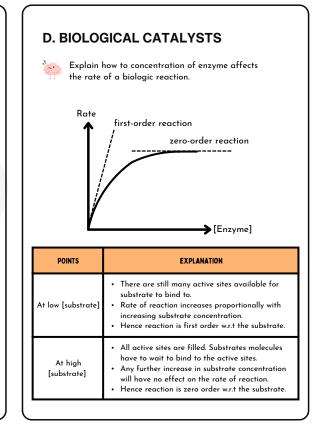


- More reactant particles possess energies greater than or equal to E_{a2}
- Frequency of effective collisions increases
- Rate of reaction increases

A. HOMOGENEOUS CATALYSIS	
Explain the catalytic role of Fe ²⁺ in the l ⁻ /S ₂ O ₈ ²⁻ rr Step 1: 2Fe ²⁺ (aq) + S ₂ O ₈ ²⁻ (aq) → 2Fe ³⁺ (aq) + 2 Step 2: 2Fe ³⁺ (aq) + 2l ⁻ (aq) → 2Fe ²⁺ (aq) + l ₂ (aq) Overall equation: 2l ⁻ (aq) + S ₂ O ₈ ²⁻ (aq) → l ₂ (aq)	SO₄²⁻(aq))
Explain how a catalytic converter removes harmfu	l exhaust gases
$C_xH_y(g) + (x + y/4) O_2(g) \rightarrow xCO_2(g) + H_2O(g)$	
$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$	
$2NO(g) + 2CO(g) \rightarrow N_2(g) + 2CO_2(g)$	
Explain the role of oxides of nitrogen in the forme	ition of acid rain
Step 1: $SO_2(g) + NO_2(g) \rightarrow SO_3(g)$	
Step 2: NO(g) + 1/2O ₂ (g) → NO ₂ (g) Overall equation: SO ₂ (g) + 1/2O ₂ (g) → SO ₃ (g)	,,
Overall equation: $SO_2(g) + 1/2O_2(g) \rightarrow SO_3(g)$	3)
Step 3: $SO_3(g) + H_2O(I) \rightarrow H_2SO_4(g)$	q)
C. AUTOCATALYSIS	

Given that Mn²+ behaves as a catalyst, explain how the [MnO₄-] changes over time.

 $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_2$



POINTS	EXPLANATION
(1)	Rate of reaction is slow as there are limited amounts of catalyst Mn²+ at the start.
(2)	Rate of reaction increases sharply as more catalyst Mn²+ is produced as reaction proceeds
(3)	Rate of reaction slows down as there are less reactants

B. HETEROGENEOUS CATALYSIS

Explain the mode of action of Fe in catalysing the Haber Process.

PROCESS	EXPLANATION	
Adsorption	N ₂ and H ₂ diffuse towards the surface and adsorbs onto the active sites of the catalyst by formation of weak attraction forces	
At the active site	 BOWAF: Molecules are brought closer(B) together, and in the right orientation (O). N≡N and H-H covalent bonds within the molecules are weakened (W). Activation energy(A) of the reaction decreases Frequency(F) of effective collision increases 	
Desorption	 NH₃ desorbs and diffuses away from the surface The active sites are available for further reaction 	

