

0		
Qns	Answer	Marks
1a	I_{0} I_{0	
1bi	$d = 10 \times 10^{-6} \div 7$ = 1.43 × 10 ⁻⁶ m	M1 A1
1bii	For number of images on each side, $\sin\theta = 45^{\circ}$	
	$n_{max} = d \sin 45^{\circ} / \lambda$	
	= 1.43 × 10 ⁻⁶ × sin45°/ 600×10 ⁻⁹	
	= 1.68	C1
	≈ 1 Total number of images – 1 + 1 + 1 – 3	A1
1biii	For the first order maxima, $d \sin \theta = \lambda$.	B1
	at α to give a bright image.	וט
	Some of the line spacing is smaller than the standard spacing, giving rise to	B1
	some part of the image being formed at a larger angle between α and $\beta.$	

Paper 3 – Longer Structured

1ci	The stationary wave is formed when the incident wave is <u>reflected at the sea wall</u> such that the incident and reflected <u>waves are of the same type, amplitude, frequency,</u> <u>wavelength and speed</u> the incident and reflected wave travelling in <u>opposite directions then</u> <u>overlap and superpose.</u>	B1 B1
1cii	For the increase in amplitude at wall, the incident and reflected waves must have <u>amplitudes of the same sign</u> / <u>crest meets with crest</u> . OR Constructive interference The reflected wave must have the <u>same phase</u> as the incident wave, hence <u>no phase change</u> occurred during reflection.	M1 A1
1ciii	1.75 λ = 0.78 λ = 0.78/1.75 V = f λ = 720 × 0.78/1.75 = 321	C1 A1

Qns	Answer	Marks
2(ai)	The increase in internal energy of a system is the	B1
	sum of external work done on the system and the heat supplied to the	B1
	system.	
2(aii)	When roasting heat is supplied to the potato, thus 0 is positive	B1
_ (an)	$M_{\rm to}$ is positive.	
	vv _{on} is negligible since there is little change in volume of the potato) /	
	W _{on} is positive since cooked potato becomes smaller in volume	
	Therefore, $\Delta U_{increase}$ is positive.	
	OR	
	W _{on} is negative but magnitude of Q is larger than magnitude of W	R1
	Therefore, $\Delta U_{increase}$ is positive.	ы
	$\Delta U = \Delta KE + \Delta PE$	B1
	ΔPE is negligible as there is no change in state of the potato, therefore, ΔKE	
	is positive. OR ΔPE is positive as water from the potato is changed to	
	gaseous state but ΔKE is also positive.	
	Since KE is directly proportional to (thermodynamic) temperature, the	
2(b)(i)	$\Delta U = Q + W$	
	Constant volume, therefore $W = 0 J$	B1
	$\Delta U = Q$	
	= -55 J	A1
2(b)(ii)	Process A to B takes place at constant temperature, therefore II II>	B1
2(0)(11)	$\Delta U_{AB} = 0$	
	For cyclic process, $\Delta U_{ABCA} = 0$	
	$\Delta U_{AB} + \Delta U_{BC} + \Delta U_{CA} = 0$	
	$\Delta U_{CA} = 55$	B1
	Process C to A is an adjudatic process, therefore $O_{1} = 0.1$	
	r indexes 0 to A is an adiabatic process, therefore $Q_{to} = 0.5$	
	$\Delta U_{CA} = W_{on} = 55$	
	$VV_{by} = -55$	A1

Qns	Answer	Marks
4(a)(i)	A beam of white light consists of photons of all wavelengths (λ) in the visible spectrum.	
	The photons interact with electrons in the gas atoms OR The photons will be absorbed by the electrons	B1
	(Option 1) Photon energy causes electron to move to higher energy level (or to be excited)	B1
	The photon energy (of certain wavelengths $(E = hf = hc/\lambda)$) is equal to the energy difference between the energy levels of the gas atoms	B1
	When electrons de-excite, photons are re-emitted in all directions	B1
	(Option 2) This results in <u>fewer photons of these wavelengths/photons with</u> <u>much less intensity in the direction of the incident light/original direction of travel</u> .	B1
	Hence, there will be dark lines corresponding to these wavelengths in the diffraction pattern.	
4(a)(ii)	Transitions –3.40eV to –0.85eV and –3.40eV to –1.51eV	B1
4(b)(i)	<i>f</i> increases, so energy carried by each photon (= hf) increases. <i>P</i> is constant, so the total incident energy per unit time is constant. Hence, the number of photons per unit time must decrease. The number of photoelectrons must also decrease. quantum yield = $\frac{\text{no. of photoelectrons emitted}}{\text{no. of incident photon}}$ is a fixed value for a given wavelength and type of metal. Correct shape – B1 Indication of f_o – B1	
4(b)(ii)	Negative potential diffrence slows down the electrons, so fewer electrons can reach the collector, photocurrent decreases, to 0 if electrons with max KE cannot reach collector. Positive potential difference accelerates the electrons towards the collector, so all electrons reach the collector, saturation current is reached.	B1

4(b)(iii)	With energy per photon (= hf) constant, the number of incident photons increases linearly with power. Hence, the number of photoelectrons also increases linearly with power.	B1
4(c)(i)	no. of electrons = $6^{10} = 6.05 \times 10^7$	B1
4(c)(ii)	no. of electrons per unit time from 10th dynode = $\frac{9.2 \times 10^{-6}}{1.6 \times 10^{-19}} = 5.75 \times 10^{13}$	M1
	no. of electrons per unit time from cathode = $\frac{5.75 \times 10^{13}}{6.05 \times 10^7} = 9.50 \times 10^5$	A1
4(c)(iii)	no. of incident photons per unit time = $9.50 \times 10^5 \times 3 = 2.85 \times 10^6$	M1
	power of incident light = $n \frac{hc}{\lambda}$	
	$= 2.85 \times 10^{6} \times \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{361 \times 10^{-9}} = 1.57 \times 10^{-12} \text{ W}$	A1
4(c)(iv)	kinetic energy of an electron = $qV = 1.6 \times 10^{-19} \times 50 = 8.0 \times 10^{-18}$ J	M1
	$E = \frac{p^2}{2m} = 8.0 \times 10^{-18} \text{ J}$	
	$\Rightarrow p = \sqrt{2mE} = \sqrt{2 \times 9.11 \times 10^{-31} \times 8.0 \times 10^{-18}} = 3.82 \times 10^{-24} \text{ N s}$	M1
	$\lambda = \frac{h}{p} = \frac{6.63 \times 10^{-34}}{3.82 \times 10^{-24}} = 1.74 \times 10^{-10} \text{ m}$	A1

Qns	Answer	Marks
5ai	Binding energy of Mo = $95 \times 8.09 = 768.55$ MeV	C1
	Binding energy of La = $139 \times 7.92 = 1100.88$ MeV	(either
		one)
	Energy released	
	= Binding energy of Mo + Binding energy of La – Binding energy of U	
	Therefore	M1
	182 = 768.55 + 1100.88 - Binding energy of U	
		A1
	Binding energy of $U = 1687.43$ MeV = 1690 MeV	
5011	$Rinding onorgy = Am c^2$	
Jan	Dinding energy – Am c	
	$1697.42 \times 10^{6} \times 1.6 \times 10^{-19}$	
	$\Delta m = \frac{1007.43 \times 10^{-1} \times 1.0 \times 10^{-1}}{1000000000000000000000000000000000$	C1
	$(3.0 \times 10^8)^2$	
	-3.00×10^{-27} kg	A1
	= 5.00 × 10 Kg	
5bi	$42V \rightarrow 42Ca \rightarrow 0a \rightarrow \overline{a}$	Δ1
	$_{19}$ $\Lambda \rightarrow _{20}$ $\Box d + _{-1}$ $e + V$	
	Alex construits " "out: not think " oud	
	Also accept: neutrino , anti-neutrino and v	
5bii	From Fig. 5.2,	
	time taken for number of nuclei to drop from N_0 to 0.25 N_0 is 25 hours.	
	$2t_{1/2} = 25$	
	$t_{\rm c} = 12.5$ hours	A 1
	1/2	
5611	1.0	P1
	0.8	
	Graph of Ca is a reflection of the graph for K in the N =0.5 N ₀ line.	
	Graphs will intersect at $N = 0.5 N_0$	
5biy	When N (Ca) $- 4$ N (K)	
5517	$N(K) = 0.2 N_0$	M1
	From the graph, this occurs when $t = 29$ hours	A1

Qns	Answer	Marks
6(a)	acceleration proportional to displacement (from a fixed point)	B1
	either acceleration and displacement in opposite directions	B1
0(1-)(1)	or acceleration always directed towards a fixed point	D 4
6(D)(I)	g and r are constant so a is proportional to x	B1
0(1)(1)	negative sign shows a and x are in opposite directions	B1
6(b)(ii)	$\omega^2 = \frac{g}{r}$ and $\omega = \frac{2\pi}{T}$	M1
	$\left(\frac{2\pi}{T}\right)^2 = \frac{9.81}{0.28}$	M1
	<i>T</i> = 1.06 s	A0
6(b)(iii)	$x = x_o \sin \omega t$	
	$1.5 = 2.0 \sin\left(\frac{2\pi}{1.1}t\right)$	M1
	<i>t</i> = 0.15 s (or 0.143 s)	A1
6(b)(iv)	Correct shape	B1
	Correct maximum velocities	B1
	Label units of <i>v</i>	B1
	$V_{\alpha} = \omega X_{\alpha}$	
	$\mathbf{v}_o = \left(\frac{2\pi}{T}\right) \mathbf{x}_o$	
	$v_o = \left(\frac{2\pi}{1.1}\right)(0.020) = 0.11 \text{ m s}^{-1}$ (or 0.118 m s ⁻¹)	
6(b)(v)	Total energy = max KE	B1
	$=\frac{1}{2}(0.100)(0.11)^2$	C1
	= 0.61 mJ (or 0.69 mJ)	A1

6(b)(vii)	METHOD 1:	
	$N_{28}T_{28} = N_{29}T_{29}$	C1
	$N_{28}\sqrt{r_{28}} = N_{29}\sqrt{r_{28}}$	
	AND	
	$(N+1)\sqrt{28} = N\sqrt{29}$	
	N = 56.5	C1
	t = (56.5)(1.1) or $t = (56.5)(1.06)$	C1
	= 62 S $= 60$ S	A1
	METHOD 2:	
	$N_{28}T_{28} = N_{29}T_{29}$	C1
	$N\sqrt{28} = (N-1)\sqrt{29}$	
	N = 57.5	C1
	$t = (57.5)(2\pi)^{0.29}$	C1
	= 62 s	A1
	METHOD 3:	
	$\Delta \phi = 2\pi$	
	$\phi - \phi' = 2\pi$ $\omega t - \omega' t = 2\pi$	C1
	$\left(\frac{2\pi}{T}\right)t - \left(\frac{2\pi}{T'}\right)t = 2\pi$	C1
	$\left(\frac{2\pi}{1.1}\right)t - \left(\frac{2\pi}{1.08}\right)t = 2\pi \qquad \text{OR} \left(\frac{2\pi}{1.06}\right)t - \left(\frac{2\pi}{1.08}\right)t = 2\pi$	C1
	<i>t</i> = 59 s <i>t</i> = 57 s	A1

METHOD 4:	
$\Delta \phi = 2\pi$ $\phi - \phi' = 2\pi$ $\omega t - \omega' t = 2\pi$	C1
$\left(\sqrt{\frac{g}{r}}\right)t - \left(\sqrt{\frac{g}{r'}}\right)t = 2\pi$	C1
$\left(\sqrt{\frac{9.81}{0.28}}\right)t - \left(\sqrt{\frac{9.81}{0.29}}\right)t = 2\pi$	C1
t = 61 s	A1
METHOD 5:	
$\Delta T = 1.08 - 1.06 = 0.02 \text{ s}$	C1
$\frac{1.06}{0.02} = 53$	C1
$t = 53 \times 1.06$ t = 56 s	C1 A1

Qns	Answer	Marks
7 (a)	work done per unit mass	B1
	in bringing a small test mass from infinity to that point	B1
7(b)(i)	gravitational field strength of the electric field at a point is numerically equal to	C1
	the potential gradient at that point.	-
	0 R 2R 3R 4R 5R	
		4.07)
	(5R, -0.80)	x 10')
	-2.0 -	
	ϕ / 10 ⁷ J kg ⁻¹	
($(0, -4.00 \times 10^{\circ})$	
	-6.0	
	-8.0 -	
	$-0.80 \times 10^7 - (-4.00 \times 10^7)$	C 4
	field strength = $\frac{5R}{5R} = 0$	61
	57 - 0	
	2.2×10^7	
	$=\frac{5.2 \times 10}{5(0.4 - 4.06)}$	
	$5(6.4 \times 10^{\circ})$	
	$= 1.0 \text{ N kg}^{-1}$ (accept 0.9 to 1.2 N kg ⁻¹)	A1
7(1-)(::)4		
7(D)(II)1	Point A.	A1
	Since the total energy A intersects the potential energy graph at $x = 2P$ the space energy would only personal activitational potential energy	
	x = 2R, the space capsule would only possess gravitational potential energy and have zero kinetic energy.	N/1
	and have <u>zero kinetic energy</u> .	
7(b)(ii)2	Point(s) B. C. D	Δ1
· (~)(")*	Total energy is greater than GPF	M1
	KE is not zero	M1
7(b)(ii)3	Point D.	A1
\/\··/•	As the total energy D value is equal to zero, the space capsule would have	M1
	enough energy to travel to infinity where the potential energy is zero.	
	5 5, se se se <u></u>	
7(b)(ii)4	Point B.	A1
	= GMm 1(GMm) 1.	
	For circular motion, $TE = -\frac{G}{2r} = -\frac{1}{2} \left -\frac{G}{r} \right = -\frac{1}{2} (GPE)$	M1

