

2021 End-of-Year Examination Pre-University 1

H2 CHEMISTRY

1

9729/01

Paper 1 Multiple Choice & Structured Questions

15 Oct 2021 2 hours

Section A – Multiple Choice

1	2	3	4	5
В	В	С	D	D
6	7	8	9	10
Α	С	В	D	В
A 11	C 12	B 13	D 14	B 15

1	Correct.
	Empirical formula is the lowest whole number ratio of the number of atoms of each element.
2	Correct.
	Molecular formula is the number of atoms of each element present in one molecule.
3	Not correct.
	The relative molecular mass of C_6H_{12} is 72.0 + 12.0 = 84.0 , not 48.0.
	Relative molecular masses are calculated by summing the relative atomic masses of each element found in the Periodic Table, multiplied by the number of atoms.

	C_xH_y	+	$(x + \frac{y}{4}) O_2$	\rightarrow	x CO ₂	+	$\frac{y}{2}$ H ₂ O
initial volume / cm ³	10		90		0		
change in volume / cm ³	-10		-50		+30		
final volume / cm ³	0		40		30		

volume of oxygen gas unreacted = 40 cm^3 volume of carbon dioxide gas formed = $70 - 40 = 30 \text{ cm}^3$

volume of oxygen reacted = $90 - 40 = 50 \text{ cm}^3$

 $\eta_{C_xH_y} : \eta_{O_2} : \eta_{CO_2}$ = **10** : **50** : **30** = 1 : 5 : 3 = 1 : $x + \frac{y}{4} : x$ hence x = 3 $x + \frac{y}{4} = 5$ y = 8

Molecular formula of hydrocarbon is C_3H_8 .

Not correct.

А

	BeC l_2 is a linear molecule. Be only has 2 valence electrons, and forms two bond pairs with C l . Be has no lone pairs of electrons. Hence the two electron domains around Be form a 180° from each other.
В	Not correct.
	BeC l_2 is a molecule. Be ²⁺ ion has a high charge density, strongly polarising C l^- ion electron clouds towards itself, forming Be–C l covalent bonds.
С	Correct.
	Be has an electronic configuration of $1s^2 2s^2$. To form 2 bonds, its valence orbitals (2s and 2p) undergo sp hybridisation, forming 2 sp orbitals which form covalent bonds with <i>Cl</i> atoms. Be hence has 2 energetically-accessible vacant unhybridised 2p orbitals which can accept lone pairs of electrons from chlorine atoms, forming a polymer.
D	Not correct.
	The 1s orbital of Be is fully-filled and cannot accept additional electrons.

2

4 $2Zn(NO_3)_2(s) \rightarrow 2ZnO(s) + 4NO_2(g) + O_2(g)$ +5 -2 +4 0

 $Zn(NO_3)_2$ was oxidised to form O_2 . The oxidation state of O increased from -2 (in Zn(NO₃)₂) to 0 (in O₂).

 $Zn(NO_3)_2$ was also reduced to form NO_2 . The oxidation state of N decreased from +5 (in $Zn(NO_3)_2$) to +4 (in NO_2).

Ground-state electronic configuration of Cl: 1s² 2s² 2p⁶ 3s² 3p⁵ 5

Excited-state electronic configuration of Cl: 1s² 2s² 2p⁶ 3s¹ 3p⁶

One electron must have transferred from 3s (lower energy) to 3p (higher energy).

6

	element	electronic configuration	number of half- filled orbitals
A	С	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2
В	F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
С	Mg	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
D	Al	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1

7 The first bond between two atoms is a sigma (σ) bond.

Any bond formed in excess of the first one is a pi (π) bond.

melting point of ionic compound $\propto LE \propto \left| \frac{q_+ \times q_-}{r_+ + r_-} \right|$ 8

> Since O²⁻ and F⁻ ions have similar ionic radii (F⁻ ion 0.136 nm is much larger than half the radius of O²⁻ ion 0.140 nm), only the magnitudes of q_+ and q_- will result in significant differences in lattice energies.

	compound	$q_+ \times q$	melting point
А	CaF ₂	+2 × −1 = −2	
В	CaO	$+2 \times -2 = -4$	highest
С	K ₂ O	+1 × −2 = −2	
D	KF	$+1 \times -1 = -1$	

9

А	Not correct.
	All boron and nitrogen atoms in the network use up all of their available valence electrons to form covalent bonds.
	Hence there are no delocalised electrons to behave as mobile charge carriers.
В	Not correct.
	Only metals are ductile and malleable. Boron nitride resembles graphite in structure, which has a giant molecular structure.
С	Not correct.
	Boron nitride is a soft material. Between planes of boron and nitrogen atoms, there are weak instantaneous dipole-induced dipole forces of attraction, which require little energy to overcome and allows the planes to slide over one another easily.
D	Correct.
	The atoms of boron and nitrogen are held together in a network by strong covalent bonds. These bonds require much energy to break before the substance can melt.

10 Metals are ductile and malleable.

Only metals are able to conduct electricity in solid state. This is achieved by the 'sea' of delocalised electrons surrounding the metal ion lattice, acting as mobile charge carriers.

melting point		electrical conductivity in different states			identity of
	/ °C	(s)	(<i>l</i>)	(aq)	substance
А	122	×	×	\checkmark	$C_6H_5CO_2H$
В	181	✓	✓	insoluble	Li
С	373	×	\checkmark	insoluble	PbBr ₂
D	802	×	\checkmark	\checkmark	NaCl

11	A	Correct.
		The volume of the gas measured is assumed to only consist of the space containing the gas, and does not include the volume that the gas molecules themselves occupy.
	В	Not correct.
		A gas is most ideal under low pressure and high temperature , so that molecules are sufficiently far apart and can overcome the forces of attraction between molecules.
	С	Not correct.
		Ideal gas molecules collide perfectly elastically – kinetic energy is conserved in all the molecules.
	D	Not correct.
		The correct ideal gas assumption is 'forces of attraction between molecules are insignificant', and makes no mention about the type of force.

12 Standard temperature and pressure refers to 273 K (0 °C) and 100000 Pa (1 bar).

 $V_1 = 3.00 \text{ dm}^3$ $P_1 = 300 \text{ kPa}$ $P_2 = 100 \text{ kPa}$

Since only p and V varied while n and T remained constant, the relationship $p_1V_1 = p_2V_2$ should be used.

 $(300 \ kPa)(3.00 \ dm^3) = (100 \ kPa)(V_2)$ Hence $V_2 = 9.00 \ dm^3$

13	A	Since $pV = nRT$ and $p \propto T$, the graph showing a direct proportional relationship is correct.
	В	Since $pV = nRT$ and $pV \propto T$, pV is therefore inversely proportional to $\frac{1}{T}$ and the graph of a direct proportional relationship is not correct. The graph should be an inverse relationship.
	С	Since $pV = nRT$ and $V = nRT(\frac{1}{p})$, $\frac{1}{p} = \frac{1}{nRT}V$. Therefore $\frac{1}{p} \propto V$ and the graph of an inverse relationship is not correct. The graph should be a direct proportional relationship.
	D	Since $pV = nRT$ and $V \propto T$, the graph of an inverse relationship is not correct. The graph should be a direct proportional relationship.

gas	Mr	rank in Mr	rank in $\frac{m}{Mr}R$
N ₂	28.0	3 rd	2 nd
O ₂	32.0	2 nd	3 rd
Ar	39.9	1 st	4 th
CH ₄	16.0	4 th	1 st

14 Since pV = nRT, nR is the gradient of the graphs. gradient = $nR = \frac{m}{Mr}R$

15

There are 4 chiral carbon atoms in the D-glucose molecule.

Therefore, number of enantiomers in total = $2^4 = 16$.

Section B – Structured Questions

1	(a)	$MnO_4^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 4 H_2O$
	` '	
		$2 \text{ I}^- \rightarrow \text{I}_2 + 2 \text{ e}^-$
	(b)	$I_2 + 2 S_2 O_3^{2-} \rightarrow 2 I^- + S_4 O_6^{2-}$
		24.90
	(C)	$\eta_{S_2 O_3^{2-}} = \frac{24.96}{1000} \mathrm{dm^3} \times 1.50 \mathrm{mol/dm^3} = 0.03735 \mathrm{mol}$
		since $\frac{\eta_{l_2}}{n} = \frac{1}{2}$ ecf (b) coefficients
		$\frac{1}{2} \times 0.02725$ mol = 0.019675 mol
		$\eta_{I_2} = \frac{1}{2} \times 0.03735 \text{ mol} = 0.016675 \text{ mol}$
		= 0.0187 mol
	(d)	$\eta_{e^{-}}$ 2 (1) (1)
	(u)	Since $\frac{\eta_1}{\eta_{I_2}} = \frac{1}{1}$ ecf (a) coefficients
		$\eta_{e^-} = 2 \times 0.018675 \text{ mol} = 0.03735 \text{ mol} \text{ ecf (c)}$
		$n_{\rm M} = -1$
		since $\frac{\eta_{MnO_4}}{\eta_{a^-}} = \frac{1}{5}$ ecf (a) coefficients
		$n_{Mn0} = \frac{1}{2} \times 0.03735 \text{ mol} = 0.00747 \text{ mol}$ accept 0.00748 if 0.0187 used from (c)
	(e)	$[MnO_4^-] = \frac{0.00747 \ mol}{100} = 0.747 \ mol \ dm^{-3} \ ecf \ (d)$
		$\frac{10.0}{1000} dm^3$
		accept 0.748 if 0.0187 used from (c)

3	(a)	am	ammonia				
	(b)	(i)	$\begin{array}{c} \delta^{+} & H \\ H & \delta^{-} & H \\ \bullet & \bullet \\ H \end{array}$	1 point each: lone pair of electrons on N (1) dashed lines (2) label of the interaction (3) $\delta + \delta -$ on involved atoms (4) either one: $\delta + \delta -$ complete the two pairs (5) both correct structural formulae of NH ₃ (6) 5 / 5 points: [2] 3 / 5 points: [1]			
		(ii)	simple molecular structure (1) with instantaneous dipole-induced dipole for more electrons / larger electron clouds fror stronger / greater extent of forces (4) (mar requiring more energy to overcome (5) 5 / 5 points: [3] 3 / 5 points: [2] 1 / 5 points: [1]	orces / attractions (2) (between molecules) n PH₃ < AsH₃ < SbH₃ (3) k points separately)			

(0	c)					
				PCl ₃	POC ₁₃	PCI ₅
			dot-and-cross diagram	$\begin{array}{c} \times \times \\ $	$\begin{array}{c} ++ ++ \\ ++ \\ ++ \\ ++ \\ ++ \\ ++ \\ ++ \\$	
		r	nolecular shape around P atom	trigonal pyramidal		trigonal bipyramidal
		ро	plar or non-polar?	polar		non-polar
ecf molecular shape and polarity for PCl ₃ only: based on number of bond pairs and lone pairs in the dot-and-cross diagram each dot-and-cross diagram: 2 points 8 / 8 points: [4] each molecular shape and polarity: 1 point 6 / 8 points: [3] 4 / 8 points: [2] 2 / 8 points: [1]						diagram
((d)	although nuclear charge and shielding increase (1) distance between valence electrons and nucleus increases (2) 4 / 4 points: [2] <u>electrostatic forces</u> / <u>attractions</u> between them are weaker (3) 2 / 4 points: [1] atomic radius down the Group increases (4) accept if given in (e)(ii)				
(€	e)	(i)	$\begin{array}{c} PH_3 + H_2O \rightleftharpoons PH_4^{\scriptscriptstyle +} \\ PH_3 + H^{\scriptscriptstyle +} \rightleftharpoons PH_4^{\scriptscriptstyle +} \end{array}$	⁺ + OH ⁻ /		
			$accept \rightarrow$			
		(ii)	SbH ₃ (1) Sb–H bond is the lowest extent of or weakest bond (4) lowest bond energ highest percentage greatest ease of d	longest (2) bital overlap (3) ly / easiest to break (5) e of molecules will diss issociation / formation	sociate / of H+ (6)	6 / 6 points: [3] 4 / 6 points: [2] 2 / 6 points: [1]

7	(a)	<i>(</i> i)	mV - mPT					
	(a)	()	$\begin{vmatrix} p_V & -\frac{m}{Mr} \\ \text{density} = \frac{m}{V} = \frac{pMr}{RT} = \frac{(101325)(28.96)}{(8.31)(298)} = 1184.94 \text{ g m}^{-3} \\ \text{st}$					
		(ii)	average air density = $\frac{1184.94+948.72}{2}$ = 1066.83 g m⁻³	ecf from (i)				
		(iii)	average mass of heated air = 1066.83 g/m ³ \times 2800 m ³ = 2 987 124 g	ecf from (ii)				
		(iv)	$Q = mc\Delta T$ = (2987124)(1.012)(99.2 - 25.0) = 224 304 336 J ecf from the second sec					
		(v)	$\eta_{C_3H_8} = \frac{224304336 \times 10^{-3} kJ}{2220 kJ/mol} = 101.038 \text{mol} [1]$					
			mass of C ₃ H ₈ = 101.038 mol × 44.0 g/mol = 4445.67 g volume of C ₃ H ₈ = $\frac{4445.67 g}{0.493 g/cm^3}$ = 9017.5 cm ³ = 9020 cm³ (3 s.f.) [1]					
	(b)	eith	er explanation:					
		the whi /	the envelope air must be heated to an even <u>higher temperature</u> which may <u>melt / damage</u> the envelope /					
		les: les:	ess difference between external and internal air density ess lift					
	(c)	(i)	more ideal helium has few electrons / a small electron cloud					
			hence has either: <u>weaker</u> / less significant instantaneous dipole-induced dipole forces / attractions					
			or: an <u>insignificant</u> / small <u>atom volume</u>					
		(ii)						
			helium curve low nitrogen on the r	er than ight-hand side				
			N ₂ ecf (i) He less ide	eal				
			$\frac{\rho v}{RT}$ He reject horizontal line					
			1 accept if no label accept if no negative deviation					
			p					

END OF SECTION B

END OF PAPER 1

[Turn over