Secondary Four Chemistry Preliminary Examination 2024 Mark Scheme

Paper 1

1	2	3	4	5	6	7	8	9	10
В	В	D	В	С	С	D	С	С	С
11	12	13	14	15	16	17	18	19	20
В	В	D	Α	D	В	D	D	Α	D
21	22	23	24	25	26	27	28	29	30
С	С	В	Α	С	С	D	С	В	В
31	32	33	34	35	36	37	38	39	40
С	A	С	С	D	C	C	C	A	D

Paper 2

Section A

Qn No.	Answer	Mark
1a	Α	1
b	D (Accept E: GeCl₄ bp: 86.5°C)	1
с	В	1
d	C	1
е	G	1
	Total	5
2a	Water vapour produced escaped from the tube OR	1
	Water was removed through evaporation.	
b	To ensure that reaction is complete/ no more water (vapour) was produced.	1
с	Energy taken in = (2.00 ÷ 238)× 88.1	1
	= 0.740336134 kJ	
	= 0.740 kJ	1
d	Endothermic/thermal decomposition	1
	Total	5

Qn No.	Answer	Mark
3a	half equation(s) in each beaker Difference stated	1 1
	In beaker A, the anode would decrease in size/becomes smaller as copper is a reactive electrode and dissolves to form copper(II) ions. Cu(s) \rightarrow Cu ²⁺ (aq) + 2e	
	In beaker B, there is no change in size for anode. OH ⁻ ions are preferentially discharged to form oxygen gas. $4OH^{-}(aq) \rightarrow 2H_2O(I) + O_2(g) + 4e^{-}$	
	OR There is no effervescence in beaker A as copper is a reactive electrode and dissolves to form copper(II) ions. $Cu(s) \rightarrow Cu^{2+}(aq) + 2e$	
	In beaker B, there is effervescence observed at the anode. OH ⁻ ions are preferentially discharged to form oxygen gas. $4OH^{-}$ (aq) $\rightarrow 2H_2O(I) + O_2(g) + 4e$	
bi	Number of moles of electrons = 289500 ÷ 96500 = 3 moles	1
ii	Cu^{2+} (aq) + 2e \rightarrow Cu (s) No of moles of electrons = 3 moles No of moles of Cu= 1.5 moles	1
	Mass of Cu produced in both beakers = 1.5 x 64 g/mol = 96g	1
d	Universal Indicator will turn from green to violet .	1
	concentration of OH ⁻ more than that of H ⁺ , solution becomes alkaline/pH of solution increases.	1
	Total	7
42	Carbon monoxide produced/chlorine used is toxic/poisonous	1
h	Argon is unreactive/inert	1
	It prevents oxygen/water vapour in the air from reacting with sodium used /titanium produced.	1
С	Titanium chloride is a metal chloride which is usually an ionic compound . Ionic compounds have high melting points and are solids at room temperature.	1 1

Qn No.	Answer	Mark			
d	TiCl₄ + 4 Na → Ti + 4 NaCl				
	From eqn, 1 mol TiCl₄ reacts with 4 mol Na				
	190 g TiCl₄ reacts with 92 g Na				
	190 kg TiCl₄ reacts with 92 kg Na				
	40 kg TiCl₄ reacts with (40÷190) x 92 kg				
	= 19.4 kg Na	1			
	TiCl₄ is the limiting reactant since 40 kg of TiCl ₄ reacts completely with 19.4 kg of Na but 20 kg of Na is available.	1			
е	Actual mass = (92.3 ÷ 100) × 13.5 kg	1			
	= 12.5 kg				
	Total	9			
5a	Magnesium (most reactive), chromium, iron, nickel (least reactive)	1			
	Magnesium oxide is not reduced by carbon at a high temperature (1750 °C) because it is a very stable oxide . This shows that magnesium is the most reactive metal , forming the most stable oxide.	1			
	Nickel(II) oxide is reduced at the lowest temperature (above 300 °C) because it is the least stable oxide . This shows that nickel is the least reactive metal , forming the least stable oxide.	1			
b	Any two characteristic properties of iron, highlighting its difference from potassium.	2			
	Iron has high melting and boiling points whereas potassium has low melting and boiling points.				
	Iron is hard whereas potassium is soft .				
	Iron forms compounds which are coloured whereas compounds of potassium are usually not coloured/white .				
	Iron has variable oxidation states in its compounds but not potassium.				
ci	Add aqueous sodium hydroxide/ammonia to a sample of iron(II) chloride solution a little at a time and then in excess.	1			
	A green precipitate is formed, which is insoluble in excess , showing that iron(II) ions are present.	1			
ii	Fe ₂ Cl ₆	1			
	Total	8			

Qn No.	Answer					Mark	
6a	Energy absorbed = [(5 x 413) + 347 + 358 + 467] + [(3 x 495)] - 4722 k l						
	Energy released = [(4 x 799) +	- (6 x 4	67)] = 5998 k	۲		1	
	Overall energy change = 4722	2 + [–59)98] kJ				
	= -127 = -128	6 kJ 0 kJ	-			1	
b	The reaction is exothermc formed in 2 moles carbon d energy absorbed when bonds	becau ioxide s are b	se energy and 3 mole roken in 1 m	released whees of water is of water is ole of ethano	en bonds are greater than I and 3 moles	1 1 1	
					Total	6	
7a	Both immediate and long-term	impac	t are accepta	able answers.			
	Immediate impact: Milk bottle environment because it uses I glass (6750 kJ) than for polym	e made more e er (171	e of glass ha e nergy to pro I0 kJ)	as a greater ocess the raw	impact on the / materials for	1 1	
	Long-term impact: Milk bottle made of polymer is used only once while a milk bottle made of glass is used 25 times during its lifetime. Hence it has a greater impact on the environment because it would use more energy (1710 kJ x 25) to process the raw materials than a glass bottle (6750 kJ).						
b	Advantage – it can be reused	up to 2	5 times			1	
	Disadvantage – it is heavier so	o it take	es more ener	gy to transpor	t	1	
с	Recycling of polymer conserves crude oil which reduces pollution/reduces the need to extract crude oil.					1	
	Total						
8a	$C_{12}H_{26} \rightarrow C_2H_4 + C_{10}H_{22}$					1	
b		C	н	0			
	Mass (g) 1	.44	0.36	0.96			
	Molar mass (g/mol)	12 4 · 12	1	16			
		4 . 12	0.30 ± 1	0.90 ± 10		4	
		0.12	= 0.36	= 0.06		1	
	Simplest mole ratio 0.	12 ÷ .06	0.36÷ 0.06	$0.06 \div 0.06$			
	=	= 2	= 6	= 1		1	
					C ₂ H ₆ O		
С	Hydration Ethanol				1 1		
di	Purple acidified potassium manganate(VII) turns colourless.					1	
	Ethane-1,2-diol is a reducing agent .						

Qn No	Answer	Mark
ii	о н-о о-н	1
	Total	8
9ai	Any 2 of the 3	2
	H-N-C-C-O-H, H H	
	H O $ H - N - C - C - O - H and $ $ H$	
	О H-N-C-C-O-H H H	
ii	chromatography	1
b	H CI H CI H CI I I I I I I - C - C - C - C - C - I I I I I I H H H H H H	

Qn No	Answer	Mark		
C	In the manufacture of proteins, the different monomers join together with the elimination of water but in the formation of polymer N , the monomers join together without loss of any small molecules.			
	Total	5		
10a	energy			
	CO ₂ + 4H ₂			
	$CH_4 + 2H_2O$ $\Delta H = +165.2 \text{ kJ/mol}$			
	progress of reaction			
	energy level reactants and products enthalphy	1 1 1		
b	$N_2 + 3 H_2 \rightleftharpoons 2 NH_3$	1		
	The lower the temperature, the higher the yield of ammonia	1		
с	The production of hydrogen in the steam-methane reforming reaction produces carbon dioxide , which is a greenhouse gas.			
	OR The steam-methane reforming reaction requires a high temperature of 800°C – 900°C, likely from the burning of fossil fuels which produces carbon dioxide, a greenhouse gas.			
d	Electricity from solar/geothermal/wind/nuclear energy.	1		
ei	It requires a lower pressure to maintain ammonia which has a higher boiling point in the liquid state at room temperature compared to hydrogen.	1		
	It requires less energy to lower the temperature to the boiling point of ammonia which is higher than that of hydrogen.			
ii	It is expensive to have high pressure tanks to store and transport hydrogen gas.			
f	Nitrogen and water.			
	Combustion of ammonia does not produce carbon dioxide/carbon monoxide	1		
	Total	12		

Section B

Qn No.	Answer	Mark
11a	As the colour intensity of the solution increases from chlorine to bromine to iodine/the darker the colour of the solution , the higher the absorbance reading on the colorimeter.	1
b	$Cl_2(aq) + 2 \text{ KI } (aq) \rightarrow 2 \text{KCI } (aq) + I_2 (aq)$	1
	Chlorine is more reactive than iodine , it displaces iodine from potassium iodide.	1
	From 0 to 5 cm ³ , the absorbance reading increases from 0.00 to 0.34	1
	and remains constant from 5 cm ³ onwards.	
	As iodine is being produced, concentration of iodine increases, the	1
	solution becomes darker and the absorbance reading increases.	
	At 5 cm ³ , all of the chlorine is used up / reacted_ and KI is in excess and concentration of iodine does not increase.	1
C	0.025 mmol/dm ³	1
	The 8 cm ³ potassium iodide added may not be in excess at this concentration of chlorine.	1
d	From Graph 2, Concentration of chlorine = 0.0125 mmol/dm^3	
	Mass of chlorine in 1 dm ³ = $0.0125 \times (35.5x2) = 0.0120 \times 71 = 0.8875 \text{ mg} = 0.888 \text{ mg}$ (3sf)	1
	Hence, the swimming pool water contains lower than the desired range of chlorine and does not meet the sanitation requirement.	1
	Total	10
12a	Sulfur produced is a precipitate/is insoluble.	2
b	Stop light from other sources reaching the sensor	1
ci	Decreasing curve starting at (0,95)	
	Steeper initially than curve for 0.10 mol/dm ³ sodium thiosulfate solution levelling at 24%	1
ii	Draw tangent to the curve at 30 seconds.	1
d	From 0 to 20 seconds, the rate of reaction is the highest because the concentration of reactants is greatest at the start.	1
	After 20 seconds, the reaction slows down because the reactants are used up.	1
	At 80 seconds, the reaction stops because all the dilute hydrochloric acid is used up.	1
	When the concentration of sodium thiosulfate solution increases to 0.20 mol/dm ³ , there are more particles per unit volume. The frequency of effective collision between sodium thiosulfate and hydrochloric acid particles increases. This increases the rate of reaction.	1 1
	Total	10