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1 Show by induction that 
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   for all integers 2n  . [6] 

2 The linear transformation 4 3T :    is represented by the matrix A where 
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(i) Let TR  and TK  be the range space and null space of T respectively.  Find the dimension 

  of TR  and deduce the dimension of TK . [3] 

(ii) By finding the bases for TR  and TK , find the general solution of 
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x . [5] 

3 Marine scientists calculated that when the concentration of a particular chemical in the waters at 

a beach along the coast reaches 7 milligrams per litre (mg/l), the level of pollution endangers all 

marine life in the area. 

A factory wishes to release waste containing the chemical into the coastal waters. It is claimed 

that the discharge will not endanger the marine life in the region. 

�e local authority is provided with the following information: 

- �e coastal waters contains none of this chemical at present. 

- �e factory manager has applied for a permit to discharge waste on a weekly basis into the 

 coastal waters. �e discharge, which will be done at the beginning of each week, will result 

  in an increase in concentration of 2.5 mg/l of the chemical along the coast. 

- �e tidal streams will remove 7% of the chemical from the coastal waters every day. 

(i)  Based on the information, form a recurrence relation for the concentration level of 

 chemical, nu , at the beginning of week n.  Hence, find the concentration at the beginning of 

 week n. [4] 

(ii) Based on the concentration level of the chemical, should the local authority allow the factory 

 to go ahead with the discharge? Justify your answer. [2]
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4 The matrix A is given by 

3 3

2 5 3 ,

2 8 6
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A =

where a is a real constant. 

Given that A has an eigenvalue of 2, find the possible values of a exactly. [3]

For the negative value of a that you have obtained, determine all the eigenvalues and 

corresponding eigenvectors of  

(i) A,  [5]

(ii) 2A – 3I, where I is the 3 3 identity matrix. [2] 

5 The motion of the tip of a tuning fork can be modelled by the differential equation 

2
2
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0
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t t
  

where x is the displacement of the tip from its equilibrium position at time t and m, k and   are 

positive constants.  It is known that k is so small that k2 can be ignored as k models the slight 

damping due to the resistance of the air.  It is given that the tip of the fork is initially in its 

equilibrium position and moving with speed v in the positive x-direction. 

(i) Solve the differential equation.   [4]

The amplitude of a vibration is the maximum displacement of the tip from its equilibrium 

position and one period of a vibration is the time interval between the occurrences of two 

consecutive amplitudes. 

(ii) Consider the period of the vibrations over time and show that the amplitude of 

 successive vibrations follows a geometric progression. [3]

(iii) Given that k is no longer small and 2 2 24 ,k m   describe the behaviour of x as time 

 progresses and sketch a possible graph of x vs t.  Justify your answer. [3] 

[Turn over 
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6 The number of branches on a tree in a particular year is modelled as the number of branches that 

were on the tree in the previous year plus new growth of k times the number that were on the tree 

the year before that, where 0 1k  . 

(i) Let nx  be the number of branches on the tree n years after it was bought. Write down a 

 recurrence relation for 2nx   in terms of 1nx  , nx  and k. [1] 

(ii) The tree was bought with 20 branches. It had 25 branches after one year. Given that 0.11k  , 

 solve your recurrence relation. [5]

To control the growth of the tree it is pruned each year after the new growth has taken place. 

New growth is not pruned, but a proportion, r, where 0 1r  , of old branches is removed. Let 

ny  be the number of branches, after pruning, on the tree  n years after it was bought. 

(iii) Modify your answer to part (i) to produce a recurrence relation for 2ny   in terms of 1ny  , 

ny , k and r. [1] 

7 A particular solution of the differential equation 

    2d
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has 1y   when 0x  . 

(i) Use the Euler method with step size 0.5 to estimate y at 1x  . [2] 

(ii) Show by means of the substitution
1

y
z

 , that the differential equation reduces to 
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 
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 
. [2] 

 Hence find y in terms of x. [6] 

(iii) Find the percentage error of your estimation in part (i) and suggest a way to improve on 

 your estimation in part (i). [2]
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8 A curve C is defined parametrically by 

   sin 1 cos ,,x r y r   

where  is a positive constant and 0 2π.r  

(i) The curve C is rotated through one revolution about the x-axis. Given that the area of the 

 surface generated is 2432π units , find the exact value of r. [7]

(ii) Suppose instead that 2r  .  Let L be the line that passes through the origin and the point 

 3π 2,2  on C.  The region R is enclosed by C and L. Calculate the volume of the solid 

 generated when R is rotated through 2π  radians about the y-axis. [6]

9 A logistic growth model for the population  P t  of a certain species of elephants in a habitat is 

given by the differential equation  

2d 1
2

d 150

P
P P

t
 

. 

(i) State the carrying capacity of the habitat. [1] 

(ii) Find the general solution of the above differential equation, expressing P explicitly in 

 terms of t. [3]

The population of elephants is then subjected to a constant poaching rate h and the population is 

now modelled by the differential equation 

2d 1
2

d 150

P
P P h

t
  

. 

(iii) Determine the maximum sustainable poaching rate and show that it occurs when the 

 population is at half its carrying capacity. [3] 

For the rest of the question, assume h = 100. 

(iv) Determine the eventual size of the population if there are initially 80 elephants and sketch 

 the solution curve. [4]

(v) Given instead that the initial population of elephants is 10, determine the earliest time T, 

  correct to 2 decimal places, that poaching can start to ensure the survival of the population. 

[3]

[Turn over 
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10 (a)  The matrix A = 
a b

c d

 
 
 

 is such that A2 = A, where a, b, c, d are constants, 0a  , 0d  .  

  (i) Prove that det A must be 1 or 0. [2]

(ii) Prove that if det A = 1, then A = I. [2]

(iii) Prove that if det A = 0, then a + d = 1. [3]

(b) The sets A and B are defined as follows: 

3 : 0 ,

x

A y x y z

z

  
  

      
  
  

 3 : 2 3 5 1 .

x
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z

  
  

      
  
  



(i) Show that A is a subspace of 3  but B is not a subspace of 3 . [3]

(ii) Show that A B  and A B  are both not subspaces of 3 . [4]

~ End of Paper ~ 


