

Paper 2 – Structured

Qns	Answer	Marks		
1(a)(i)	Precision is determined by the range in the values.			
	Range of Set A = $1.55 - 1.43 = 0.12$ cm Range of Set B = $1.58 - 1.42 = 0.16$ cm Range of Set C = $1.56 - 1.45 = 0.11$ cm Therefore, Set C is more precise as the range of values are smaller than the other two sets.	M1 for all correct values A1		
1(a)(ii)	Accuracy is determined by the closeness of the measured value to the			
	true value.			
	Average values for Set A = $\frac{1.52 + 1.49 + 1.43 + 1.52 + 1.55}{5} = 1.502 = 1.50$ Average values for Set B = $\frac{1.42 + 1.45 + 1.43 + 1.51 + 1.58}{5} = 1.478 = 1.48$ Average values for Set C = $\frac{1.45 + 1.56 + 1.47 + 1.53 + 1.46}{5} = 1.494 = 1.49$	M1 for all correct values		
	Therefore, Set A is more accurate as the average values are closer to the true value of the diameter.	A1		

Qns	Answer		
1(b)(ii)	Minimum distance occurs when both cars have the same speed ($v = 60$ m s ⁻¹).	B1	
	Distance covered by Car A during the 6.0 s = $\left[\frac{1}{2} \times (25 + 60) \times 6.0\right]$ = 255 m	C1 for	
	Distance covered by Car B during the 6.0 s: $(80 \times 4.0) + \left[\frac{1}{2} \times (80 + 60) \times 2.0\right] = 460 \text{ m}$	both correct answer	
	Minimum distance = (500 + 255) - 460 = 295 m	A1	

Qns	Answer		
2(a)	No resultant force (in any direction)	B1	
	No resultant moment (about any point)	B1	
2(b)			
	Let the length of the rod be <i>L</i> .		
	Take moment about the wall hinge.		
	Sum of clockwise moment = Sum of anticlockwise moment		
	$80\left(\frac{1}{2}L\sin 60^{\circ}\right) = T\left(L\sin 50^{\circ}\right)$	M1	
	<i>T</i> = 45.2 N	A1	
	Let the vertical force at hinge be R_y .		
	Let the horizontal force at hinge be R_x .		
	No resultant force in vertical direction:		
	$R_{\rm y}$ + $T \cos (180^{\circ} - 60^{\circ} - 50^{\circ}) = W$	C1	
	$R_{\rm y}$ + (45.2) cos 70° = 80		
	$R_{\rm y} = 64.5 \ {\rm N}$		
	No resultant force in horizotal direction:		
	$R_{\rm x} = T \sin (180^{\circ} - 60^{\circ} - 50^{\circ})$		
	$R_{\rm x} = (45.2) \sin 70^{\circ}$		
	$R_{\rm x} = 42.5 \ {\rm N}$		
	Force by hinge on rod		
	$R = \sqrt{R_x^2 + R_y^2}$		
	$R = \sqrt{42.5^2 + 64.5^2}$		
	= 77.2 N	A1	
	Let θ be the angle of <i>R</i> from the wall		
	$\tan\theta = \frac{R_x}{R_y}$		
	$\tan\theta = \frac{42.5}{64.5}$		
	θ = 33.4° from wall	A1	

Qns	Answer	Marks
3a	Let speed of X before hitting Y be v_i	
	Gain in KE = Loss in GPE	В0
	1	
	$\frac{-mv_i^-}{2} = mgn_i$	MO
	$v_i = \sqrt{2gh_i} = \sqrt{2 \times 9.81 \times 1.50 \sin 40^\circ}$	Δ1
	$v_i = 4.35 \text{ m s}^{-1}$	
3bi	Let speed of X after hitting Y be v_f	
	Loss in KE = Gain in GPE	
	1	
	$\frac{1}{2}mv_f^2 = mgh_f$	
	$v_{t} = \sqrt{2ah_{t}} = \sqrt{2 \times 9.81 \times 0.80 \sin 40^{\circ}}$	
	$v_{\rm r} = 3.18 \mathrm{m s^{-1}}$	M1
	EITHER	
	Since collision is elastic,	
	Relative speed of approach = relative speed of separation	
	$V_i = V_y - V_f$	
	$4.35 = v_y - (-3.18)$	M1
	$v_y = 1.17 \text{ m s}^{-1}$	A1
	OR	
	By conservation of linear momentum,	
	$m \mu = m \gamma + m \gamma$	
	$30(4.35+3.18) = m_{x}v_{x} + \cdots + (1)$	(either ean
	Duces and the of energy (1)	correctly written)
	By conservation of energy	M1
	LOSS IN KE of $X = Gain in KE of Y$	
	$\frac{1}{2}m_{X}u_{X}^{2} - \frac{1}{2}m_{X}v_{X}^{2} = \frac{1}{2}m_{Y}v_{Y}^{2}$	
	$\begin{vmatrix} 2 & 2 & 2 \\ 30(435^2 - 318^2) = m.V.^2 &(2) \end{vmatrix}$	
	Taking (2) ÷ (1)	
	$v_{\rm Y} = 1.17 {\rm m s^{-1}}$	A1

Qns	Answer	Marks
3bii	Gain in KE of Y = Loss in GPE of X	D1
	1_{m} $\chi^2 = m$ $a_{A}h$	BI
	$\frac{-m_{Y}v_{y}}{2} = m_{X}g\Delta n$	
	$m_{\chi} = \frac{2m_{\chi}g\Delta h}{2}$	
	V_y^2	
	$m_{\rm c} = \frac{2(0.030)(9.81)\sin 40^{\circ}(1.50 - 0.80))}{1.50 - 0.80}$	
	1.17^{2}	M1
	$m_{\gamma} = 0.192 \text{ kg}$	
	$m_{\gamma} = 190 \text{ g}$	
		A0
	OR	
	From (b)(i)	
	$\int dx = \frac{1}{2} \int dx$	
	Using the law of conservation of momentum in (1) and energy in (2)	B1
	$30^{2} (4.35 + 3.18)^{2} = m_{\gamma}^{2} v_{\gamma}^{2} \qquad \cdots (1)^{2}$	
	$30(4.35^2 - 3.18^2) = m_{\gamma} v_{\gamma}^2 \qquad \cdots (2)$	
	Taking $(1)^2 \div (2)$	844
	$m_{\rm c} = 193 {\rm g} = 190 {\rm g} (2 {\rm s} {\rm f})$	
		A0
3ci	The collision is inelastic because the relative speed of approach is non-zero	A1
	but the <u>relative speed of separation is zero</u> , which means that they are <u>not</u>	
2011	By concervation of linear momentum	
JCII	$m_{\rm y}v_{\rm i} = (m_{\rm y} + m_{\rm y})v'$	
	$m_{\rm e}v_{\rm e}$	
	$V' = \frac{m_X r_y}{m_Y + m_Y}$	
	(0.030)(4.35)	
	$v' = \frac{(0.000)(0.00)}{0.030 + 0.190}$	M1
	$v' = 0.5932 \text{ m s}^{-1}$	
	$v' = 0.59 \text{ m s}^{-1}$	AU

Qns	Answer	Marks
3ciii	Loss in KE = Gain in GPE + work done against friction	B1
	$\frac{1}{2}(m_{X} + m_{Y})(v')^{2} = (m_{X} + m_{Y})gd\sin 50^{\circ} + fd$	
	$\frac{1}{2}(m_{X} + m_{Y})(v')^{2} = ((m_{X} + m_{Y})g\sin 50^{\circ} + f)d$	
	$d = \frac{1}{2}(0.030 + 0.190)(0.59^2)$	N 44
	$u = \frac{1}{(0.030 + 0.190) \times 9.81 \times \sin 50^\circ + 2.2}$	M1 A1
	d = 0.0099 m	
	OR	
	Resultant force along the slope = friction + component of weight	
	$ma = 2.2 + mg\sin 50^{\circ}$	
	$a = \frac{2.2}{0.220} + (9.81)\sin 50^{\circ}$	
	$a = 17.51 \text{ m s}^{-2}$	(M1)
	where a is directed downslope.	()
	Using $v^2 = u^2 + 2as$, where s is the distance travelled up the slope, d.	(C1)
	$0 = (0.59)^2 - 2(17.51)d$	
	$d = 0.0099 \; { m m}$	(A1)

Qns	Answer				
4a	Electric force per unit positive charge				
	on a small stationary test charge at that point.	B1			
4bi	Considering the distance between the nearest two equipotential lines around point A (4V and 0V)				
	d = 3.5 cm	M1			
	$E = \Delta V/d = (4-0)/(3.5 \times 10^{-2})$				
	$F = eE = 1.6 \times 10^{-19} \times (4-0)/(3.5 \times 10^{-2})$				
	$= 1.8 \times 10^{-17} \text{ N}$	A1			
4bii	From point B to C, $\Delta V = -6 - 4 = -10V$				
	Change in $E_P = e \Delta V = -1.6 \times 10^{-19} (-10)$				
	= 1.6 × 10 ⁻¹⁸ J (Gain)	C1			
	By Principle of Conservation of Energy,				
	Loss in Kinetic energy = Gain in Electric Potential Energy				
	$\frac{1}{2}$ mu ² - $\frac{1}{2}$ mv ² = 9.6 × 10 ⁻¹⁹				
	$\frac{1}{2}$ (9.11 × 10 ⁻³¹)(5.3 × 10 ⁶) ² – $\frac{1}{2}$ (9.11 × 10 ⁻³¹) ν^2 = 1.6 × 10 ⁻¹⁸	C1			
	$v = 5.0 \times 10^6 \text{ m s}^{-1}$	A1			
С	The change in potential from P to Q can be determined by estimating the area under the graph,				
	1 square : (0.5 × 10 ³) V m ⁻¹ × 10 ⁻² m = 5 V	C1			
	18 squares : 18 × 5 = 90 V	C1			
	Change in potential energy = $1.6 \times 10^{-19} \times 90 = 1.44 \times 10^{-7} \text{ J}$	A1			

Qns	Answer	Marks
5(a)	$R_{diode} = \frac{V}{I} = \frac{0.56}{6.0 \times 10^{-3}} = 93 \ \Omega$	A1
5(b)	$E = V_{diode} + V_{R3}$	C1
	$1.2 = 0.56 + (6.0 \times 10^{-3})R_3$	A1
	$R_3 = 110 \ \Omega$	
5(c)	$I = \frac{E}{R_1 + R_2}$	
	$=\frac{1.2}{50+200}$	C1
	$= 4.8 \times 10^{-3} \text{ A}$	A1
5(d)	$I_{total} = 6.0 \times 10^{-3} + 4.8 \times 10^{-3} = 1.1 \times 10^{-2} \text{ A}$	C1
	$P = I_{total} E = (1.1 \times 10^{-2})(1.2)$	
	$P = 1.3 \times 10^{-2} \text{ W}$	A1
5(e)	$\frac{x}{1.0} = \frac{50}{250}$	C1
	$1.0 \ 250$	A1
	$\mathbf{x} = 0.20 \mathbf{m}$	

Qns	Answer	Marks				
6(a)(i)	The <u>magnetic force is downwards</u> (by FLHR, <i>B</i> points into the paper and current is to the left) in the region between the plates, hence the <u>electric force</u> <u>must be upwards</u> .	B1				
	Since the particles are negatively charged, the <u>electric field must be</u> <u>downwards</u> (opposite to the electric force). <u>Hence, P is positive</u> .					
	(Plate Q is grounded, hence is at 0 V.)					
6(a)(ii)	To move undeflected, the net force must be zero.					
	$F_{E} = F_{B}$					
	qE = qvB	M1				
	$v = \frac{E}{B}$	A0				
6(a)(iii)	undeflected path					
		B1				
	$v > \frac{E}{B} \Rightarrow qvB > qE$, or <u>F_B > F_E. Since the magnetic force F_B points downwards</u> ,	B1				
	the particles will be deflected downwards. (Note that the path is not parabolic.)					
6(b)(i)	The <u>magnetic force is always perpendicular to the velocity</u> . Hence, <u>it does no</u> <u>work on the particles</u> . The kinetic energy, hence the speed, of the particle remain constant.	B1 B1				
6(b)(ii)	The magnetic force provides the centripetal force.	M1				
	$qvB = m\frac{v}{r} \Rightarrow \frac{q}{m} = \frac{v}{Br}$					
	With $v = \frac{E}{B}$,					
	$\frac{q}{m} = \frac{E}{B^2 r}$	M1				
		A0				

Qns	Answer				
7(a)	t = 1.2 s $E = \frac{d(N\phi)}{dt} = NA \frac{dB}{dt} = \frac{560 \times \pi \times 0.045^2 \times 0.250}{1.2}$ = 0.74 V or 0.742 V (accept 2 s.f. or 3 s.f.)	C1 A1			
7(b)	Chart suite merenetie flux / experiences a charging merenetic flux	D1			
(D)	(linkage) and causes induced e.m.f. in sheet	BI			
	(induced) e.m.f. causes (induced eddy) currents (in sheet)	B1			
	Option 1: Currents (in sheet is in a magnetic field which) <u>cause resistive force</u>				
	Option 2: Currents (in sheet) <u>dissipate (thermal) energy</u> . (Thermal energy comes from energy of oscillations)	B1			
	Option 3: Currents (in sheet) produce a magnetic field around sheet which is in opposite direction to the external magnetic field and the <u>sheet is</u> <u>repelled</u>				
	(current cannot pass all the way around the sheet / path of current is broken / not a complete/closed loop)				
	Option 1: Smaller currents in Y OR smaller resistive force in Y Option 2: Larger currents in X OR larger resistive force in X, so dashed line is X	B1			

Qns	Answer				Marks
8(a)(i)	Label V between 400-700 nm on the horizontal axis.				
O(a)(!!)					
8(a)(II)	the spectrum of visible light	ed light would	nave the great	est intensity within	B1
	the spectrum of visible light.				51
8(b)(i)	<i>T / K</i>	λ_{\max} / nm	$T imes \lambda_{max}$		
	600	4830	2898000		
	700	4140	2898000		
	800	3610	2888000		-
	900	3210	2889000		B1
	1000	2900	2900000		
	1100	2630	2893000		
	Since the product $T \times \lambda$ for different temperatures are the same when rounded				
	to 2 s f. it is a constant.				
	constant = $(T \times \lambda_{max})_{average} = 2.9 \times 10^{6} \text{ K nm}$				
	Note: Unit for constant is required in A level examination				
	Note. One for constant is required in A level chamination.				
8(b)(ii)	$T \times \lambda_{max} = 2.89 \times 10^6$				
	2.90×10^6				M1
	$\lambda_{max} = \frac{2.89 \times 10^{-10}}{1000}$				
	^{11/dx} 1200				
	$= 2.41 \times 10^3$ nm $= 2.41 \times 10^{-6}$ m				A1

8(e)(i)	Either wavelength λ_{max} (wavelength at maximum intensity) or I_{tot} (total intensity) Determine the temperature using $T = \frac{constant}{constant}$ or $I_{tot} = cT^n$	B1
	$\lambda_{\rm max}$	B1
8(e)(ii)	advantage: No physical contact is needed to make the measurement.	B1
	disadvantage: (any of the followings)	B1
	The intensity varies smoothly with wavelength. It is difficult to measure λ_{max} to high precision.	
	Low intensity with low temperature, difficult to measure.	
	Presence of background radiation.	