Understanding Experimental
Data 2

Lesson 11

Another Experiment (Recap)

350
300
250
200
150
100

50

—50

—100

Mystery Data

10

Fit a Line

modell = pylab.polyfit(xVals, yVals, 1)
pylab.plot(xVals, pylab.polyval (modell, xVals),
'r--', label = "Linear Model ")

*Remember that pylab.polyfit will find parameters of
best fitting polynomial of described order

> In this case (with argument n=1), find the values of @ and b,
such that y = ax + b best matches the observed yVals

*Remember that pylab.polyval will generate
predicted yVals given parameters of model

Fit a Line

350

Mystery Data

300p

250

200 @

150+

L

50 ® 9 o s ® -
0 P i

® @
—50+ |

&
=100 | |
-10 -5 0

10

Let’s Try a Higher-degree Model

model12 = pylab.polyfit(xVals, yVals,
pylab.plot(xVals, pylab.polyval (modelZ, xVals),
'r--', label = "Quadratic Model ")

Quadratic Appears to be a Better Fit

350

Mystery Data

300p
250+
200

150+

@® Data Points
we= Linear Model

= = = Quadratic Model |}

. ® .

., @ o

50+ . B
® 9 'q. ® ?.'0
- .
O*— ~..- --.'
®)
—50F+ il
@
—100 ‘ ' :
-10 -5 0 5

10

Can We Get a Tighter Fit?

*What if we try fitting higher order polynomials to the

data?

> Does this give us a better fit?

=How would we measure that?

> In absence of other information (e.g., theoretical insights
into order of model), R? (coefficient of determination)
gives us decent measure of the tightness of the model fit

> In principle, a model with a higher R? value is a “better”

fit

R* =

1

. Ei(yi _ pi)z-t— Error in estimates

Y, are measured values

P, are predicted values

i is mean of measured values

_ 2 e
Ei(yi a“) < Variability in
measured data

Can We Get a Tighter Fit?

350,

Mystery Data

300

Data
Fit of degree 2, R2 = 0.83748
Fit of degree 4, R2 = 0.84895

250 1\ Fit of degree 8, R2 = 0.86556
550 Fit of degree 16@
150)
100}
50 - A
ol |
-50
®
—100.5 5 0 5

10

Why We Build Models

=Looks like an order 16 fit is really good — so should we
just use this as our model?

> To answer, need to ask —why build models in first place?

*Help us understand process that generated the data
> E.g., the properties of a particular linear spring

*Help us make predictions about out-of-sample data

> E.g., predict the displacement of a spring when a force is
applied to it

> E.g., predict the effect of treatment on a patient
> E.g., predict the outcome of an election

*A good model helps us do both of these things

Motivation for Mystery Data — Parabola

*Trajectory of a particle under the influence of a
uniform gravitational field (e.g. Halley’s Comet)

=Position of center of mass of a football pass
e =y

=Design of a load-bearing arch

Mepium Wanus Saum

{ Apter
-0y 1505 1950 4
J PP . SR .U | S
EU";'»:EE’»O-". > i Bt S
.

e
L =
6 ._3‘:1)31

L -'m_
. }‘r.,,._ 7 "st‘”-.)-
2090 ;T_\?; —.— 4;v10—>'~v~ O;O:‘q'xtm ﬁ: '.‘::.-BA 4

How Mystery Data Was Generated

def genNoisyParabolicData(a, b, c, xVals, fName):
yVals = []
for x in xVals:

theoreticalVal = a*x**2 + b*x +
yVals.append(theoreticalVal random.gauss (0, 350
f = open(fName, 'w")

f.write('x vin')
for i in range(len(yVals)):

f.write(str(yVals[i]) + " " + str(xVals[i1]) + "‘n")
f.close()

#parameters for generating data

xVals = range(-10, 11, 1)

a, b, c=3, 0, 0

genNoisyParabolicData(a, b, ¢, xVals, "Mystery Data.txt')

If data was generated by quadratic, why was 16
order polynomial the “best” fit?

Let’s Look at Two Data Sets

degrees = (2, 4, 8, 16)

random.seed(0)
xValsl, yValsl = getData(Dataset 1.txt')

modelsl =<Q§E$ii§ixVa1sl, yValsl, degrees)
.(mn eTsl, degrees, xValsl, yValsl,
'DataSet 1.txt")

pylab.fiqure()
xVals2, yVals2 = getData(' Dataset 2.txt")

models?Z =£ﬁ§ﬁ$i£§IxVa152, yVals2, degrees)
mn elsZ2, degrees, xVals2, yValsZ,

'DataSet 2.txt")

Fits for Dataset 1

350

DataSet

1.txt

300

250

200

150

100

50

1

|

@® Data

= Fit of degree 2
- it of degree 4
we Fit of degree 8
= Fit of degree 1

, R2 = 0.86088
, R2 =0.87628

» R2 = 0,89929
R2 = 0.99615

Fits for Dataset 2

400

DataSet 2.txt

300

200 |-

100}

-100

1

Data

Fit of degree 2,
Fit of degree 4,
Fit of degree 8,

R2 =091542
Fit of degree 16{R2 = 0.9798 |)

R2 = 0.88736
R2 = 0.89817

L

-10

10

Hence Degree 16 Is Tightest Fit

=“Best” fitting model is still order 16 polynomial for both
data sets, but we know data was generated using an order
2 polynomial?

*\What we are seeing comes from training error

= How well the model performs on the data from which it was
learned

= Small training error a necessary condition for a great model,
but not a sufficient one

*\We want model to work well on other data generated by
the same process

> Measurements for other weights on the spring
= Positions of comets under different forces
= Voters other than those surveyed

*|n other words, the model needs to generalize

Cross Validate

*Generate models using one dataset, and then test
them on another dataset

> Use mode
> Use mode

5
5

for Dataset 1 to prec

for Dataset 2 to prec

ict points-

'or Dataset 2

iIct points-

'or Dataset 1

"Expect testing error to be larger than training error

*A better indication of generalizability than training

error

Test Code

pylab.figure()

testF'its(mc:de'I@ degrees, x‘U’a’I@ yVa’I@
‘DataSet 2/Model 1)

pylab.figure()

testFi ts(mnde]@ degrees, x‘u’a’l@ y‘u’a’l@
‘DataSet 1/Model 27)

Train on Dataset 1, Test on Dataset 2

DataSet 2/Model 1

400 [:
® Data
= Fit of degree 27F
300 w Fit of degree 3,1 :
& = Fit of degree 8, K2 = 0U.83409 @
== Fit of degree 16, R2 = 0.69967
200
100
0 —
-100 : 1 '

=10 -d 0 5 10

Train on Dataset 2, Test on Dataset 1

DataSet 1/Model 2

400 . I
@® Data
= Fit of degree
300 N m— Fit of degree 4’ :
== Fit of degree 8, RZ = U./9bU0
== Fit of degree 16, R2 = 0.64062

200

100

— | ! |
10910 = 0 5 10

Cross Validation

=Now can see that based on R? numbers, best model is

more likely to be 2" order or 4t order polynomial (we

know it is actually 2" order, and difference in R? values
is pretty small), but certainly not 16" order

="Example of over fitting to the data

*Can see that if we only fit model to training data, we
may not detect that model is too complex; but training
on one data set, then testing on a second helps expose
this problem

Training and Testing Errors

350

DataSet 1.txt

300

250

200

150

100}

Data
Fit of degree 2, R2 4
Fit of degree 4, RZ - 0.5
Fit of degree 8, R2 = 0.89926

Fit of degree 16, R2 €0.99615 3

400,

300

200

100

-100

‘ DataSet 2/Model 1

® Data

Fit of degree 2, R2 §

w— Fit of degree 4, R2 = 0.56¢
wess Fit of degree 8, R2 > 0.834

-10

10

Increasing the Complexity

*"Why do we get a “better” fit on training data with
higher order model, but then do less well on handling
new data?

*What happens when we increase order of polynomial
during training?
> Can we get a worse fit to training data?

=|f extra term is useless, coefficient will merely be zero

*But if data is noisy, can fit the noise rather than the
underlying pattern in the data

> May lead to a “better” R? value, but not really a “better”
fit

Fitting a Quadratic to a Perfect Line

0,1,2,3)
xVals
.plot(xVals, yVals, label

pylab.plot(xVals, estYVals, , label ="Predictive values')
print('R-squared = ', rSquared(yVals, estYVals))

3.0 : :
2.5_... Predictive values | y — axz + b}{ + C
I ' y=0x2+1x+0
1.5} 4
| Y =X
05k

R-squared = 1.0

"9 0.5 10 15 70 75 3.0

Predict Another Point Using Same Model
xVals f xVals +

yVals = xVals

pylab.plot(xVals, yVals, label = "Actual values’)

estYVals = pylab.polyval((a,b,c), xVals)

pylab.plot(xVals, estYVals, 'r—-', label = 'Predictive values')
print('R-squared = ', rSquared(yVals, estYVals))

20

1
— Actual values
=== Predictive values

R-squared = 1.0

20

Simulate a Small Measurement Error

xVals

(0,1,2,
yVals (0,1,2
pylab.plot(xValsT"yVals, label = "Actual values')

model = pylab.polyfit(xVals, yVals, 2)

print(model)
estYVals = pylab.polyval(model, xVals)
pylab.plot(xVals, estYVals, 'r--', label = "Predicted values")
print({ 'R-sguared = ', rSquared(yVals, estYVals))
35 T T
— Actual values
3oll""" Predicted values y — a}{z _I_ b}{ + C

ul y = .025x2 + .955x + .005
I R-squared = 0.9994

1.0}

0.5}

n'%.

Predict Another Point Using Same Model
xVals i xVals +

yVals = xVals

estYVals = pylab.polyval (model, xVals)
print('R-squared = ", rSquared(yVals, estYVals))
pylab.figure()

pylab.plot(xVals, estYVals)
30 1 ,
w— Actual values ¢

=== Predicted values e’
25| v

20
15

R-squared = 0.7026

10

Suppose We Had Used a First-degree Fit

*model = pylab.polyfit(xVals, yVaIS,(lj

25

— Artyal values

== Predicted values

R-squared = 0.9988

Comparing first and second degree fits

*Predictive ability of first order fit much better than
second order fit

Degree 2 polynomial Degree 1 polynomial
1 . 25 1 |
w— Actual values o? w— Actual values
« =« « Predicted values g « =« « Predicted values

20 |

|
(o) 5 10 15

The Take Home Message

*Choosing an overly-complex model leads to overfitting
to the training data

*|ncreases the risk of a model that works poorly on data
not included in the training set

*0On the other hand choosing an insufficiently complex
model has other problems

> As we saw when we fit a line to data that was basically
parabolic

> “Everything should be made as simple as possible, but
not simpler” — Albert Einstein

Balancing Fit with Complexity

*|n absence of theory predicting order of model, can
engage in a search process

° Fit a low order model to training data

> Test on new data and record R? value

> Increase order of model and repeat

° Continue until fit on test data begins to decline

DataSet 1.txt

250 0
& Dats & Dats
300 mm Fit of digrea 2, A2 = DRENER s Fit of digrea 2, A2 = DR&ET2L
s Fit of degres= 4, A2 = 0LATEZE 300 m= [it of degres= 4, A2 = 0LAGH1Y y
L 1] m— Fit off degres 8, A2 = DLAGO2S m— Fit of degrea 8, A2 = DAZA0S L]
¥ m= [it of degres= 16, BT = 0.98415 m== [it of degres 16, RZ = 0.69957 4
2001 200
150
100 1100
Sh
1]
]
L]
S =100
=10 =10 -5 L1 5

DataSet 2/Model 1 .

10

Returning to Where We Started

0.6

=
LN

Distance (meters)

Measured Displacement of Spring

Quadratic fit tighter

® Measured points
Linear fit, r*+2 = 0,88151
1= == Quadratic fit, r+=2 = 0.95416

But remember Hooke

Unless we believe
theory is wrong, that
should guide us

Model holds until
reach elastic limit of

a S E 10 Spring
|Force| (Newtons)

Should probably fit different models to different segments of data

Can visualize as search process — find best place to break into two
parts, such that both linear segments have high R? fits

Suppose We Don’t Have a Solid Theory

=Use cross-validation results to guide the choice of
model complexity

*|f dataset small, use leave-one-out cross validation

=|f dataset large enough, use k-fold cross validation or
repeated-random-sampling validation

Leave-one-out Cross Validation

Let D be the original data set

testResults = []

for 1 1n range(len(D)):
training = D[:].pop(i)
model = buildModel (training)
testResults.append(test(model, D[1]))

Average testResults

k-fold very similar
Applies when we have large amount of data

D partitioned into k equal size sets
Model trained on k-1 sets, and tested on remaining set

Repeated Random Sampling

Let D be the original data set
n be the number of random samples
usually n between 20% and 50%
k be number of trials

testResults = []
for 1 1n range(k)
randomly select n elements for testSet,
keep rest for training
model = buildModel (training)
testResults.append(test(model, testSet))

Average testResults

An Example, Temperature By Year

*Task: Model how the mean daily high temperature in
the U.S. varied from 1961 through 2015

*Get means for each year and plot them

*Randomly divide data in half n times
> For each dimensionality to be tried
> Train on one half of data
> Test on other half
> Record r-squared on test data

*Report mean r-squared for each dimensionality

A Boring Class

class tempDatum(object):
def __init__(self, s):
info = s.split(', ")
self.high = float(info[1])
self.year = int(info[2][0:4])
def getHigh(self):
return self.high

def getYear(self):
return self.year

Read Data

def getTempData():

inFile = open('temperatures.csv')
data = [

for 1T 1in inFile:

data.append(tempDatum(1))
return data

Get Means

det getYearlyMeans(data):
years = {}
for d 1n data:
try:
yvears|[d.getYear()].append(d.getHigh())
except:
yvears|[d.getYear()] = [d.getHigh()]
for y 1n years:

years|[y] = sum(years[y])/len(years[y])
return years

Get and Plot Data

data = getTempData()
years = getYearlyMeans (data)
xVals, yVals = [], L[]
for e 1n years:
xVals.append(e)
yVals.append(years[e])
b.plot(xVals, yVals)
b.x1abel('Year")
b.ylabel('Mean Daily High (O)")
b.title('Select U.S. Cities")

Py’
Py’
Py’
py

SR I

The Whole Data Set

18.0

Select U.S. Cities

[

~J

w
T

[

~J

o
T

Mean Daily High (C)
o o
o w

155}

| | | | |
lsfﬁeo 1970 1980 1990 2000 2010 2020
Year

Initialize Things

numSubsets = 10

dimensions = (1, 2, 3, 4)

rSquares = {}

for d 1in dimensions:
rSquares[d] = []

Split Data

def splitData(xVals, yVals):
toTrain = random.sample(range(len(xVals)),
len(xVals)//2)
trainX, trainY, testX, testY = []1,[]1,[],[]
for 1 1n range(len(xVals)):
if 1 1n toTrain:
trainX.append(xVals[i])
trainY.append(yVals[i])
else:
testX.append(xVals[i])
testY.append(yVals[i])
return trainX, trainY, testX, testY

Train, Test, and Report

for £ in range(numSubsets):
trainX,trainY,testX, testY = splitData(xVals, yVals)
for d in dimensions:

model = pylab.polyfit(trainX, trainY, d)

estYVals = pylab.polyval(model, testX)
rSquares|d].append(rSquared(testY, estYVals))

print(Mean R-squares for test data’)
for d 1in dimensions:
mean = round(sum(rSquares|d])/len(rSquares|(d]), 4)
sd = round(Cnumpy.std(rSquares|d]), 4)
print(' For dimensionality', d, 'mean =", mean,
'Std =", sd)

Results

Mean R-squares for test data

For dimensionality 1
For dimensionality 2
For dimensionality 3
For dimensionality 4

medan
mean
mean
medan

*Line seems to be the winner
> Highest average r-squared

> Smallest deviation across trials

> Simplest model

0.7535 Std
0.7291 Std
0.7039 Std
0.7169 Std

0.0656
0.0744
0.0684
0.0777

Why we should run multiple sets

=*Note that deviations are a decimal order of magnitude

smaller than means

> Suggests that while there is good agreement, deviations
are large enough there could be a noticeable range of

variation across trials

*Suppose we had just run one trial
> Here are the R? values for each trial of linear fit

> [0.7828002156420516, 0. 8063?954025&52&6?
[E

0.79637132757274265, 0,784
0.7600111202485312
0.72115408562589023, 0-74

0.79031455375148507, 0.7792023858639947 1]

> |If we had only run one split, and happened to get this
result, we might have reached a different conclusion

about validity of linear model

Wrapping Up Curve Fitting

=\We can use linear regression to fit a curve to data
> Mapping from independent values to dependent values

*That curve is a model of the data that can be used to
predict the value associated with independent values
we haven’t seen (out of sample data)

*R-squared used to evaluate model
> Higher not always “better” because of risk of over fitting

*Choose complexity of model based on
> Theory about structure of data

> Cross validation
> Simplicity

