1	Let selling price of an electric car be \$ e Let selling price of a gas-powered car be \$ g Let selling price of a hybrid car be \$ h. $4e -3g = 172800 \dots (1)$ $h = 1.2g \dots (2)$ $3h +2g +2e = 716880 \dots (3)$ By GC,	Some interpreted eqn (2) wrongly. Some students attempted to solve algebraically not knowing that GC can solve simultaneous equations involving 3 eqns and 3 unknowns.
2	Selling price of an electric car is \$109 800. Discriminant =D = $(k-6)^2 - 4(k^2 + 36)(0.5)$ = $k^2 - 12k + 36 - 2(k^2 + 36)$ = $k^2 - 12k + 36 - 2k^2 - 72$ = $-(k^2 + 12k + 36) = -(k+6)^2$ Since coefficient of $x^2 = k^2 + 36 > 0$ the curve has a minimum point. $(k^2 + 36)x^2 + (k-6)x + 0.5 \ge 0$ if $D \le 0$ $-(k+6)^2 \le 0$ $\therefore (k+6)^2 \ge 0$ $\therefore k \in \mathbb{R}$	Most students considered the discriminant but did not proceed to solve the correct inequality. Those who arrived at this step: $(k+6)^2 \ge 0$, didn't conclude correctly. Students should note that since this inequality is always true for any values of <i>k</i> , hence <i>k</i> is the set of real numbers.
	For $\ln[(k^2 + 36)x^2 + (k - 6)x + 0.5)]$ to be defined, $(k^2 + 36)x^2 + (k - 6)x + 0.5) > 0$ for all real x. Hence, $D < 0$ $-(k + 6)^2 < 0$ $\therefore (k + 6)^2 > 0$ $k \in R, \ k \neq -6$	Students should note that the calculation will result in $(k+6)^2 > 0$ and hence k can be any real numbers except - 6.
3a.	$\int \frac{(25x^4 + 4)}{\sqrt{x}} dx$ = $\int 25x^{\frac{7}{2}} + 4x^{-\frac{1}{2}} dx$ = $\frac{50}{9}x^{\frac{9}{2}} + 8x^{\frac{1}{2}} + c$	Students should attempt to simply their answer and not leave it as: $\frac{25x^{\frac{9}{2}}}{\frac{9}{2}} + \frac{4x^{\frac{1}{2}}}{\frac{1}{2}} + c$
3b.	$\frac{4x-3}{4-x} = -4 + \frac{13}{4-x}$	Long division is an assumed knowledge for H1 students.

	$\int \frac{4x-3}{4x-3} dx = \int -4 + \frac{13}{4x-3} dx$	
	$4-x = -4x - 13\ln 4-x + c$	
4i	$ y - 4 - x = -4x - 13\ln 4 - x + c$ $= -4x - 13\ln 4 - x + c$ $y = -\ln(x+1) + \frac{5}{x-2} + 2$ $\frac{dy}{dx} = -\frac{1}{x+1} - \frac{5}{(x-2)^2}$ To show no stationary points $\frac{\text{Method 1}}{\text{Hence } -\frac{1}{x+1} < 0 \text{ for all real } x$ $\text{Also } -\frac{5}{(x-2)^2} < 0 \text{ for all real } x$ $\therefore \frac{dy}{dx} = -\frac{1}{x+1} - \frac{5}{x-2} < 0 \text{ for all real } x.$	Many students attempted to find $\frac{dy}{dx}$ and didn't make any progress thereafter. They should show $\frac{dy}{dx} \neq 0$.
	$\frac{dx}{dx} = \frac{1}{x+1} (x-2)^2 $ (or for an real x.) Hence curve C has no stationary points	
	Thence curve C has no stationary points.	
	$\frac{\text{Method 2}}{\frac{dy}{dx}} = -\frac{1}{x+1} - \frac{5}{(x-2)^2}$ $= \frac{-(x-2)^2 - 5(x+1)}{(x+1)(x-2)^2}$ $= \frac{-(x^2 + 4 - 4x) - 5x - 5}{(x+1)(x-2)^2} = \frac{-(x^2 + x + 9)}{(x+1)(x-2)^2}$	
	For stationary points $\frac{dy}{dx} = 0$	
	$x^{2} + x + 9 = 0$ Discriminant = $(-1)^{2} - 4(1)(9) = -35 < 0$ No solution. Hence curve C has no stationary points.	
	$\frac{\text{Method 3}}{\frac{dy}{dx}} = -\frac{1}{x+1} - \frac{5}{(x-2)^2}$ $= \frac{-(x-2)^2 - 5(x+1)}{(x+1)(x-2)^2}$	

4ii	$= \frac{-(x^{2} + 4 - 4x) - 5x - 5}{(x+1)(x-2)^{2}} = \frac{-(x^{2} + x + 9)}{(x+1)(x-2)^{2}} =$ $= \frac{-((x+\frac{1}{2})^{2} + 9 - \frac{1}{4})}{(x+1)(x-2)^{2}} = \frac{-((x+\frac{1}{2})^{2} + \frac{35}{4})}{(x+1)(x-2)^{2}} <0 \text{ for all real x.}$ Hence curve C has no stationary points $= \frac{y}{-1} = \frac{y}{2} = \frac{-(x+\frac{1}{2})^{2} + \frac{35}{4}}{2} = \frac{-(x+\frac{1}{2})^{2} + \frac{35}{4}}{2} = \frac{-(x+\frac{1}{2})^{2} + \frac{35}{4}}{(x+1)(x-2)^{2}} <0$	$y = -\ln(x+1) + \frac{5}{x-2} + 2$ Students should note how the asymptotes are obtained: $x+1=0 \therefore x = -1$ $x-2=0 \therefore x = 2$
4iii	When $y = 0$, $x = -0.222$ or $x = 11.5$ Asymptotes $x = -1$ and $x = 2$. $\int_{0}^{5} -\ln(x+1) + \frac{2x+1}{2} dx = 6.29$	Some students aren't aware that numerical area implies
	$_{3}$ $x-2$	that the integral can be evaluated using the GC.
51	When $y = \frac{3}{4}k^2$ $\frac{3}{4}k^2 = k^2 - x^2$ $x^2 = \frac{1}{4}k^2$ $x = \frac{1}{2}k$ $\frac{dy}{dx} = -2x$ $\frac{dy}{dx} = -2(\frac{1}{2}k) = -k$ $y - \frac{3}{4}k^2 = -k(x - \frac{k}{2})$ $y = \frac{5}{4}k^2 - kx$	To find tangent, students should find 1) The coordinates of the point (,) and 2) The gradient in terms of <i>k</i> .

5;;		Most students identified the
511	v	correct region but made
		mistakes in the limits of the
	$A(k-3k^2)$	integrals
	$(\frac{\kappa}{2},\frac{3\kappa}{4})$	linegrais.
		Students should firstly
		compute the x intercents of
	$O \xrightarrow{k} k \xrightarrow{(5k)} 0 x$	the curve and the tangent
		the curve and the tangent.
	$1 3k^2 5k k 9k^3$	
	Area of $\Delta AFB = \frac{1}{2} \left(\frac{3\pi}{4}\right) \left(\frac{3\pi}{4} - \frac{\pi}{2}\right) = \frac{3\pi}{22}$	
	2 4 4 2 32	
	$A = x^{2} + \frac{k}{2} + \frac{k}{2} + \frac{k^{2}}{2} + \frac{k^{2}}{2$	
	Area $AFD = \int_{k} (k - x) dx = [k x - \frac{1}{3}]_{\frac{k}{2}}$	
	$\frac{\pi}{2}$	
	$k^{3} = k^{3} = k^{3} = k^{3} = 5k^{3}$	
	$=\kappa -\frac{1}{3} - (\frac{1}{2} - \frac{1}{24}) = \frac{1}{24}$	
	Area bounded by the curve C the tangent to the curve at	
	$5L^3 0L^3 7L^3$	
	point A and the x-axis = $\frac{5k}{2} - \frac{9k}{2} = \frac{7k}{2}$	
	24 32 96	
6i	Method 1	Many students solved
	$P = -(e^{0.2t} - 4)^2 + 9$	$\frac{dP}{dP} = 0$ using the GC
	dP as	$\frac{dt}{dt} = 0$ using the GC,
	$\frac{dt}{dt} = -2(e^{0.2t} - 4)(0.2e^{0.2t})$	instead of doing
	u/	differentiation as stated in
	For stationary points $\frac{dP}{dP} = 0$	the question.
	dt	1
	$dP = 2(e^{0.2t} - 4)(0, 2e^{0.2t}) = 0$	
	$\frac{-1}{dt} = -2(e^{2} - 4)(0.2e^{2}) = 0$	
	$(a^{0.2t} - 4) = 0$	
	$(\epsilon - \tau) = 0$	
	$e^{0.2t} = 4$	
	$0.2t = \ln 4$	
	$t = 5 \ln 4$	
	Method 2	
	$P = -(e^{0.2t} - 4)^2 + 9$	
	$-(e^{0.4t}+16-8e^{0.2t})+0$	
	$(e^{+10-6e})+7$	
	$=-e^{0.4t}-7+8e^{0.2t}$	
	$dP = 0.4e^{0.4t} + 1.6e^{0.2t}$	
	$\frac{1}{dt} = -0.4e + 1.0e$	
	dP	
	For stationary points $\frac{dr}{dt} = 0$	
1	dt	

	$0.4e^{0.4t} = 1.6e^{0.2t}$	
	$e^{0.2t} = 4$	
	$0.2t = \ln 4$	
	$t = 5 \ln 4$	
		T
	To justify whether it is a maximum or minimum point	For all maxima/minima
		expected to determine the
	$\frac{d P}{dt^2} = -0.4e^{0.4t} + 1.6e^{0.2t}$	nature of the point unless
	dt^2	otherwise stated in the
	When $t = 5 \ln 4$, $\frac{d^2 P}{d^2} = -1.28$	question.
	dt^2	
	At $t = 5 \ln 4$, the stationary point is a maximum point	
	<u>Method 2</u> $t = 5 \ln 4 = 6.02$ to 2 significant figures	
	$l = 3 \prod 4 - 0.93$ to 3 significant ligures	
	$t = 6.5$ $5\ln 4$ 7	
	$\frac{dp}{dp}$ 0.485 0 -0.0895	
	At $t = 5 \ln 4$, the stationary point is a maximum point.	
6ii		Students have to indicate the
	P^{\bigstar}	endpoints of all curve
		sketching questions.
	(9,4.80)	
	0	
	$0 \qquad 9 t$	
6;;;		Most students tried to expand
0111	$\int (a^{0.2t} - 4)^2 + 0 dt = -\int a^{0.4t} + 8a^{0.2t} - 7 dt$	but made careless mistakes.
	$\int -(e^{2} - 4) + 9 dt = -\int -e^{2} + 8e^{2} - 7 dt$	Students have to note that:
	$25 c^{0.4t} + 40 c^{0.2t} = 74 + C$	
	=-2.3e + 40e - 71 + C	$(e^{0.2t})^2 = (e^{0.2t}).(e^{0.2t})$
	9	$-(a^{0.2t+0.2t})-(a^{0.4t})$
	$\int -(e^{0.2t}-4)^2 + 9 \mathrm{d}t = [-2.5e^{0.4t} + 40e^{0.2t} - 7t]_0^9$	-(e) -(e)
	$-25c^{0.4(9)} + 40c^{0.2(9)} - 7(0) + 25 - 40$	Some students aren't aware
	-2.3e + 40e - 7(9) + 2.3 - 40 - 40 0002 = 50 (to the page st integer)	that they can evaluate the
	- 49.9905- 50 (to the hearest integer) Or using GC	integral using GC to get its
		numerical value to check their
	$\int_{0}^{1} -(e^{0.2t} - 4)^{2} + 9 dt = 49.9903 = 50 $ (to the nearest integer)	answers.
	Over a span of 9 months Mr I im made a total profit of	
	\$50000.	
		•

6iv	$A = \frac{200}{3} (-20t + 75 + \frac{375}{2t + 5})$ $\frac{dA}{dt} = \frac{200}{3} (-20 - \frac{375(2)}{(2t + 5)^2})$ $= \frac{200}{3} (-20 - \frac{750}{(2t + 5)^2})$ When $t = 3$, $\frac{dA}{dt} = \frac{200}{3} (-20 - \frac{750}{11^2})$ $\frac{dA}{dt} = -1746 $ (to the nearest integer)	Many students evaluated the derivative using GC despite the question asking them to use differentiation.
	When $t = 3$, the remaining budget is decreasing at the rate of \$1746 per month	
7a	$X \sim B(30, \frac{p}{100})$ np = 18 $30\left(\frac{p}{100}\right) = 18$ p = 60 $\therefore P(X \ge 20) = 1 - P(X \le 19) = 0.29147 \approx 0.291 \text{ (3 sf)}$	Students have to note that the probability was given as $p\%=p/100$. Many wrote p incorrectly as 0.6. Hence, they were penalized. Students to note that they have to show this step before they embarked on their GC calculations: $P(X \ge 20) = 1 - P(X \le 19)$
7b	Let <i>Y</i> be the random variable representing the	Many students interpreted the question wrongly
	number of elderly patients with diabetes. $Y \sim B(40, \frac{k}{100})$ $P(9 \le Y \le 20) = 0.25$ $P(Y \le 20) - P(Y \le 8) = 0.25$ Using GC, k = 17.367 or k = 56.512 Since $k < 50$, $\therefore k = 17.4 (3 \text{ s.f})$	As GC only supports binompdf or binomcdf, students need to show this step: $P(9 \le Y \le 20) = 0.25$ $P(Y \le 20) - P(Y \le 8) = 0.25$

8a	$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = 0.7$	
	$P(A \cap B) = 0.7 \left(\frac{1}{3}\right) = \frac{7}{30}$	
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
	$\therefore P(A) = \frac{3}{5} - \frac{1}{3} + \frac{7}{30} = \frac{1}{2}$	
86	$A \qquad B$ $\underline{Method 1}$ Required answer $= P(A) - P(A \cap B) + P(B) - P(A \cap B)$ $= \frac{1}{2} - \frac{7}{30} + \frac{1}{3} - \frac{7}{30}$ $= \frac{11}{30}$	Students are encouraged to use the venn diagram to indicate the required region before they start their calculations. There is no need to apply any new formulas to do this question.
	$\frac{\text{Method } 2}{\text{Re quired answer}}$ $= P(A \cup B) - P(A \cap B)$ $3 7$	
	$=\frac{1}{5}-\frac{1}{30}$ $=\frac{11}{30}$	
8c	$\frac{\text{Method 1}}{P(A \mid B)} = \frac{7}{10}$ $P(A) = \frac{1}{2}$ Not independent.	Students have to write down the value of both probabilities and make comparison.
	$\frac{\text{Method } 2}{P(A \cap B)} = \frac{7}{30}$ $P(A).P(B) = \frac{1}{6}$ Not independent.	

9a	0.5 0.5 $Bag A$ $1/3$ 0.5 0.5 0.5 $Bag B$ 0.5	But some did not do the first branch to merge the diagram as one tree.
9b	$\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{4} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3}$ $= \frac{83}{144}$	
9c	$\frac{P(\text{first ball from Bag A and both balls are red})}{P(\text{both balls are red})}$ $= \frac{P(\text{first ball from Bag A and both balls are red})}{P(\text{first ball from Bag A and both red}) + P(\text{first ball from Bag B and both red})}$ $= \frac{\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{4}}$ $= \frac{32}{59}$	Some students are confused in the application of the conditional prob formula.
10i		some did not label the min and max values of x and y on the axes.
10ii	r = 0.980 (3 s.f) There is a strong positive linear correlation between the amount of fertiliser used and the average crop yield.	Some answers were not given in context and hence full credit was not given.
10 iii	y = 1.9673 + 0.19578 x y = 1.97 + 0.196 x	Answers to be in 3 s.f.
10 iv	2.5 = 1.9673 + 0.19578 x $x = 2.69 = 2.7 \text{ g/m}^2$ Since $y = 2.5$ is within $2 \le y \le 3.6$ and $r = 0.980$ is close to 1, hence interpolation gives a reliable estimate.	Students should note that there are TWO points for a reliable estimate. Since they have substituted <i>y</i> =2.5, they

		should state the data range of v to illustrate interpolation
10v	There is no change in <i>r</i> as <i>r</i> is a measure of scatter and	Students should note the
	hence it is not affected by any change of units.	correct explanation.
11i (a)	$4! \ge 2! \ge 3! = 288$	Most did the grouping method but have forgotten to
		do ordering amongst the
		sisters and ordering amongst
11;	Method 1	the brothers.
(b)	$\frac{1}{6!+6!} - \frac{5!}{5!} = 1320$	of P(AUB) formula in
	Father is first + Mother is last – both father is first, and mother is	probability.
	last.	
	$\frac{\text{Method } 2}{61 + 51 \times 51 - 1320}$	
11ii	$41 \times {}^{5}C \times 31 = 2$	Many did PnC instead of
	$\frac{7.2 \times 0.3 \times 5.2}{71} = \frac{2}{7}$	probability.
12a	Let X be heights of boys.	
	$V = N(172) - \tau^2$	
	$X \sim N(1/2, O)$	
	P(X > 156) = 0.948	
	$P(Z > \frac{156 - 172}{-100}) = 0.948$	
	б 156 172	
	$\frac{150-172}{\sigma} = -1.6257$	
	$\sigma = 9.8415 - 9.84$ (3 s f)	
12bi	0.942	Students to note that expected
1201	$\bar{X} \sim N(172, \frac{9.64}{100})$	number of samples means to
	100	apply <i>np</i> formula, where <i>n</i> is
	E(X)	the number of samples.
	$=80 \times P(\bar{X} > 172)$	
	$= 80 \times 0.5$	
	= 40	
12b	Let <i>Y</i> be the number of samples with $\overline{X} > 172$.	Some students did not state the
ii	$Y \sim B(80, 0.5)$	parameters for the binomial distribution and hence did not
	$P(Y \le 35)$	get full credit.
	= 0.15715	
	= 0.157 (3 sf)	

12c	Let W be heights of girls. $W \sim N(165, 8^2)$ $X - W \sim N(172 - 165, 9.84^2 + 8^2)$ $X - W \sim N(7, 160.8256)$ P(-5 < X - W < 5) = 0.265	Many students interpreted the question incorrectly not knowing that difference can mean that the boy is taller, or the girl is taller. Students should show their intermediate steps to compute the mean and variance.
12d	$W_{1} + W_{2} + W_{3} - 2X \sim N(165(3) - 172(2), 8^{2}(3) + 2^{2}(9.84^{2}))$ $W_{1} + W_{2} + W_{3} - 2X \sim N(151, 579.3024)$ $P(W_{1} + W_{2} + W_{3} - 2X \le 149) = 0.467 (3 \text{ s.f})$	Some students interpreted the question incorrectly by using 3W to represent the total height of 3 randomly chosen girls. Students should show their intermediate steps to compute the mean and variance.
13a	$\overline{x} = \frac{75}{200} + 18.5 = 18.875$ $s^{2} = \frac{1}{200-1} \left(1968.04 - \frac{75^{2}}{200} \right) = 9.7483$ Let μ represent the <i>population mean lifetime</i> of the tyres To test $H_{0}: \mu = 18.5$ against $H_{1}: \mu \neq 18.5$ at 5% level of significance Under H_{0} , since $n = 40$ is large, $\overline{X} \sim N(18.5, \frac{9.7483}{200})$ approximately by Central Limit Theorem. From GC, p -value = 0.0894 > 0.05, we do not reject H ₀ There is insufficient evidence to conclude at 5% significance level that the population mean lifetime of tyres is not 18.5 km. Hence the manager's claim is supported by the data.	Students should note that as $\overline{x} = 18.875$ is exact, they shouldn't round it off to 3 s.f. Presentations for hypothesis testing were not satisfactory. Students to note that the concluding statement should be written in the context of the question for the alternative hypothesis. Then a second statement maybe required to answer the QP.
13b	0.05 is the probability of wrongly concluding that the population mean lifetime of tyres is not 18.5 km when in fact it is 18.5 km.	

13c	Let Y represent the <u>lifetime</u> of the tyres produced by the new process. To test $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$ at 1% level of significance Under H_0 , $\overline{Y} \sim N(\mu_0, \frac{9.5}{400})$ $z = \frac{\overline{y} - \mu_0}{\sqrt{\frac{\sigma^2}{n}}} = \frac{20 - \mu_0}{\sqrt{\frac{9.5}{400}}}$	Most students did not read the question carefully and hence wrote the wrong alternative hypothesis. Many students aren't aware that the 9.5 given was population variance. They interpreted it incorrectly as the sample variance.
	Since it is given that the new process is effective, we reject H ₀ $\frac{20 - \mu_0}{\sqrt{\frac{9.5}{400}}} > 2.3263$ $\mu_0 < 19.641$ $0 \le \mu_0 < 19.6$	As lifetime of the tyres can't be negative, the lower bound is necessary.