Candidate Index Number				

Anglo - Chinese School (Independent)

FINAL EXAMINATIONS 2017 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1

WEDNESDAY 4th OCTOBER 2017

1 h 30 min

INSTRUCTIONS TO CANDIDATES

- Write your index number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- The maximum mark for this paper is 80.

For Examiner's Use		

This paper consists of 16 printed pages.

[Turn over

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all the questions in the spaces provided.

1	[Maximum mark: 3]			
	(i)	Simplify $(p+a)(p-a)-p^2$.	[1 mark]	
	(ii)	Hence, evaluate $48919 \times 48913 - 48916^2$.	[2 marks]	
	•••••		•••••	
	•••••		•••••	
	•••••			
	•••••			
	•••••			
			•••••	

- 2 [Maximum mark: 7]
 - (a) Evaluate $\left(2 \frac{1}{2}\right)^2 \left(1 \frac{1}{3}\right)^{-1}$. [2 marks]
 - **(b)** Simplify the following
 - (i) $\left[\left(2x^{-1}\right)^{-2}\right]^{-3}$, leaving your answer in the positive power. [2 marks]
 - (ii) $\frac{x^2y^{-3}}{y^2z^{-4}} \times \frac{x^3y^7}{(xy^2z)^{-1}}$, giving your answer in the from $x^py^qz^r$, where p, q and r are rational numbers.

.....

- 3 [Maximum mark: 9]
 - (a) Given that $-4 \le x \le -\frac{1}{2}$ and $-1 \le y \le 7$, find
 - (i) the smallest possible value of $y x^3$, [2 marks]
 - (ii) the greatest possible value of $\frac{y}{2x}$. [2 marks]
 - (b) Solve $x \frac{3}{2} < \frac{5 6x}{4} \le x + \frac{1}{2}$ and state the integer that satisfies the inequality. [5 marks]

		••••	
 	•••••	•••••	 •

.....

(i)	the coordinates of D ,	[1 m
(ii)	the equation of the line L_1 which passes through D and is parallel to BC ,	[3 m
(iii)	the coordinates of E, the point where L_1 cuts $2y + 4 = x$.	[3 m
(iv)	the area of <i>BCED</i> .	[3 m

.....[Working may be continued next page]

5 [Maximum mark: 3]

It is given that x and y are related by $x = \ln\left(3x - \frac{5}{\sqrt{y}}\right)$. If a straight line PQ is obtained by plotting
$e^x \sqrt{y}$ against $x\sqrt{y}$, find the gradient of the line PQ .

6	[Maximum	mark:	81
·	[111 0000011000110	111001110.	\sim_{I}

(i)	Solve the simultaneous equations $y = x^3$ and $y = \frac{16}{x}$.	[3 marks]
(ii)	On the same axes, draw the graphs of $y = x^3$ and $y = \frac{16}{x}$, labelling the points of in	tersection
	clearly on your sketch.	[3 marks]
(iii)	Find the distance between the points of intersection, leaving your answer in the for	m $a\sqrt{b}$. [2 marks]
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		

axımum mark: 10]	
ve the following equations	
$9^{3x+1} - 5(9^{3x}) = 108$	[3 marks]
$3^{2x+1} + 4(3^x) = 39$	[4 marks]
$64^{\log_8 x} = 9$	[3 marks]
	•••••

.....[Working may be continued next page]

$3^{x+2} = 27 \left(9^{\frac{3}{2}y}\right)$
$\log_3 9 - \log_3 (15y - 3x) = 1$

[Maximum mark: 7]

8

9 [Maximum mark: 10]

- (a) Given that the roots of the quadratic equation $4x^2 8x 3 = 0$ are α and β , find the quadratic equation, whose roots are $\alpha^2\beta$ and $\alpha\beta^2$. [4 marks]
- **(b)** Given that x + y = 5 and $\frac{6}{x} + \frac{6}{y} = 5$, find the value of $x^2 y^2$, where x < y. [6 marks]

 	 	•••••	

.....[Working may be continued next page]

10 [Maximum mark: 4]

In rectangle *BCDE*, CB = 4 cm. Lines AD and BD divides $\angle EDC$ into 3 equal parts. Given that $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, what is the area of $\triangle ABD$?

 •	 	 •••••

11 [*Maximum mark: 5*]

Figure *ABCD* below is a trapezium such that AD=13cm, CD=12cm, $\cos\alpha=\frac{5}{13}$ and $\tan\beta=\frac{3}{4}$. Find BC^2 .

ec	the sale price of a square towel \$y\$ is related to the length of each side of the towel x cm by the quation $y = (k-5)x^2 - 8x + k$. Given that the minimum sale price must be \$5 for all sizes of the owel, find the range of values of k .

****** END OF PAPER 1 *******

12

[Maximum mark: 4]

ANSWER KEY

1. (i)
$$-a^2$$

2 (a)
$$\frac{3}{4}$$

2 (a)
$$\frac{3}{4}$$
 (b) (i) $\frac{64}{x^6}$ (ii) $x^6 y^4 z^5$

(ii)
$$x^6 y^4 z^5$$

3. (a) (i)
$$-\frac{7}{8}$$

(ii) 1 (b)
$$\frac{3}{10} \le x < 1\frac{1}{10}$$
, 1

(ii)
$$4y = 3x - 8$$
 (iii) $E = (0, -2)$ (iv) 3 unit²

5.3

6. (i)
$$(-2,-8)$$
 and $(2, 8)$

(iii)
$$4\sqrt{17}$$

6 (ii)

7. (i)
$$\frac{1}{2}$$
 (ii) 1

8.
$$x = 4$$
, $y = 1$

9. (a)
$$64x^2 + 96x - 27 = 0$$
 (b) (-5)

(b)
$$(-5)$$

10.
$$\frac{16\sqrt{3}}{3}$$
 units²

12.
$$k \ge 9$$