| Candidate Index Number | | | | | |------------------------|--|--|--|--| | | | | | | | | | | | | | | | | | | # Anglo - Chinese School (Independent) # FINAL EXAMINATIONS 2017 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1 WEDNESDAY 4th OCTOBER 2017 1 h 30 min #### **INSTRUCTIONS TO CANDIDATES** - Write your index number in the boxes above. - Do not open this examination paper until instructed to do so. - You are not permitted access to any calculator for this paper. - Answer all questions in the spaces provided. - Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures. - The maximum mark for this paper is 80. | For Examiner's Use | | | |--------------------|--|--| This paper consists of 16 printed pages. [Turn over Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Answer all the questions in the spaces provided. | 1 | [Maximum mark: 3] | | | | |---|-------------------|--|-----------|--| | | (i) | Simplify $(p+a)(p-a)-p^2$. | [1 mark] | | | | (ii) | Hence, evaluate $48919 \times 48913 - 48916^2$. | [2 marks] | ••••• | | ••••• | | | | ••••• | | ••••• | | | | ••••• | ••••• | | | | | | ••••• | | | | | | | | ••••• | | - 2 [Maximum mark: 7] - (a) Evaluate $\left(2 \frac{1}{2}\right)^2 \left(1 \frac{1}{3}\right)^{-1}$. [2 marks] - **(b)** Simplify the following - (i) $\left[\left(2x^{-1}\right)^{-2}\right]^{-3}$, leaving your answer in the positive power. [2 marks] - (ii) $\frac{x^2y^{-3}}{y^2z^{-4}} \times \frac{x^3y^7}{(xy^2z)^{-1}}$, giving your answer in the from $x^py^qz^r$, where p, q and r are rational numbers. |
 | |------| |
 | - 3 [Maximum mark: 9] - (a) Given that $-4 \le x \le -\frac{1}{2}$ and $-1 \le y \le 7$, find - (i) the smallest possible value of $y x^3$, [2 marks] - (ii) the greatest possible value of $\frac{y}{2x}$. [2 marks] - (b) Solve $x \frac{3}{2} < \frac{5 6x}{4} \le x + \frac{1}{2}$ and state the integer that satisfies the inequality. [5 marks] | | | •••• | | |------|-------|-------|---| |
 | ••••• | ••••• |
• | |
 | | |
 | |
 | | |
 | |
 | | |
 | | | | | | |
 |
 | | |------|------|--| | | | | | | | | | | | | |
 |
 | | |
 |
 | | | (i) | the coordinates of D , | [1 m | |------------|---|------| | (ii) | the equation of the line L_1 which passes through D and is parallel to BC , | [3 m | | (iii) | the coordinates of E, the point where L_1 cuts $2y + 4 = x$. | [3 m | | (iv) | the area of <i>BCED</i> . | [3 m |[Working may be continued next page] ## 5 [Maximum mark: 3] | It is given that x and y are related by $x = \ln\left(3x - \frac{5}{\sqrt{y}}\right)$. If a straight line PQ is obtained by plotting | |---| | $e^x \sqrt{y}$ against $x\sqrt{y}$, find the gradient of the line PQ . | 6 | [Maximum | mark: | 81 | |---|---------------------|------------|------------| | · | [111 0000011000110 | 111001110. | \sim_{I} | | (i) | Solve the simultaneous equations $y = x^3$ and $y = \frac{16}{x}$. | [3 marks] | |------------|--|---------------------------| | (ii) | On the same axes, draw the graphs of $y = x^3$ and $y = \frac{16}{x}$, labelling the points of in | tersection | | | clearly on your sketch. | [3 marks] | | (iii) | Find the distance between the points of intersection, leaving your answer in the for | m $a\sqrt{b}$. [2 marks] | | | | | | | | | | ••••• | | | | ••••• | ••••• | | | | ••••• | | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | | | axımum mark: 10] | | |------------------------------|-----------| | ve the following equations | | | $9^{3x+1} - 5(9^{3x}) = 108$ | [3 marks] | | $3^{2x+1} + 4(3^x) = 39$ | [4 marks] | | $64^{\log_8 x} = 9$ | [3 marks] | ••••• |[Working may be continued next page] | $3^{x+2} = 27 \left(9^{\frac{3}{2}y}\right)$ | |--| | $\log_3 9 - \log_3 (15y - 3x) = 1$ | |
 | |
 | |
 | [Maximum mark: 7] 8 #### **9** [Maximum mark: 10] - (a) Given that the roots of the quadratic equation $4x^2 8x 3 = 0$ are α and β , find the quadratic equation, whose roots are $\alpha^2\beta$ and $\alpha\beta^2$. [4 marks] - **(b)** Given that x + y = 5 and $\frac{6}{x} + \frac{6}{y} = 5$, find the value of $x^2 y^2$, where x < y. [6 marks] |
 |
 | | | |------|------|-------|--| |
 |
 | | | ••••• | |[Working may be continued next page] #### **10** [Maximum mark: 4] In rectangle *BCDE*, CB = 4 cm. Lines AD and BD divides $\angle EDC$ into 3 equal parts. Given that $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$, what is the area of $\triangle ABD$? |
• |
 |
••••• | |---|------|-----------| |
 |
 |
 | | | | ## **11** [*Maximum mark: 5*] Figure *ABCD* below is a trapezium such that AD=13cm, CD=12cm, $\cos\alpha=\frac{5}{13}$ and $\tan\beta=\frac{3}{4}$. Find BC^2 . |
 | |------| |
 | ec | the sale price of a square towel \$y\$ is related to the length of each side of the towel x cm by the quation $y = (k-5)x^2 - 8x + k$. Given that the minimum sale price must be \$5 for all sizes of the owel, find the range of values of k . | |----|--| ****** END OF PAPER 1 ******* 12 [Maximum mark: 4] #### **ANSWER KEY** 1. (i) $$-a^2$$ 2 (a) $$\frac{3}{4}$$ 2 (a) $$\frac{3}{4}$$ (b) (i) $\frac{64}{x^6}$ (ii) $x^6 y^4 z^5$ (ii) $$x^6 y^4 z^5$$ 3. (a) (i) $$-\frac{7}{8}$$ (ii) 1 (b) $$\frac{3}{10} \le x < 1\frac{1}{10}$$, 1 (ii) $$4y = 3x - 8$$ (iii) $E = (0, -2)$ (iv) 3 unit² 5.3 6. (i) $$(-2,-8)$$ and $(2, 8)$ (iii) $$4\sqrt{17}$$ 6 (ii) 7. (i) $$\frac{1}{2}$$ (ii) 1 8. $$x = 4$$, $y = 1$ 9. (a) $$64x^2 + 96x - 27 = 0$$ (b) (-5) (b) $$(-5)$$ 10. $$\frac{16\sqrt{3}}{3}$$ units² 12. $$k \ge 9$$