Annota	tions used in marking	
BOD - E	Benefit of doubt	
ECF - E	Error carried forward	
POT - F	Powers of ten error	
TE - Tra	ansfer error	
CE - Ca	alculation error	
XP - W	rong physics	
ENG - (Generally bad english, phrasing and expression	
PP - Pc	or presentation of answers	
Qn	Suggested Answer	Marker's Report
Q1		
(a)(i)	The absolute uncertainty of both measurements is the	Some students were unable to
	same.	show understanding that the
	OR	absolute uncertainty for both
	Fractional/percentage uncertainty is reduced by measuring	ways of measures is the
	N coins.	same.
	By measuring N coins, the absolute uncertainty of the	
	thickness of 1 coin is divided by <i>N</i> .	
	OR	
	By measuring N coins, fractional uncertainty is $\Delta x / T$.	
	By measuring 1 coin, fractional uncertainty is $\Delta x / T/N$.	
(a)(ii)	Use a micrometer screw gauge/vernier caliper as the	This part was well done.
	instrument has smaller absolute uncertainty compared to	
	the half metre rule.	
(b)	pV = nRT	Most students were able to do
	$(0.00200 \times 8.31 \times (273.15 \pm 36.7))$	this step correctly with a
	$p = \frac{0.00200 \times 0.01 \times (273.10 + 30.17)}{4}$	handful of students forgetting
	$\frac{4}{2}\pi(0.0250)^3$	to convert temperature to K.
	3 70000 D	
	= 78682 Pa	
	$+\frac{\Delta \rho}{\Delta q} = +(3\frac{\Delta d}{\Delta q} + \frac{\Delta T}{\Delta q})$	A number of students did not
	p (d T)	convert temperature to K
	0.1 0.1	when calculating uncertainty.
	$=\pm [3(\frac{1}{50.0})^{+} \frac{1}{(273.15+36.7)}]$	
	±∆p = ±497 Pa	Some students did not
	$p \pm \Delta p = (78700 \pm 500)$ Pa	express the absolute
		uncertainty to 1 s f.
Q2		
(a)(i)	Constant velocity in the horizontal direction and a constant	Some students did not
(/(-/	acceleration in the vertical direction	mention about the motion in
		the horizontal direction
(a)(ii)	$u^2 = u^2 + 2cc$	
(~)('')	v = u + 2dS	
	$U = (20.0 \text{ sin}\theta)^2 + 2(-9.81)(15.8)$	
	$\theta = 01.7^{\circ}$	Intermediate value should be
		given to at least 3 s.f.
	$\theta = 62^{\circ} (0 \text{ d.p.}) \text{ (shown)}$	

Q3		
(a)	. , 🔺 upthrust	The free body diagram was
		not well drawn. Many students
		missed out drawing viscous
		force or upthrust in the
		diagram.
	weight	
	\checkmark	
	Correct labelling of forces	
	As speed of metal ball increases, viscous force increases,	One common misconception
	As viscous force increases, net acceleration decreases.	was that upthrust increases as
	· · · · · · · · · · · · · · · · · · ·	the metal ball falls.
	When the total upward force (viscous force and upthrust)	Some did not indicate that the
	becomes equal in magnitude to the weight of the ball,	upward force comprise
	there is no net force, and the metal ball reaches terminal	viscous and upthrust.
	velocity.	
(b)(i)	Taking moments about B,	Intermediate value should be
	$P \times 6.0 \cos 30^\circ = 150 \times 3.0 \sin 30^\circ$	given to at least 3 s.f.
	<i>P</i> = 43.301 N	
	= 43 N (2 s.f.) shown	
(b)(ii)	The horizontal component of Q which is pointing to the left	Generally well done with
	will balance force P which is pointing to the right.	some answers missing out
	The vertical component of Q which is acting upwards will	directions such as left, right,
	balance <u>W</u> which is acting <u>downwards</u> . This will allow the	up and down.
	ladder to be in equilibrium.	
(b)(iii)	Horizontal component = 43 N	This part was well done.
	Vertical component = 150 N	
	Magnitude of $Q = \sqrt{43^2 + 150^2} = 156 \text{ N} (3 \text{ s.f.})$	
(b)(i)()		Somo students did not shock
		that the 3 forces drawn
		intersect at the same point
	X	
	w 🔪	
	Y	
	Three forces intersect at same point and force at X is	
	facing upwards diagonally.	

(c)(i)	Additional Notes: (NOT part of answer)	
	• Straight line passing through the origin indicates that the	
	gravitational force on parcel is directly proportional to	
	the distance from the centre of Earth.	
	Negative gradient indicates that the gravitational force is	
	always directed towards the centre of the Earth.	
	Hence net force for SHM is provided by gravitational	
	force	
	$B_{\rm V}N2I$ ma – mg	Wrong physics include
	by week, mind = mig	aquating g to contrinctal
	$a = \frac{4\pi \rho G}{r} r \dots (1)$	acceleration (circular motion)
	3	instead a to and fro
	For SHM, $a = \omega^2 x \qquad \cdots \cdots (2)$	accoloration (SHM)
	$4\pi \rho G$	
	Comparing $\omega^2 = \frac{m \rho \sigma}{2}$	
	5	
	$(2\pi)^2$ $4\pi\rho G$	A number of correct
	$\left(\frac{T}{T}\right) = \frac{T}{3}$	expressions even though it
		was not simplified.
	$T = \frac{3\pi}{3\pi}$	
	VρG	
(c)(ii)	Maximum time taken (as assuming released from rest in	Many correctly deduced the
(-)(-)	Singapore) = half a period	time to be half a period.
	$\frac{1}{2} = \frac{1}{2} \sqrt{\frac{3\pi}{2}}$	
	2 2 \ <i>ρ</i> G	
	$1 \sqrt{3 \pi}$	
	$=\frac{1}{2}\sqrt{\frac{(5.51\times10^3)6.67\times10^{-11}}{(5.51\times10^3)6.67\times10^{-11}}}$	
	= 2530 s (3 s.f.)	
5		
(a)(i)	As the light intensity increases, the resistance of the LDR	This was generally well done.
(/(-/	decreases	Some students did ignored
	In Fig. 5.1(a) since the components are in parallel, as the	the fact that the emf is
	resistance of the LDR varies, the voltmeter reading will	constant and thought the
	remain constant	voltmeter would change for
	In Fig. 5 1/b) the voltmeter is pleased careas the fixed	Fig. 5.1(a) Students could
	In Fig. 5. (b), the <u>voltmeter is placed across the fixed</u>	Fig. 5. I(a). Students could
	resistor so as the light intensity increases by potential	provide a more detailed
	divider principle $V = \frac{500}{100} \times 6.0$, the voltmeter reading	explanation on why the
	$500 + R_{LDR}$	potential difference for the
	increases.	voltmeter would vary using
		physics concepts instead of
		merely stating it.
(a)(ii)	By the potential divider principle,	Well done if students
	$V = \frac{500}{500} \times 6.0 = 3.75$	recognized the voltmeter was
	$500 + R_{LDR}$	placed across the 500 Ω
	$R_{\rm con} = 300 \Omega$	resistor. Some used a long
		method.

(b)(i)	When <u>dark</u> , <u>resistance of LDR increases</u> , <u>p.d. across LDR</u> and <u>LED increase</u> . So the <u>LED turns on</u> . <u>Resistance of</u> <u>LDR decreases</u> . OR When <u>bright</u> , <u>resistance of LDR decreases</u> , <u>p.d. across</u> <u>LDR and LED decrease</u> . So the <u>LED turns off</u> . <u>Resistance</u> <u>of LDR increases</u> . The <u>p.d. across LED and LDR decrease</u> , forcing the LED to <u>switch off</u> . OR The <u>p.d. across LED and LDR increase</u> , forcing the LED to <u>switch on</u> . When the LED is off, the <u>p.d. across LED and LDR will</u> <u>increase</u> , forcing the LED to <u>switch on</u> . OR When the LED is on, the <u>p.d. across LED and LDR will</u> <u>decrease</u> , forcing the LED to <u>switch off</u> .	This was moderately done. The explanation should recognize the variation in the resistance of the LDR resulting in the fluctuation in potential difference across it leading to an effect on the LED. Students need to explain why there is a cycle to the process. Those who explained using current did not recognise that the potential difference across also varies so that is not an adequate explanation. When bright, it must imply the power of the LED is higher.
(b)(ii)	A sensible suggestion, e.g. point the LED away from the LDR / increase distance (between LED and LDR) / insert a card between (LED and LDR)	This part was not well done as it requires some thought.
(c)(i)	Horizontal line at 6.0 V.	This part was not well done as it shows if students understood how the circuit works.
(c)(ii)	When $R = 5.0 \Omega$, $V = 4.0 V$. V = E - Ir $r = \frac{E - V}{I} = \frac{6.0 - 4.0}{(4.0/5.0)}$ $r = 2.5 \Omega$	Students who were able to interpret the graph correctly were able to answer this.

-		
6		
(a)	The half-life of a radioactive nuclide is the mean time	Many students missed out the
	taken for a quantity x to reduce to half its initial value	word "mean".
	where x represents either the <u>number, activity or count</u>	
	rate of radioactive nuclei.	
(b)	Spontaneous:	This part was badly done,
	Not affected by <u>chemical reactions</u> and <u>physical conditions</u>	students were unaware of the
	such as temperature and pressure.	definition for spontaneous and
	Random:	random.
	No way to predict which particular nucleus in a radioactive	
	sample will decay next. Each nucleus in a sample has the	
(-)(!)	same chance of decaying per unit time.	
(C)(I)	${}^{14}_{6}C \rightarrow {}^{7}_{7}N + {}^{0}_{-1}e + \text{ energy}$	This part was well done.
(c)(ii)	ln2	This part was well done.
	$\frac{1}{5730\times 365\times 24\times 60\times 60}$	
	$=3.84 \times 10^{-12} \text{ s}^{-1} (3 \text{ s.f.})$	
(c)(iii)	$\Lambda - \Lambda e^{-\lambda t}$	Many students missed out the
(-,()	$n - n_0 \sigma$	differences in mass of the two
	$5.4 = (0.23 \times 10000) e^{-3.84 \times 10^{-12} t}$	samples.
	$t = 1.577 \times 10^{12}$ s	
	1.577×10 ¹²	Some students did not
	$t = \frac{1}{365 \times 24 \times 60 \times 60}$	explicitly show the conversion.
	= 50000 years (3 s.f.)	
(d)(i)	$m_{Pb}u_{Pb} + m_{\alpha}u_{\alpha} = m_{Pb}v_{Pb} + m_{\alpha}v_{\alpha}$	The part was generally well
	$0 = 206v_{\text{ot}} + 4v$	done.
	2	4
	$KE = \frac{p}{2m}$	
	2111	
	$\frac{p_{Pb}}{p_{Pb}}$	
	$\frac{\text{KE of Pb}}{\text{KE of}} = \frac{2m_{Pb}}{2} = \frac{m_{\alpha}}{2} = \frac{4}{222}$	
	KE of $\alpha = \frac{p_{\alpha}^2}{2}$ $m_{Pb} = 206$	
	$2m_{\alpha}$	
	= 0.019417	
	= 0.0194 (3 s.f.) (shown)	
(d)(ii)		This part was very badly done. Most students were unaware of how the analysis
	a Pb	required to solve the question.
	Magnetic force provides centripetal force	
	$Bay = mv^2$	
	$Bqv = \frac{r}{r}$	
	$r = \frac{mv}{m}$	
	$\int -\overline{Bq}$	

	 both nuclei have the same momentum Pb nucleus has much larger charge than α-particle 	
	• Pb nucleus has smaller radius than α -particle	
	 apply Fleming's left hand rule to determine direction of motion 	
	Opposite direction for Pb nucleus (right) and α -particle (left)	
	Correct path for Pb nucleus and α -particle with smaller	
	radius for Pb nucleus	
7		
(a)(i)	coil	
	·	
	Correct direction of magnetic field with at least 5 lines	This part was not well done.
	Correct shape with equal distance between lines inside the	Students must take more care
	coll Lines must be straight inside the coil	for such sketching questions.
	Lines must curve outside the coil	Common mistakes include:
		 wrong direction of field
		• insufficient number of lines
		lines that were not straight
		 not drawing lines outside the coil
		 irregular spacing between
		the lines
(a)(ii)	To reduce resistance of the coil to allow for higher current	This was not well answered.
	to be used in coll	Many answers were
	With high current, resistance of the coil increases, cooling	physics concepts.
	will prevent overheating.	
(b)	Scanner generates a very strong magnetic field causes a	Some students gave general
	strong magnetic force to attract metallic implants. This	answers which did not explain
	metallic parts.	harmed.
	•	
(c)(i)	The hydrogen nuclei has one unpaired proton.	This part was well answered.
	Hence its net spin is 1/2.	This post was well services !
(c)(II)	ne carbon nuclei has 3 pairs of protons and 3 pairs of neutrons. Hence, it has no net spin	This part was well answered.
	It is unable to absorb photons of a particular frequency.	

(d)	Energy of photon – hf	
(4)		
	$= N\gamma B$	
	$= (6.63 \times 10^{-34})(42.58 \times 10^{6})(1.5)$	
	$= 4.235 \times 10^{-26} \text{ J}$	
	-4.235×10^{-26} ov	Many students did not show
	-1.60×10^{-19} eV	the working to convert J to eV. Non trivial conversions should be shown as working.
	$= 2.65 \times 10^{-7}$ eV (3 s.f.)	
(e)(i)	Damage or destroy living cells	This part was well answered.
	OR	
	Break bonds that hold water molecules together, forming	
	toxic substances	
	OR .	
(-)(!!)	Creating free radicals	A number of students got the
(e)(ll)	Energy of X-ray photon = $\frac{nc}{2}$	A number of students got the
	λ (2.22) (2.34) (2.22) (2.34)	frequency of X-rays wrong
	$=\frac{(6.63\times10^{-10})(3.00\times10^{-1})}{10^{-10}}$	nequency of X-rays wrong.
	10 "	
	$=1.99 \times 10^{-15} \text{ J} (3 \text{ s.f.})$	
	Since energy of X-ray photon > 6.0×10^{-19} J, X-rays are	
	ionizing.	
(f)(i)	Phosphorus does not have an isotope.	This part was well answered.
(f)(ii)	The hydrogen ¹ H nuclei has a higher natural abundance	A number of students did not
	of 0.99985 and is the most common hydrogen isotope.	comment about the natural
	It is also had the highest hislesized shundanes of 0.62	abundance.
	It is also has the highest biological abundance of 0.63,	This part was well answered.
	body.	
(f)(iii)	Soft tissues are mostly made up of water and hydrogen	This part was not attempted
	nuclei are naturally found in water.	well. Students have to have a
	When an external magnetic field is applied, the hydrogen	good understanding of how
	nuclei can absorb photons of a particular frequency.	MRI works but picking out key
	As the nuclei return to their resting alignment, energy is	information from the passage
	emitted and converted to images of the soft tissues.	and piecing them together. To
		do this, sufficient time needs
		to be set aside for the data
		analysis question (preferably
		30 mins). It is evident many
		students did not have enough
		time to attempt this question.