
Genetics and Inheritance (9744)

DNA replication, transcription, translation & mutations

hange the 3D shape of th					
ype of mutation	Substitution	Inversion	Insertion	Deletion	
escription	Replacement of		One or several nucleotides	One or several nucleotides are remov	
	one nucleotide	separates from the allele	are inserted into a	from a sequence	
	by another	and rejoins at the original position but is inverted	sequence		
esult of mutation	1 codon	1 or more codons	Shifts reading frame from	Shifts reading frame from point of	
esuit of mutation	changed		point of mutation	mutation	
fact on protain	Minor/Major	changed Minor / Major, depending	Usually Major	Usually Major	
Effect on protein		on whether a frameshift occurs			
			If the number of nucleotides inserted or deleted are a multiple of three , there will change the primary sequence but a frame shift wil		
			not result.	primary sequence but a frame sint wi	
Frame-shift mutation	•		not result.		
		r of nucleotides that is not d	livisible by 3. Hence due to the	e triplet code, this would disrupt the	
		nd non-functional polypeptic			
Silent mutation:					
→ is a point mutatio	n that does not chang	e the amino acid sequence	in a polypeptide		
→ it can occur in the	either coding or non-c	oding regions			
				acid, and hence even if the mutation	
		, the same polypeptide will b			
	urs in the non-coding	region, the same polypeptide	e will be synthesised.		
Missense mutation					
 is a point mutation in which a single nucleotide change results in a codon that codes for a different amino acid if the new amino acid has similar biochemical properties (e.g. charge, size) to the one that was replaced, the mutation is said to be 					
	acia nas similar bioche	emical properties (e.g. charg	je, size) to the one that was rep	biaced, the mutation is said to be	
conservative	o acid has different biochemical properties (e.g. charge, size) to the one that was replaced, the mutation is said to be				
non-conservative		nemical properties (e.g. cha	rge, size) to the one that was r	eplaced, the mutation is said to be	
Nonsense mutation	6				
	n which results is a n	emature stop codon (UAG_ L	JAA, UGA), causing the polyp	eptide to be truncated and	
non-functional				optide to be transated and	
ample of a disease due	to a cubatitution mu	tation			
		tation:			
me of disease	Sickle-cell anaemia		S)		
ame of disease otein affected	Sickle-cell anaemia Beta-globin chain of h	aemoglobin (From HbA to Hk	oS)		
me of disease otein affected	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC	aemoglobin (From HbA to Hk to CAC (substitution)	oS)		
ame of disease otein affected	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/	aemoglobin (From HbA to Hk to CAC (substitution) AG to GUG	oS)		
ame of disease otein affected escription of change	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine		ne in HbS.	
ame of disease otein affected escription of change	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G Change in amino acid Charged and hydroph	aemoglobin (From HbA to Hk to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no	on-polar and hydrophobic vali		
ame of disease otein affected escription of change	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a	on-polar and hydrophobic vali conformation change which v		
me of disease otein affected scription of change	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to stick	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format	vill cause the hydrophobic patches or	
me of disease otein affected scription of change fect of the change	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HbS to stick Shape of red blood c Sickle red blood cells	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG is glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati sell distorted – sickle shaped are more fragile and break ea	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format I. asily.	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres .	
ame of disease otein affected escription of change fect of the change	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HbS to stick Shape of red blood c Sickle red blood cells This results in shortag	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG is glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati sell distorted – sickle shaped are more fragile and break ea	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format I. asily.	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres .	
ame of disease otein affected escription of change fect of the change	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HbS to sticl Shape of red blood cells This results in shortag failure.	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poor	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format I. asily. or oxygen transport. This lead	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres . ds to anaemia , lack of energy and hea	
me of disease otein affected scription of change fect of the change	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HbS to sticl Shape of red blood cells This results in shortag failure. Sickle red blood cells	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poor	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format I. asily. or oxygen transport. This lead	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres . ds to anaemia , lack of energy and hea	
ime of disease otein affected escription of change fect of the change fects of disease	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HbS to sticl Shape of red blood cells This results in shortag failure. Sickle red blood cells damage.	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poor	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format I. asily. or oxygen transport. This lead	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres . ds to anaemia , lack of energy and hea	
ime of disease otein affected escription of change fect of the change fects of disease	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HbS to stick Shape of red blood cells Sickle red blood cells This results in shortage failure. Sickle red blood cells damage.	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG <u>: glutamate to valine</u> hilic glutamate changed to no <u>entrations</u> , HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poo may also lodge in small bloo	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format I. asily. or oxygen transport. This lead od vessels and interfere with I	vill cause the hydrophobic patches on ion of abnormal, rigid, rod-like fibres . ds to anaemia , lack of energy and hea l	
ime of disease otein affected escription of change fect of the change fects of disease foromosomal aberration Chromosomal aberrati	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HbS to sticl Shape of red blood cells Sickle red blood cells This results in shortag failure. Sickle red blood cells damage. s ons can be due to varia	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poo may also lodge in small blood ation in (A) chromosomal strue	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format I. asily. or oxygen transport. This lead od vessels and interfere with I	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres . ds to anaemia , lack of energy and hea	
ame of disease otein affected escription of change fect of the change fects of disease fects of disease fects of disease fects of disease fects of disease	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HbS to sticl Shape of red blood cells Sickle red blood cells failure. Sickle red blood cells damage. S ons can be due to varia chromosomal segmen	aemoglobin (From HbA to Hb c to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati cell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poor may also lodge in small blood ation in (A) chromosomal stru- tt.	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format I. asily. or oxygen transport. This lead od vessels and interfere with I	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres . ds to anaemia , lack of energy and hea	
ime of disease otein affected escription of change fect of the change fects of disease for the change fects of disease fects of disease	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HDS to sticl Shape of red blood c Sickle red blood cells This results in shortag failure. Sickle red blood cells damage. Sons can be due to varia a chromosomal segmen	aemoglobin (From HbA to Hb c to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poo may also lodge in small bloo ation in (A) <u>chromosomal stru</u> t.	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format I. asily. or oxygen transport. This lead od vessels and interfere with I	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres . ds to anaemia , lack of energy and hea	
Internet of disease otein affected escription of change fect of the change fects of disease for the change fects of disease fects of disease fects of disease for the change fects of disease fects of disease fec	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : GA Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HDS to sticl Shape of red blood cells This results in shortag failure. Sickle red blood cells damage. Sons can be due to varia a chromosomal segmen a a segment within a ch	aemoglobin (From HbA to Hb c to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break er ge of red blood cells and poo may also lodge in small bloo ation in (A) <u>chromosomal stru</u> t. ent.	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format l. asily. or oxygen transport. This lead od vessels and interfere with I ucture:	vill cause the hydrophobic patches on ion of abnormal, rigid, rod-like fibres . ds to anaemia , lack of energy and hea l	
ame of disease otein affected escription of change fect of the change fects of disease fects of disease	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : GJ Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HbS to sticl Shape of red blood cells This results in shortag failure. Sickle red blood cells damage. s ons can be due to varia chromosomal segmen a chromosomal segmen s a segment within a ches	aemoglobin (From HbA to Hb c to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break er ge of red blood cells and poor may also lodge in small blood ation in (A) <u>chromosomal stru</u> t. ent. horomosome. chromosome to another, no	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format l. asily. or oxygen transport. This lead od vessels and interfere with I ucture:	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres . ds to anaemia , lack of energy and hea blood circulation . This will lead to org	
ine of disease otein affected escription of change fect of the change fects of disease fects of disease for the change fects of disease for the change fects of disease fects of disease for the change fects of disease fects of disease for the change fects of disease fects of disease	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to stick Shape of red blood cells This results in shortag failure. Sickle red blood cells damage. S ons can be due to varia chromosomal segmen a chromosomal segmen s a segment within a ch s a segment from one and duplications can re	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ei ge of red blood cells and poor may also lodge in small blood ation in (A) chromosomal stru- it. ent. momosome. chromosome to another, no esult in phenotypic abnormal	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format asily. or oxygen transport. This lead od vessels and interfere with I ucture: on-homologous one. lities due to the reduced or ad	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres. ds to anaemia, lack of energy and hea blood circulation. This will lead to org dditional genes respectively.	
Interimental disease of disease of disease of disease of the change fects of the change fects of disease of di	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to sticl Shape of red blood cells This results in shortag failure. Sickle red blood cells damage. Sons can be due to varia chromosomal segmen a a chromosomal segmen s a segment within a ch sa segment within a ch sa segment from one and duplications can re	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poor may also lodge in small blood ation in (A) <u>chromosomal stru</u> t. ent. momosome. chromosome to another, no esult in phenotypic abnorma ocations can result in disease	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format asily. or oxygen transport. This lead od vessels and interfere with I ucture: on-homologous one. lities due to the reduced or ad	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres . ds to anaemia , lack of energy and hea blood circulation . This will lead to org .	
ine of disease otein affected escription of change fect of the change fects of disease fects of disease formosomal aberration Chromosomal aberration A deletion removes a A duplication repeats An inversion reverses A translocation move aromosomal deletions a promosomal inversions	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to sticl Shape of red blood cells This results in shortag failure. Sickle red blood cells damage. Sons can be due to varia chromosomal segmen a a chromosomal segmen s a segment within a ch sa segment within a ch sa segment from one and duplications can re	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poor may also lodge in small blood ation in (A) <u>chromosomal stru</u> t. ent. momosome. chromosome to another, no esult in phenotypic abnorma ocations can result in disease	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format asily. or oxygen transport. This lead od vessels and interfere with I ucture: on-homologous one. lities due to the reduced or ad	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres. ds to anaemia, lack of energy and hear blood circulation. This will lead to orga dditional genes respectively.	
ame of disease otein affected escription of change fect of the change fects of disease fects of disease	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to sticl Shape of red blood cells Sickle red blood cells This results in shortag failure. Sickle red blood cells damage. s ons can be due to varia chromosomal segmen a chromosomal segmen a s a segment within a ch s a segment from one and duplications can re an be influenced by its r	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poo may also lodge in small blood ation in (A) <u>chromosomal stru</u> t. ent. bromosome. chromosome to another, no esult in phenotypic abnormal ocations can result in disease new location.	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format I. asily. or oxygen transport. This lead od vessels and interfere with I ucture: on-homologous one. lities due to the reduced or ad e although the amount of gene	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres. ds to anaemia, lack of energy and hear blood circulation. This will lead to orga dditional genes respectively.	
ine of disease otein affected escription of change fect of the change fects of disease fects of disease for mosomal aberration Chromosomal aberration A deletion removes a A duplication repeats An inversion reverses A translocation move for mosomal deletions a for mosomal inversions e expression of a gene ca	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to sticl Shape of red blood cells Sickle red blood cells damage. Sickle red blood cells damage. Sons can be due to varia chromosomal segmen a chromosomal segmen a chromosomal segmen a s a segment within a ch and segment from one and duplications can re- and be influenced by its r	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG <u>glutamate to valine</u> hilic glutamate changed to no <u>entrations</u> , HbS undergoes a k together. This polymerizati <u>ell distorted – sickle shaped</u> are more fragile and break ea ge of red blood cells and poo may also lodge in small blood ation in (A) <u>chromosomal stru</u> t. ent. bromosome. chromosome to another, no esult in phenotypic abnorma ocations can result in disease new location. ariation in (B) <u>chromosomal result</u>	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format l. asily. or oxygen transport. This lead od vessels and interfere with l ucture: on-homologous one. lities due to the reduced or ad e although the amount of gene	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres. ds to anaemia, lack of energy and heat blood circulation. This will lead to orga dditional genes respectively. thic material remains the same as	
ame of disease otein affected escription of change fect of the change fects of disease fects of disease fect	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to sticl Shape of red blood cells Sickle red blood cells damage. Sickle red blood cells damage. Sons can be due to varia chromosomal segmen a chromosomal segmen a chromosomal segmen a s a segment within a ch and segment from one and duplications can re- and be influenced by its r	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG <u>: glutamate to valine</u> hilic glutamate changed to no <u>entrations</u> . HbS undergoes a k together. This polymerizati <u>ell distorted – sickle shaped</u> are more fragile and break ea ge of red blood cells and poor may also lodge in small blood ation in (A) <u>chromosomal stru</u> t. ent. nromosome. chromosome to another, no esult in phenotypic abnorma ocations can result in disease new location. ariation in (B) <u>chromosomal r</u>	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format l. asily. or oxygen transport. This lead od vessels and interfere with l ucture: on-homologous one. lities due to the reduced or ad e although the amount of gene	vill cause the hydrophobic patches on ion of abnormal, rigid, rod-like fibres. ds to anaemia, lack of energy and hear blood circulation. This will lead to orga dditional genes respectively. thic material remains the same as	
A deletion removes a A duplication repeats An inversion reverses A translocation move promosomal deletions a promosomal inversions e expression of a gene ca Chromosomal aberration Aneuploidy is a conditional	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HbS to sticl Shape of red blood cells Sickle red blood cells damage. Sickle red blood cells damage. Sons can be due to varia chromosomal segmen a chromosomal segmen a a segment within a ch as a segment within a ch and duplications can re and reciprocal transle an be influenced by its r as can also be due to varia tion where the cell doe copies than the wild ty	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG glutamate to valine hilic glutamate changed to no entrations. HbS undergoes a k together. This polymerizati sell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poor may also lodge in small blood ation in (A) chromosomal stru- it. ent. nomosome. chromosome to another, no esult in phenotypic abnorma ocations can result in disease new location. ariation in (B) chromosome nu pe.	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format l. asily. or oxygen transport. This lead od vessels and interfere with l ucture: on-homologous one. lities due to the reduced or ad e although the amount of gene	vill cause the hydrophobic patches on ion of abnormal, rigid, rod-like fibres. ds to anaemia, lack of energy and hear blood circulation. This will lead to orga dditional genes respectively.	
Internet of disease otein affected escription of change fect of the change fects of disease fects	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to sticl Shape of red blood cells This results in shortag failure. Sickle red blood cells This results in shortag failure. Sickle red blood cells damage. S ons can be due to varia chromosomal segmen a chromosomal segmen a segment within a ch is a segment within a	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ei- ge of red blood cells and poor may also lodge in small blood ation in (A) <u>chromosomal stru</u> it. ent. horomosome. chromosome to another, no esult in phenotypic abnormal ocations can result in disease new location. ariation in (B) <u>chromosomal r</u> s not have a chromosome nu pe. vent where: hove properly to opposite po	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format l. asily. or oxygen transport. This lead od vessels and interfere with l ucture: on-homologous one. lities due to the reduced or ad e although the amount of gene humber: mber that is a multiple of the h	vill cause the hydrophobic patches or ion of abnormal, rigid, rod-like fibres. ds to anaemia, lack of energy and heat blood circulation. This will lead to orga dditional genes respectively. thic material remains the same as	
ame of disease otein affected escription of change fect of the change fects of disease fects of d	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to stick Shape of red blood cells This results in shortag failure. Sickle red blood cells This results in shortag failure. Sickle red blood cells damage. S ons can be due to varia chromosomal segmen a chromosomal segmen a segment within a ch is a segment within a	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ei- ge of red blood cells and poor may also lodge in small blood ation in (A) <u>chromosomal stru</u> it. ent. horomosome. chromosome to another, no esult in phenotypic abnorma ocations can result in disease new location. ariation in (B) <u>chromosomal r</u> s not have a chromosome nu pe. vent where: hove properly to opposite pole	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format l. asily. or oxygen transport. This lead od vessels and interfere with l ucture: on-homologous one. lities due to the reduced or ad e although the amount of gene humber: mber that is a multiple of the h oles during meiosis I OR es during meiosis II.	vill cause the hydrophobic patches on ion of abnormal, rigid, rod-like fibres. ds to anaemia, lack of energy and hear blood circulation. This will lead to orga dditional genes respectively. thic material remains the same as aploid number. Chromosomes are pres	
Internet of disease otein affected escription of change fect of the change fects of disease fects	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to sticl Shape of red blood cells This results in shortag failure. Sickle red blood cells damage. Sons can be due to varia chromosomal segmen a chromosomal segmen a segment within a ch as a segment within a ch as	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poor may also lodge in small blood ation in (A) <u>chromosomal stru</u> t. ent. horomosome. chromosome to another, no esult in phenotypic abnormal ocations can result in disease new location. ariation in (B) <u>chromosomal r</u> es not have a chromosome nu pe. vent where: hove properly to opposite pole chromosome and another gam	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format l. asily. or oxygen transport. This lead od vessels and interfere with l ucture: on-homologous one. lities due to the reduced or ad e although the amount of gene humber: mber that is a multiple of the h oles during meiosis I OR es during meiosis II. Hete receives no copy. If either of	vill cause the hydrophobic patches on ion of abnormal, rigid, rod-like fibres. ds to anaemia, lack of energy and hear blood circulation. This will lead to orga dditional genes respectively. thic material remains the same as aploid number. Chromosomes are pres	
ame of disease otein affected escription of change fect of the change fects of disease fects of d	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to sticl Shape of red blood cells This results in shortag failure. Sickle red blood cells damage. Sons can be due to varia chromosomal segmen a chromosomal segmen a segment within a ch as a segment within a ch as	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poor may also lodge in small blood ation in (A) <u>chromosomal stru</u> t. ent. horomosome. chromosome to another, no esult in phenotypic abnormal ocations can result in disease new location. ariation in (B) <u>chromosomal r</u> es not have a chromosome nu pe. vent where: hove properly to opposite pole chromosome and another gam	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format l. asily. or oxygen transport. This lead od vessels and interfere with l ucture: on-homologous one. lities due to the reduced or ad e although the amount of gene humber: mber that is a multiple of the h oles during meiosis I OR es during meiosis II. Hete receives no copy. If either of	vill cause the hydrophobic patches on ion of abnormal, rigid, rod-like fibres. ds to anaemia, lack of energy and hear blood circulation. This will lead to orga dditional genes respectively. thic material remains the same as	
Internet of disease otein affected escription of change fect of the change fects of disease fects	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to sticl Shape of red blood cells This results in shortag failure. Sickle red blood cells damage. Sons can be due to varia chromosomal segmen a chromosomal segmen a segment within a ch as a segment within a ch as	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations, HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poor may also lodge in small blood ation in (A) <u>chromosomal stru</u> t. ent. horomosome. chromosome to another, no esult in phenotypic abnormal ocations can result in disease new location. ariation in (B) <u>chromosomal r</u> es not have a chromosome nu pe. vent where: hove properly to opposite pole chromosome and another gam	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format l. asily. or oxygen transport. This lead od vessels and interfere with l ucture: on-homologous one. lities due to the reduced or ad e although the amount of gene humber: mber that is a multiple of the h oles during meiosis I OR es during meiosis II. Hete receives no copy. If either of	vill cause the hydrophobic patches on ion of abnormal, rigid, rod-like fibres. ds to anaemia, lack of energy and hear blood circulation. This will lead to orga dditional genes respectively. thic material remains the same as aploid number. Chromosomes are pres	
ame of disease otein affected escription of change fect of the change fects of disease fects of d	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph At low oxygen conce different HbS to stick Shape of red blood cells Shape of red blood cells Sickle red blood cells This results in shortag failure. Sickle red blood cells damage. Sons can be due to varia chromosomal segmen a chromosomal segmen a a segment within a ch as a segment from one and duplications can re and be influenced by its r as can also be due to varia copies than the wild ty of a non-disjunction e formosomes do not m omatids fail to separa to of the same type of c zygote will have an about the set of the same type of c and the same type of c and the same type of c	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG : glutamate to valine hilic glutamate changed to no entrations. HbS undergoes a k together. This polymerizati ell distorted – sickle shaped are more fragile and break ea ge of red blood cells and poor may also lodge in small blood ation in (A) <u>chromosomal stru</u> t. ent. bromosome. chromosome to another, no esult in phenotypic abnormations ocations can result in diseased new location. ariation in (B) <u>chromosomal result</u> is not have a chromosome nu pe. vent where: hove properly to opposite pole chromosome and another gam normal number of chromosome	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format l. asily. or oxygen transport. This lead od vessels and interfere with l ucture: on-homologous one. lities due to the reduced or ad e although the amount of gene number: mber that is a multiple of the h oles during meiosis I OR es during meiosis II. lete receives no copy. If either of nes i.e. aneuploidy. Mitosis wi	vill cause the hydrophobic patches on ion of abnormal, rigid, rod-like fibres . ds to anaemia , lack of energy and hear blood circulation . This will lead to orga dditional genes respectively. etic material remains the same as aploid number. Chromosomes are press of the aberrant gametes fuse with a nor Il subsequently transmit the anomaly to	
ame of disease otein affected escription of change fect of the change fects of disease fects of d	Sickle-cell anaemia Beta-globin chain of h Change in DNA : CTC Change in mRNA : G/ Change in amino acid Charged and hydroph <u>At low oxygen conce</u> different HbS to sticl Shape of red blood cells Shape of red blood cells Gickle red blood cells damage. Sickle red blood cells damage. Sons can be due to varia chromosomal segmen a chromosomal segmen a chromosoma segmen a chromosoma segmen a chromosoma segmen a chromosomal segmen a chromosoma segmen a chromos	aemoglobin (From HbA to Hb to CAC (substitution) AG to GUG <u>: glutamate to valine</u> hilic glutamate changed to no <u>entrations</u> , HbS undergoes a k together. This polymerizati <u>ell distorted – sickle shaped</u> are more fragile and break ea ge of red blood cells and poor may also lodge in small blood ation in (A) <u>chromosomal stru- tt.</u> ent. bromosome. chromosome to another, no esult in phenotypic abnorma ocations can result in disease new location. ariation in (B) <u>chromosomal r</u> s not have a chromosome nu pe. vent where: hove properly to opposite pole chromosome and another gam normal number of chromosome ff such an error occurs early in	on-polar and hydrophobic vali conformation change which v ion of HbS results in the format l. asily. or oxygen transport. This lead od vessels and interfere with l ucture: on-homologous one. lities due to the reduced or ad e although the amount of gene number: mber that is a multiple of the h oles during meiosis I OR es during meiosis II. lete receives no copy. If either of nes i.e. aneuploidy. Mitosis wi	vill cause the hydrophobic patches on ion of abnormal, rigid, rod-like fibres. ds to anaemia, lack of energy and hear blood circulation. This will lead to orga dditional genes respectively. thic material remains the same as aploid number. Chromosomes are pres	

 <u>Down syndrome (Trisomy 21)</u> is result of an extra chromosome 21 (a total of 3 copies), so each body cell has a total of 47 chromosomes. Most cases result from non-disjunction during meiosis I. Individuals with Down syndrome have characteristic facial features, short stature, heart defects, susceptibility to respiratory infection and mental retardation. Most individuals are sexually underdeveloped and sterile.

Raffles Institution (Yr 5-6)

Process	Replication	Transcription	Translation
Location	Nucleus (also in mitochondria and chloroplasts)	Nucleus	Cytoplasm
Begins at	Origin of replication	Promoter	Start codon (AUG)
Ends at	Where 2 adjacent replication bubbles meet / Telomeres	Termination sequence	(AUG: <u>A</u> re <u>U</u> <u>G</u> ood?) Stop codon (UAG, UAA, UGA) (UAG: <u>U</u> <u>A</u> re <u>G</u> ood UAA: <u>U</u> <u>A</u> re <u>A</u> wful UGA: <u>U</u> are <u>G</u> ood & <u>A</u> wful)
Template	DNA (both strands)	DNA (template / non-coding strand)	mRNA
Monomers	Deoxyribonucleotides	Ribonucleotides	Amino acids
Complementary base-pairing	Adenine & Thymine Cytosine & Guanine	Adenine & Uracil Thymine & Adenine Cytosine & Guanine Guanine & Cytosine	Complementary pairing between codon and anti-codon
Enzymes Involved	DNA polymerase, Helicase, Primase, DNA Ligase, Topoisomerase	RNA polymerase (Poly A polymerase & endonuclease in eukaryotes)	Aminoacyl – tRNA synthetase Peptidyl transferase (a ribozyme)
Bonds within molecule formed	Phosphodiester bonds, Hydrogen bonds	Phosphodiester bonds	Peptide bonds
Ribosomes involvement	No	No	Yes
Template strand is read in	3' to 5' direction	3' to 5' direction	5' to 3' direction
Molecule is synthesized in	olecule is synthesized in 5' to 3' direction		from the amino end to the carboxyl end
Proof reading	Yes	-	-
Product (s)	2 DNA molecules	mRNA,tRNA rRNA,snRNA etc.	Polypeptide chain
Product destination Nucleus		Cytoplasm	Cytoplasm/ Cell membrane/Outside cell

The main role of DNA is to store information and pass it on from one generation to the next.

It is a suitable store of information as:

a) It can be **replicated accurately** → daughter cells have identical copies of DNA as the parent cell

Weak hydrogen bonding between the two strands allow them to separate and act as a template for new strand synthesis

(Adenine forms 2 hydrogen bonds with thymine and cytosine forms 3 hydrogen bonds with guanine through complementary base pairing)

b) It is a **stable** molecule \rightarrow can be passed on to the next generation without loss of the coded information Collectively, numerous hydrogen bonds hold the two strands of DNA together and adjacent nucleotides in each strand are joined by strong covalent phosphodiester bonds

c)There is a backup of code

DNA is double stranded and one strand to serve as a template for the repair of the other if a mutation occurs on either one.

d) Coded information can be readily utilised/accessed

Weak hydrogen bonding allows the template strand to separate from the non-template strand allowing transcription to take place

Complementary base pairing allows the faithful transfer of info from DNA to RNA in transcription, which will be translated to protein subsequently

Role of mRNA:

1) Messenger RNA (mRNA) serves as a 'messenger' that, in eukaryotes, takes the information out of the nucleus via the nuclear pore to the cytoplasm where translation takes place.

2) mRNA acts as a template for translation

3) As each codon within the coding region of the mRNA represents an amino acid in a polypeptide, the sequence of codons will determine the polypeptide sequence.

Role of tRNA:

They **bring in specific amino acids in a sequence corresponding to the sequence of codon in mRNA** to the growing polypeptide. It can facilitate translation due to:

1) its ability to **bind to a specific single amino acid**

2) the ability of the anticodon to base-pair with the mRNA codon

Role of rRNA:

1) rRNA associates with a set of proteins to form ribosomes.

2) rRNA is the main constituent of the interface between the large and small subunits of the ribosome

- Thus the **small ribosomal subunit can bind to the mRNA** as complementary base pairing can occur between the **rRNA in the mRNA binding site** of the small ribosomal subunit and the mRNA.
- 3) rRNA is the main constituent of the P site (peptidyl-tRNA binding site) and A site (amino-acyl tRNA binding site) on the large ribosomal subunit Hence rRNA enables the binding of aminoacyl-tRNAs to the P site and A site
- 4) An rRNA molecule (peptidyl transferase) on the large ribosomal subunit also catalyses the formation of the peptide bond between the amino group of the new amino acid in the A site and the carboxyl end of the growing polypeptide in the P site.