Correlation and Linear Regression

$$\sum x^{2} - \frac{(\sum x)^{2}}{n} = 21830 - \frac{360^{2}}{8} = 5630$$

$$\sum y^{2} - \frac{(\sum y)^{2}}{n} = 3500 - \frac{140^{2}}{8} = 1050$$

$$\sum xy - \frac{\sum x \sum y}{n} = 3985 - \frac{(360)(140)}{8} = -2315$$

$$\therefore r = \frac{-2315}{\sqrt{5630 \times 1050}} = -0.952$$

In general, as x increases, y decreases in an almost linear pattern. However, it would be better to sketch a scatter diagram based on the 8 pairs of data to verify.

2(i)
$$3i$$
 (Using 6C, $y = -1.121 \times 18.658$ (y on x)
[LinReg(ax+b).Li, Lx, Y,]
x values
Using 6C, $x = -0.5379 \pm 5.721$ (X on y)x
(ii) $2i1$) Using line d_{1}^{2} regression d_{2}^{-} yon x,
 $y = -1.121(1-6) \pm 8.658$
 $= 6.8644$
Thus there would be $6864 \approx 6860$ tourists;
 $2iii$) Using line d_{2} regression $d_{3} \times 5n g$,
 $x = -0.537(3.2) \pm 5.721$
 $= 4.00 \times$

3(i)
$$y - \overline{y} = b(x - \overline{x}) \Rightarrow y = bx + (\overline{y} - b\overline{x})$$

Since $y = -0.8x + 13.6$, by comparing coefficients, $b = -0.8$, and
 $\overline{y} - b\overline{x} = 13.6 \Rightarrow \overline{y} = -0.8(4.5) + 13.6 = 10$
 $\therefore \Sigma y = 10 \times 8 = 80$
 $b = -0.8 \Rightarrow \frac{\Sigma xy - \frac{\Sigma x \Sigma y}{n}}{\sum x^2 - \frac{(\Sigma x)^2}{n}} = -0.8$
 $\therefore \Sigma xy - \frac{\Sigma x \Sigma y}{n} = -0.8 \left[\Sigma x^2 - \frac{(\Sigma x)^2}{n} \right]$
 $\Rightarrow \Sigma xy - \frac{36 \times 80}{8} = -0.8 \left[204 - \frac{36^2}{8} \right]$
 $\Rightarrow \Sigma xy = 326.4$
(ii) Correct: $\Sigma y = 80$, $\Sigma xy = 326.4$
From data: $\Sigma y = 82.7$, $\Sigma xy = 348$
Difference in Σy is 21.6
 $x(2.7) = 21.6 = x = 8$
9.6 is wrong. When $x = 8$, $y = 6.9$.

4(i)	- 0.912
(ii)	Although $r_{\rm B} = -0.912$ is close to -1 , which indicate a strong negative linear
	correlation between X and Y , the scatter diagram shows that the data can be better
	represented by a non-linear curve
(iii)	$y = 0.0721(x - 69)^2 + 46.2$
	$r_{(x-69)^2,y} = 0.9981$; proposed model is better since r is closer to 1 here
(iv)	54.9, As $x = 80$ is out of the range, this estimate is not reliable

5(a)(i)	r = 0.89241 = 0.892 (3 s.f.)
(ii)	r = 0.95956 = 0.960 (3 s.f.)
	Since $r = 0.960$ is closer to 1 than $r = 0.892$, the model in (i) is less suitable than
	the model in (ii).
(iii)	Regression line of <i>F</i> on <i>x</i> : $F = 0.35903 + 0.029245x$
	F = 0.359 + 0.0292x
	Regression line of x on F: $x = 204.51 + 31.484F$
	x = 205 + 31.5F
(iv)	Using $F = 0.35903 + 0.029245x$,
	$100 = 0.35903 + 0.029245t^2$
	t = 58.37047 = 58.4 s (3 s.f.)

(ii)	Based on the scatter diagram, the line 0.906) is quite close to 1. Choose Model (b): $y = ax^b$	ear model is not suitable even though r (=
(11)	Reason: The graph of $y = ax^b$ fits the	scatter diagram better. : From the scatter
	diagram, we see that as x increases,	y increases at a decreasing rate.
(iii)	r = 0.932 $y = ax^{b}$ $\ln y = \ln(ax^{b})$ $\ln y = \ln a + b \ln x$ $\ln y = 4.1912 + 0.3056 \ln x$ $\ln a = 4.1912 \Longrightarrow a = 66.1$ b = 0.306	LinRe9 9=ax+b a=.3055728916 b=4.191193497 r ² =.8692531131 r=.9323374459
(iv)	when $y = 110$, $x = 5.29$. Extrapolation	hence not reliable.

7(i)	Product moment correlation coefficient $r = 0.979$. There exists a strong positive
	linear correlation between x and y.
(ii)	Equation of least square regression line is $y = 18.5 + 0.564 x$
(iii)	Given that $y = 30$, $x = 20.4$ from the equation. She left at 7am.
	This estimate is reliable since $r \approx 1$ so we can use the equation of y on x to estimate
	x, giving y and $y = 30$ is within the given data range. (2 reasons)
(iv)	z = time available – time taken
	= 50 - x - y
	=(50-x)-(a+bx)
	= (50 - x) - (18.5 + 0.564x) = 31.5 - 1.564x
(v)	For $z = 0$, $x = \frac{31.5}{1.564} = 20.14 \approx 20$ min
	The latest time when Ms Chan leaves her house is 7 a.m

8(i)	r = -0.952
	For the depths sampled the moisture content decreases approximately linearly
	with an increase in the depth of the sample.
	Since r is close to 1, this implies that the regression line of m on x and x on m are
	almost identical or close to each other
(ii)	m = -2.2048x + 83.583.
	When $m = 50$, $x = \frac{83.583 - 50}{2.2048} = 15.232 = 15.2$
	Reliable since the value of <i>m</i> is within the range of the given data. Not
	extrapolating.

9(i)	$PV^c = k$
	$\ln P + c \ln V = \ln k$
	$\ln V = \frac{\ln k}{c} - \frac{1}{c} \ln P$
	$\therefore y = a + bx$ is a straight line, where $a = \frac{\ln k}{c}$ and $b = -\frac{1}{c}$ are constants
(ii)	Using G.C., enter values of P and V in list L1 and L2.
	Let $L3 = \ln P$ and let $L4 = \ln V$
	L1 L2 L3 1 L2 L3 L4 4
	7.7 0 7.7 0 ROLING 2 5.8 .69315 5.8 .69315 1.7579 3 4.5 1.0986 4.5 1.0986 1.5041 4 5 4.5 1.4963 1.2528
	7 2.3 1.9459 2.3 1.9459 .83291 10 1.9 2.3026 1.9 2.3026 .64185 14 1.4 2.6391 1.4 2.6391 .33647
	L100=1 L100=2.041220328

	LinRe9 9=a+bx a=2.143358635 b=6621900222 r ² =.9877756941
	r = -0.994
(iii)	By using G.C., the required estimated regression line of y on x is
	y = 2.1434 - 0.66219x
	y = 2.14 - 0.662x (to 3 s.f.)
	$\ln V = 2.1434 - 0.66219 \ln P$
	$\ln V = 2.1434 - 0.66219 \ln (8) = 0.76641$
	$V = e^{0.76641} = 2.15203 = 2.2$ (to 1 d.p.) (ans)
	Since $r = -0.994 \approx -1$ which indicates that the sample values of x and y are
	almost perfectly linearly correlated and $\ln(1) \le \ln(8) \le \ln(14)$, therefore the
	prediction is reliable.
(iv)	$\ln V = \frac{\ln k}{2} - \frac{1}{2} \ln P$
	c = c y = 2.1434 = 0.66219r
	1
	$\frac{1}{c} = 0.66219$
	$c = \frac{1}{10000000000000000000000000000000000$
	0.66219
	$\frac{\ln k}{c} = 2.1434$
	$\ln k = 2.1434 \times 1.51014 = 3.2368$
	$k = e^{3.2368} = 25.452 = 25.5$ (to 3 s.f.)
(v)	For $\sum (y - Y')^2$ to be minimum,
	Then $Y' = a + bx$ must be $y = 2.1434-0.66219x$
	By using G.C., let $L5 = 2.1434 - 0.66219 L3$ and $L6 = (L4 - L5)^2$
	L4 L5 L6 6 2.0412 2.1434 005011 .028156283 1.7579 1.6844 .00577 1.5041 1.4159 .00777 1.2238 1.2254 2.75*6 .83291 .85484 4.85*4 .64185 .61665 5.45*4 .03552 .03552 L6(1)=.0104406851
	Minimum value of $\sum (y - Y')^2 = 0.0282$ (to 3 s.f.)

11(i)	$\overline{x} = 161$ (from calculator or computation)
	when $\bar{x} = 161$, $\bar{x} = 103.6 + 0.726\bar{y}$
	$\overline{y} = (161 - 103.6) / 0.726$
	= 79.06336088
	using $\overline{y} = \sum y/n$
	$79.06336088 = \frac{1}{6}(65.1 + 73.2 + 85 + k + 80.9 + 89.9)$
	<i>k</i> = 80.3
	Use G.C. to find regression line of <i>y</i> on <i>x</i> :
	y = -97.593 + 1.097x
(ii)	Use <i>y</i> on <i>x</i> line to predict weight.
	When $x = 165$, $y = -97.593 + 1.097(165)$
	y = 83.4 (1 d.p.) – using 3 d.p. of a and b to compute.
	or
	y = 83.5 - using full accuracy of <i>a</i> and <i>b</i> to compute
(iii)	Using G.C., $r = 0.893$
	y y
	89.9
	85.0
	80.9
	80.3
	73.2
	65.1• x
	150 157 160 162 167 170
	C is unusually overweight.

13(a)(i)	For x on y, $x = -0.3085y + 31.13 \Rightarrow x = -0.309y + 31.1$ (3 s.f.)
	For y on x, $y = -2.8526x + +95.999 \Rightarrow y = -2.85x + 96.0$ (3s.f.)
(ii)	Since chemical Y is the controlled variable, use regression line of x on y.
	$0 = -0.3085y + 31.13 \Longrightarrow y = 100.91$
	The estimation is not valid as this is an extrapolation, linear relation may not hold
	outside the range of data
(b)(i)	By comparing the linear product moment correlation for the 3 models, Model C
	is the most appropriate with the highest value of $ r = 0.993$ as it best describes
	the data given.

	Using linear transformation $w = \ln x$, Regression line of w on y is $w = -0.026136y + 3.8294 \Rightarrow w = -0.0261y + 3.83$ (3 s.f.)
(ii)	Change in $w = -0.026136(5) = -0.13068 \approx -0.131 (3 \text{ s.f.})$
	w decreases by 0.131

14(i)	There will be no difference as the product moment correlation coefficient is
	independent of the units in which the data is measured.
(ii)	The regression line of <i>t</i> on <i>x</i> should be used because the running time <i>t</i> is
	dependent on the leg length, <i>x</i>
(iii)	13.90 10.80
	0.70 1.00
(iv)	Yes. Aaron has reason to disagree because the scatter diagram suggests that t and
	x has a curvilinear relationship rather than a linear one.
(v)(a)	Product moment correlation coefficient between t and $\frac{1}{x^2}$ is 0.992 (3 s.f.)
	The new model is a better model because $ 0.992 $ is closer to 1 than
	-0.963 = 0.963.
(b)	Regression line is $t = 7.8603 + 2.8616 \frac{1}{x^2}$ i.e. $t = 7.86 + 2.86 \frac{1}{x^2}$ (3 s.f.)
	when $t = 10$,
	$10 = 7.8603 + 2.8616 \frac{1}{x^2}$
	$x^2 = \frac{2.8616}{2.1397}$
	x = 1.16 (to 2 dec places) since $x > 0$
	Thus minimum length of leg required is 1.16m .
	This estimate may not be reliable as $t = 10$ is outside the sample data range for
	<i>t</i> .
	OR Extrapolated values are unreliable

15(i)	
(ii)	A linear model is not likely to be appropriate as the area covered would then
	increase continuously, eventually to an infinite area.
(iii)	D = 53: r = -0.99349
	Since $D = 53$ gives a value of r closest to -1 , it is the most appropriate
(iv)	Since $D = 55$ gives a value of 7 closest to -1, it is the most appropriate.
(\mathbf{IV})	a = 4.20272; b = -0.00899
	Equation of regression line is
	$\ln(D - A) = 4.26272 - 0.60899t$
	When $t = 20$, $A = 52.99964$ cm ²
(v)	D is the maximum area of the petri dish

16(i)	A regression line of y on x is more appropriate as the bacteria population depends
10(1)	A regression line of y on x is more appropriate as the bacteria population depends
	on the concentration of nutrients in the water body
(ii)	$r = 0.98119 \approx 0.981 (3 \text{ s.f.})$
(iii)	$4.90 \xrightarrow{y} \\ 19.7 \xrightarrow{x} \\ x \\ 0.101 \\ 0.798 \\ x \\ $
	Although $r \approx 0.981$ suggests a strong linear correlation, the scatter diagram shows that <u>as x increases, y increases at an increasing rate</u> . Therefore, a linear model <u>is</u> <u>not necessarily the best model</u> for the relationship between x and y.
(iv)	By G.C.,
()	$\ln v = 1.3869 + 1.9984 r$
	$1 = 120 \pm 2.00$ (2 - f)
	$\ln y = 1.39 + 2.00x (3 \text{ s.r.})$
	When $x = 1$,
	$y = 29.527 \approx 29.5$ (3 s.f.)
	The bacteria population is 29500 (3 s.f.)
	Since $x = 1$ lies outside of the data range, the estimate is not reliable

	$55 = 61.489 - 1.3336\ln(x)$
	x = 129.77 (5sf)
	She will reach a weight of 55kg in the 130^{th} month after she started.
	For those who chose $y = c + dx$ in (iii):
	Equation of line as $y = 61.268 - 0.30571x$
	Substituting $y = 55$ into equation to obtain $x = 20.503$
	She will reach a weight of 55kg in the 21^{st} month after she started.
(vi)	For any model chosen in (iii):
	As $x \to \infty, y \to -\infty$.
	Thus, this implies that Amy's weight will decrease to a negative value over time ,
	which is unrealistic.

18(i)	r = -0.9550961661 = -0.955 (to 3 sig.fig)	
	Since r value is close to -1 , it suggests a strong negative <u>linear</u> correlation <u>between</u>	
	<u>x and </u> <u>y</u> , hence a linear model is appropriate.	
(ii)	v	
20	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & &$	
(iii)	With point P removed, the remaining points lie close to an exponential curve, as x	
	increases, y decreases at a decreasing rate, hence consistent with a model of the form	
	$y = Ae^{bx}$.	
(iv)	$y = Ae^{bx} \Longrightarrow \ln y = \ln A + bx$	
	Since x is the controlled variable, we use the regression line of $\ln y$ on x .	
	From GC, $\ln y = -0.24888x + 3.6276$	
	When $y = 7$, $\ln 7 = -0.24888x + 3.6276$	
	x = 6.75 = 7 (nearest whole no)	

10(v) 1 day = 24 hours

 $w = -5.31 + 1.35 \ln(24t)$

21	(a)(i) Given $y = 79.695x - 205.86$,
	$\frac{-}{r}$ 4.07 + 3.84 + 4 + 3.31 + 2.48 + 2.92 + 3.1 + 3.57
	8
	= 3.41125
	$\frac{-}{y} = \frac{140 + 115 + m + 11 + 20 + 25 + 33 + 74}{11 + 20 + 25 + 33 + 74}$
	8
	$=\frac{418+m}{2}$
	Substitute \overline{x} , \overline{y} into the regression line,
	418 + m = (2, 1, 1, 2)
	$\frac{1}{8} = 79.695(3.41125) - 205.86$
	m = 109.997
	m = 110
	(ii) It means that the total fuel use increases by 79.695×10^3 tonnes when the seat
	capacity increases by 100.
	(b) (i) ^y
	160 (4.07, 140)
	140 -
	120 -
	× ×
	100 -
	80 -
	60 -
	2 2.5 3 3.5 4 4.5
	(ii) The scatter diagram in (b)(i), excluding point Q , suggests that as x
	increases, y increases at an increasing rate so model A is not the most
	appropriate.
	(iii) (A): $r = 0.98265$
	(B): $r = 0.9//8/$
	As $ r $ for model (A) is the closest to 1, therefore, model A is the most appropriate
	model.

(iv) Least squares regression line using model A:
$y = 2.6061e^x - 18.429$
When $x = 3.31$, $y = 2.6061e^{3.31} - 18.429$
= 52.939
So total amount of fuel used is 52 939 tonnes.
(v) Since $r = 0.98265$ is close to 1, which suggests that there is a strong positive
linear relationship between e^x and y, and
x = 3.31 is between 2.48 and 4.07, so interpolation is reliable.

22	Suggested Solution	
(i)		
	t (seconds)	
	115	
	55 x (week number)	
(ii)	A linear model would predict her timing to decrease at a constant rate and eventually negative, which is not possible as there is a limit to how fast a person can swim.	
	A quadratic model would predict that her timings would have a minimum and then increase at an increasing rate, which is also not appropriate.	
(iii)	Based on the scatter diagram and the model, as x increases t decreases at a decreasing rate, therefore b is positive.	
	<i>a</i> has to be positive as it represents the best possible timing that Sharron can swim in the long run.	
(iv)	From GC, r = 0.991 b = 67.69	
	<i>a</i> = 49.50	
(v)	Let <i>m</i> be the best timing Sharron has at the 2^{th} month	
(1)	Let m be the best thining sharron has at the of month.	

$\left(\frac{\overline{1}}{x}\right) = 0.33973$	
We know that $\left(\frac{\overline{1}}{x}, \overline{t}\right)$ is on the regression line	
$t = 48.28 + 69.45 \left(\frac{1}{x}\right).$	
$\bar{t} = 48.28 + 69.45(0.33973) = 71.874$	
$\frac{522+m}{8} = 71.874$	
m = 52.992	
Sharron best timing is 53 seconds at the 8th month.	

(b)(iv)
$I = a \mathrm{e}^{bt} \Longrightarrow \ln I = bt + \ln a$
Equation of regression line:
$\ln I = -2.7834239t + 1.6007544 \Longrightarrow \ln I = -2.78t + 1.60$
$\ln a = 1.600754 \Longrightarrow a = 4.96 (3 \text{ s.f.})$
<i>b</i> = -2.78 (3 s.f.)

(b)(v)

t = 0.7, I = 0.706 (to 3 sig fig)

The answer is reliable as *r* is close to -1, and t = 0.7 is within the data range (0.2 to 1.0) and thus the estimate is obtained via interpolation.

(ii) From the scatter diagram (after removing the outlier), as d increases, c decreases at a decreasing rate.

Also, the concentration of the herbicide will not decrease indefinitely and become a negative percentage.

Hence a linear model should not be used to model this set of data.

(iii) Using GC, $r_A = -0.92958$ while $r_B = -0.97521$.

Since the r value for model B is closer to -1 than model A, model B is more appropriate for modelling this set of data.

(iv)
$$c = ae^{bd}$$

 $\ln c = \ln a + bd$
From GC, $\ln c = 4.1696 - 0.0066478d$
 $\ln c = 4.16 - 0.00665d$
When $d = 140$, $\ln c = 4.1696 - 0.0066478(140)$

 $c=25.5059\approx 25.5$

(v) The estimate is unreliable because the data substituted is outside the data range

[20,120] and so the linear relationship between d and $\ln c$ may not hold.

(vi) Initially, the concentration of herbicides in the soil is 64.7%.