RVHS H2 Mathematics Remedial Programme

Topic: Complex Numbers

Basic Mastery Questions

1. MI Promo 9758/2020/PU2/P1/Q8(a)

Given that a = 3 - i and b = 5 + 2i, find the following complex numbers in the form x + iy,

(i)
$$ab^*$$
, [2]

$$(ii) \quad \frac{b}{a^*}.$$

Answer: (i) 13–11i, (ii) $\frac{1}{10}$ (17+i)

2. ASRJC Promo 9758/2020/Q8(a)

It is given that two complex numbers z and w satisfy the following equations

$$iw + z = 5$$

 $w^2 + (4i - 1)z = -11 + 18i$

Find
$$z$$
 and w . [4]

Click <u>here</u> or scan this to view video example on how to solve such question!

3. MI Promo 9758/2020/PU2/P1/Q8(b)

(i) Express
$$z = e^{i\frac{\pi}{6}} + i$$
 in the form of $re^{i\theta}$. [3]

(ii) Given that the complex number zw has modulus 12 and argument $\frac{2\pi}{3}$, find the exact modulus and argument of complex number w. [3]

Answer: (i)
$$\sqrt{3}e^{i\frac{\pi}{3}}$$
, (ii) $r = 4\sqrt{3}$, $\theta = \frac{\pi}{3}$

4. MI Promo 9758/2020/PU2/P2/Q2(i)

Do not use a calculator in answering this question.

The roots of the equation $z^2 = -8 - 6i$ are z_1 and z_2 .

Find z_1 and z_2 in cartesian form, x+iy, showing your working.

[5]

Click <u>here</u> or scan this to view video example on how to solve such question!

Answer: -1 + 3i, 1 - 3i

5. VJC Prelim 9758/2021/01/Q8(a)(i)

The complex number w is given by $w = re^{i\theta}$, where r > 0 and $0 \le \theta \le \frac{\pi}{2}$.

Given that $z = (1 - i\sqrt{3})w$, find |z| in terms of r and arg(z) in terms of θ . [2]

Click here or scan this to view video example on how to solve such question!

Answers: $-\frac{\pi}{3} + \theta$, 2r

Standard Questions

1. RI Promo 9758/2020/Q7(a)

Do not use a calculator in answering this question.

One root of the equation $zz^* + 2iz = a + 6i$, where a is real, is z = 3 - 7i. Find the value of a and the other root.

Answer: a = 72, 3 + 9i

2. VJC Promo 9758/2020/Q10(a), (e)

It is given that the complex number $w = -(\sqrt{3}) - i$.

Find the value of
$$|w|$$
. [1]

Find the exact value of
$$arg(w)$$
. [1]

Without using a calculator, find the three smallest positive whole number values of n such that $w^n w^*$ is a real number. [3]

Click <u>here</u> or scan this to view video example on how to solve such question!

Answer:
$$|w| = 2$$
, arg $w = -\frac{5\pi}{6}$, $n = 1, 7, 13$